Conductor computations for the modular method via cluster pictures

Diana Mocanu, University of Warwick

Warwick. December 2023

Introduction

Generalized Fermat Equation:

$$a^p + b^q = c^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$

We call (p,q,r) the signature of the equation. A solution (a,b,c) is called **non-trivial** if $abc \neq 0$ and primitive if $\gcd(a,b,c)=1$.

Introduction

Generalized Fermat Equation:

$$a^p + b^q = c^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$

We call (p,q,r) the signature of the equation. A solution (a,b,c) is called **non-trivial** if $abc \neq 0$ and primitive if $\gcd(a,b,c) = 1$.

Some families of signatures that have been 'solved':

- $(p, p, p), p \ge 3$ Wiles, Taylor–Wiles 1995;
- $(p, p, 2), p \ge 4$ and $(p, p, 3), p \ge 3$ Darmon–Merel, Poonen 1998;
- $(2l, 2n, p), p \ge 2$ Anni, Siksek 2016;
- $(11, 11, p)^*$, Billerey, Chen, Dieulefait, Freitas 2022 (BCDF22);
- $(13, 13, p)^*, (19, 19, p)^*, (23, 23, p)^*, (37, 37, p)^*, (43, 43, p)^*$ M. 2022.
- $a^r + b^r = dc^{p*}$, $r \ge 5$ and infinitely many $d \ne 1$, Freitas, Najman 2022.

The Modular Method-Sketch

Assume $a^p + b^p = c^p$ with (a, b, c) non-trivial.

Select a Frey curve	$E(a,b): y^2 = x(x-a^p)(x+b^p), N_E = 2 \prod_{q abc} q$	
M odularity	Wiles: All rational semistable elliptic curves are modular $\Rightarrow \bar{\rho}_{E,l} \cong \bar{\rho}_{f,l}, \forall l$ for some newform f of level N_E	
Irreducibility	Mazur's Theorem on Isogenies: $\bar{\rho}_{E,p}$ is irreducible	
Level Lowering	Ribet: $ar{ ho}_{E,p}\congar{ ho}_{g,p}$ for some newform g of level $N_p=2$	
Eliminate	There are no newforms at level 2	

New Directions - Darmon Program

• Limited number of instances of generalized Fermat equations possessing Frey elliptic curves associated with them - known to Darmon from 1997

New Directions - Darmon Program

• Limited number of instances of generalized Fermat equations possessing Frey elliptic curves associated with them - known to Darmon from 1997

(p,q,r)	Frey curve for $a^p + b^q = c^r$	$\mid \Delta$
(2, 3, p)	$y^2 = x^3 + 3bx + 2a$	$-2^63^3c^p$
(3, 3, p)	$y^2 = x^3 + 3(a-b)x^2 + 3(a^2 - ab + b^2)x$	$-2^43^3c^{2p}$
(4, p, 4)	$y^2 = x^3 + 4acx^2 - (a^2 - c^2)^2 x$	$2^6(a^2 - c^2)^2b^{2p}$
(5, 5, p)	$y^2 = x^3 - 5(a^2 + b^2)x^2 + 5\frac{a^5 + b^5}{a + b}x$	$2^45^3(a+b)^2c^{2p}$
	$y^2 = x^3 + (a^2 + ab + b^2)x^2$	
(7, 7, p)	$-\left(2a^4 - 3a^3b + 6a^2b^2 - 3ab^3 + 2b^4\right)x$	$2^{4}7^{2}(\frac{a^{7}+b^{7}}{a+b})^{2}$
	$-\left(a^{6}-4 a^{5} b+6 a^{4} b^{2}-7 a^{3} b^{3}+6 a^{2} b^{4}-4 a b^{5}+b^{6}\right)$	
(p, p, 2)	$y^2 = x^3 + 2cx^2 + a^p x$	$2^6(a^2b)^p$
(p, p, 3)	$y^{2} + cxy = x^{3} - c^{2}x^{2} - \frac{3}{2}cb^{p}x + b^{p}(a^{p} + \frac{5}{4}b^{p})$	$3^3(a^3b)^p$
(p, p, p)	$y^2 = x(x - a^p)(x + b^p)$	$2^4(abc)^{2p}$

Signature (r, r, p)

Assume $a^r + b^r = c^p$ with (a, b, c) primitive, non-trivial.

