Conductor computations for the modular method via cluster pictures

Warwick, December 2023

Diana Mocanu, University of Warwick

Introduction

Generalized Fermat Equation:

$$
a^{p}+b^{q}=c^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

We call (p, q, r) the signature of the equation. A solution (a, b, c) is called non-trivial if $a b c \neq 0$ and primitive if $\operatorname{gcd}(a, b, c)=1$.

Introduction

Generalized Fermat Equation:

$$
a^{p}+b^{q}=c^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} .
$$

We call (p, q, r) the signature of the equation. A solution (a, b, c) is called non-trivial if $a b c \neq 0$ and primitive if $\operatorname{gcd}(a, b, c)=1$.
Some families of signatures that have been 'solved':

- $(p, p, p), p \geq 3$ Wiles, Taylor-Wiles 1995;
- $(p, p, 2), p \geq 4$ and ($p, p, 3$), $p \geq 3$ Darmon-Merel, Poonen 1998;
- $(2 l, 2 n, p), p \geq 2$ Anni, Siksek 2016;
- $(11,11, p)^{*}$, Billerey, Chen, Dieulefait, Freitas 2022 (BCDF22);
- $(13,13, p)^{*},(19,19, p)^{*},(23,23, p)^{*},(37,37, p)^{*},(43,43, p)^{*}$ M. 2022.
- $a^{r}+b^{r}=d c^{p *}, r \geq 5$ and infinitely many $d \neq 1$, Freitas, Najman 2022.

The Modular Method-Sketch

Assume $a^{p}+b^{p}=c^{p}$ with (a, b, c) non-trivial.

Select a Frey curve	$E(a, b): y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right), N_{E}=2 \prod_{q \mid a b c} q$
Modularity	Wiles: All rational semistable elliptic curves are modular $\Rightarrow \bar{\rho}_{E, l} \cong \bar{\rho}_{f, l}, \forall l$ for some newform f of level N_{E}
Irreducibility	Mazur's Theorem on Isogenies: $\bar{\rho}_{E, p}$ is irreducible
Level Lowering	Ribet: $\bar{\rho}_{E, p} \cong \bar{\rho}_{g, p}$ for some newform g of level $N_{p}=2$
Eliminate	There are no newforms at level 2

New Directions - Darmon Program

- Limited number of instances of generalized Fermat equations possessing Frey elliptic curves associated with them - known to Darmon from 1997

New Directions - Darmon Program

- Limited number of instances of generalized Fermat equations possessing Frey elliptic curves associated with them - known to Darmon from 1997

(p, q, r)	Frey curve for $a^{p}+b^{q}=c^{r}$	Δ
$(2,3, p)$	$y^{2}=x^{3}+3 b x+2 a$	$-2^{6} 3^{3} c^{p}$
$(3,3, p)$	$y^{2}=x^{3}+3(a-b) x^{2}+3\left(a^{2}-a b+b^{2}\right) x$	$-2^{4} 3^{3} c^{2 p}$
$(4, p, 4)$	$y^{2}=x^{3}+4 a c x^{2}-\left(a^{2}-c^{2}\right)^{2} x$	$2^{6}\left(a^{2}-c^{2}\right)^{2} b^{2 p}$
$(5,5, p)$	$y^{2}=x^{3}-5\left(a^{2}+b^{2}\right) x^{2}+5 \frac{a^{5}+b^{5}}{a+b} x$	$2^{4} 5^{3}(a+b)^{2} c^{2 p}$
	$y^{2}=x^{3}+\left(a^{2}+a b+b^{2}\right) x^{2}$	
$(7,7, p)$	$-\left(2 a^{4}-3 a^{3} b+6 a^{2} b^{2}-3 a b^{3}+2 b^{4}\right) x$	$2^{4} 7^{2}\left(\frac{a^{7}+b^{7}}{a+b}\right)^{2}$
	$-\left(a^{6}-4 a^{5} b+6 a^{4} b^{2}-7 a^{3} b^{3}+6 a^{2} b^{4}-4 a b^{5}+b^{6}\right)$	
$(p, p, 2)$	$y^{2}=x^{3}+2 c x^{2}+a^{p} x$	$2^{6}\left(a^{2} b\right)^{p}$
$(p, p, 3)$	$y^{2}+c x y=x^{3}-c^{2} x^{2}-\frac{3}{2} c b^{p} x+b^{p}\left(a^{p}+\frac{5}{4} b^{p}\right)$	$3^{3}\left(a^{3} b\right)^{p}$
(p, p, p)	$y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)$	$2^{4}(a b c)^{2 p}$

Signature (r, r, p)

Assume