- Let $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$ and \mathfrak{p}_r the unique prime above r in K.
- Kraus constructs a Frey hyperelliptic curve $C_r(a,b)/K$.
- $\bullet \ J_r := \mathrm{Jac}(C_r(a,b))/K, \ \mathrm{BCDF22} \leadsto \rho_{J_r,l} \cong \bigoplus_{\mathfrak{l} \mid l} \rho_{J_r,\mathfrak{l}}.$

Select a Frey curve	$C_r(a,b)/K$, $\mathcal{N}:=2^{e_2}\mathfrak{p}_r^2\prod_{\mathfrak{q}\mid c}\mathfrak{q}$	
Modularity	$\overline{ ho}_{J_r,\mathfrak{l}}:G_K o GL_2(\mathbb{F}_l), orall l$ is modular	
Wiodularity	$\Rightarrow \overline{ ho}_{J_T,\mathfrak{l}} \simeq \overline{ ho}_{\mathfrak{f},\mathfrak{L}}$, for some Hilbert newform \mathfrak{f} of level \mathcal{N}	
Irreducibility	$\overline{ ho}_{J_{r},\mathfrak{p}}$ is absolutely irreducible	
	(under some assumptions on r)	
Level Lowering	$\overline{ ho}_{J_r,\mathfrak{p}}\simeq\overline{ ho}_{\mathfrak{g},\mathfrak{P}}$ for some Hilbert newform \mathfrak{g} of level $\mathcal{N}_p:=2^2\mathfrak{p}_r^2$	
Eliminate	Compare traces of Frobenius	

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c) \in \mathbb{Z}^3$ such that $a^r + b^r = c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x) := \prod_{j=1}^{\frac{r-1}{2}} (x - (\zeta_r^j + \zeta_r^{-j}))$ the defining polynomial of $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c) \in \mathbb{Z}^3$ such that $a^r + b^r = c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x) := \prod_{i=1}^{\frac{r-1}{2}} (x - (\zeta_r^j + \zeta_r^{-j}))$ the defining polynomial of $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$. The discriminant of the curve is

$$\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Frey Curve and Conductor

Example

- $r = 5 : C_5(a,b) : y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 a^5$
- $r = 7 : C_7(a,b) : y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 a^7$

Frey Curve and Conductor

Example

- $r = 5 : C_5(a, b) : y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 a^5$
- $r = 7 : C_7(a,b) : y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 a^7$

Theorem (BCDF22,M3DC)

The common conductor of the compatible system $\rho_{J_r,\mathfrak{p}}$ is

$$\mathcal{N} := 2^{e_2} \mathfrak{p}_r^2 \prod_{\mathfrak{q} \mid c} \mathfrak{q}.$$

In particular, J_r is semistable at all primes not dividing 2r.

Remark: BCDF22 shows that $e_2 = 2$.

Cluster Pictures

Recall $C_r(a, b)/K : y^2 = f_r(a, b)$.

• The roots of $f_r(a,b)$ are given by $\alpha_i := -\zeta_r^i a + \zeta_r^{-i} b$, where $i=0,\ldots,r-1$.

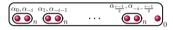
Cluster Pictures

Recall $C_r(a,b)/K: y^2 = f_r(a,b)$.

- The roots of $f_r(a,b)$ are given by $\alpha_i := -\zeta_r^i a + \zeta_r^{-i} b$, where $i=0,\ldots,r-1$.
- The cluster pictures of $C_r(a,b)$ at odd bad primes $\mathfrak q$ of K are given as follows:
 - $1. \ \left[\underbrace{\circ \circ_n \circ \circ_{-i} \circ \circ_{1, \alpha_{-i-1}}}_{\circ \circ n} \ \ldots \ \cdot \underbrace{\circ \circ_{r=1} \circ \circ_{-i-r=1}}_{\circ \circ \circ n} \right]_{\circ}, \ \text{if} \ \mathfrak{q} \neq \mathfrak{p}_r \ \text{and} \ \mathfrak{q} \mid c. \ \text{Here} \ n := pv_{\mathfrak{q}}(c) \in \mathbb{Z}.$
 - 2. $\bullet \bullet \bullet \cdots \bullet \bullet \bullet_{\underline{1}}$, if $\mathfrak{q} = \mathfrak{p}_r$ and $\mathfrak{q} \nmid c$.
 - 3. $\begin{bmatrix} \alpha_1, \alpha_{r-1} & \alpha_2, \alpha_{r-2} \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}_m \quad \dots \quad \frac{\alpha_{r-1}, \alpha_{r+1}}{\bullet \bullet}_m$, if $\mathfrak{q} = \mathfrak{p}_r$ and $\mathfrak{q} \mid c$. Here $m = \frac{r-1}{2}v_r(a+b) \frac{1}{2}$.

Conductor from the Cluster Picture

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_r, \mathfrak{q}|c$



Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime \mathfrak{q} . Then the exponent of the conductor at \mathfrak{q} is

$$n_{\mathfrak{q}} := egin{cases} \#A - 1, & \textit{if } \mathcal{R} & \textit{is "übereven}, \ \#A \end{cases}$$

where $A = \{all \ even, \ not \ \ddot{u}bereven, \ proper \ clusters\}.$

Conductors from the Cluster Pictures

• Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_r,p}$, the representation corresponding to the action of G_K on the $J_r[p]$ is

$$\mathcal{N}' = 2^{e_2'} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q} \mid \mathfrak{q}} \mathfrak{q}^{(r-1)/2}$$

Conductors from the Cluster Pictures

• Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_r,p}$, the representation corresponding to the action of G_K on the $J_r[p]$ is

$$\mathcal{N}' = 2^{e_2'} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q} \mid c} \mathfrak{q}^{(r-1)/2}$$

• Since $ho_{J_r,p}\cong\bigoplus_{\mathfrak{p}\mid p}
ho_{J_r,\mathfrak{p}}\Rightarrow\mathcal{N}'=\mathcal{N}^{\frac{r-1}{2}}$

Conductors from the Cluster Pictures

• Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_r,p}$, the representation corresponding to the action of G_K on the $J_r[p]$ is

$$\mathcal{N}' = 2^{e_2'} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q}|c} \mathfrak{q}^{(r-1)/2}$$

- Since $ho_{J_r,p}\cong \bigoplus_{\mathfrak{p}\mid p}
 ho_{J_r,\mathfrak{p}}\Rightarrow \mathcal{N}'=\mathcal{N}^{\frac{r-1}{2}}$
- $\mathcal{N} := 2^{e_2} \mathfrak{p}_r^2 \prod_{\mathfrak{q}|c} \mathfrak{q}$

Thank you!

Signature (r, r, p): Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)

Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_r

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathsf{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals $\mathfrak{p}|p$ in \mathcal{O}_K .

Signature (r, r, p): Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)

Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_r

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathsf{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals $\mathfrak{p}|p$ in \mathcal{O}_K .

- They show that J_r is of $GL_2(K)$ -type, i.e. there is an embedding $K \hookrightarrow \operatorname{End}_K(J_r) \otimes_{\mathbb{Z}} \mathbb{Q}$, $[K:\mathbb{Q}] = \frac{r-1}{2} = \dim(J_r) = g$.
- Moreover, $\rho_{J_r,p} \cong \bigoplus_{\mathfrak{p}\mid p} \rho_{J_r,\mathfrak{p}}$, where $\rho_{J_r,p}$ is the dimension 2g = (r-1) representation corresponding to the action of G_K on the $J_r[p]$
- ullet The proof uses Darmon's construction of Frey representations of signature (p,p,r).

Signature (r, r, p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_r/K is modular (for any prime $r\geq 3$), i.e. there exists a Hilbert newform $\mathfrak f$ of parallel weight 2 and conductor $\mathcal N$ such that the representation $\overline{\rho}_{J_r,\mathfrak p}:G_K\to GL_2(\mathbb F_p)$ satisfies $\overline{\rho}_{J_r,\mathfrak p}\simeq\overline{\rho}_{\mathfrak f,\mathfrak P}$ for all primes p (where $\mathfrak p|p$ in K and $\mathfrak P|p$ in $K_{\mathfrak f}$).

Signature (r, r, p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_r/K is modular (for any prime $r\geq 3$), i.e. there exists a Hilbert newform $\mathfrak f$ of parallel weight 2 and conductor $\mathcal N$ such that the representation $\overline{\rho}_{J_r,\mathfrak p}:G_K\to GL_2(\mathbb F_p)$ satisfies $\overline{\rho}_{J_r,\mathfrak p}\simeq\overline{\rho}_{\mathfrak f,\mathfrak P}$ for all primes p (where $\mathfrak p|p$ in K and $\mathfrak P|p$ in $K_{\mathfrak f}$).

Theorem (Irreducibility, BCDF22)

Assume that $r \not\equiv 1 \pmod{4}$ and that $r \nmid a + b$. Then, for all primes $p \neq 2$ and all $\mathfrak{p}|p$ in K, the representation $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible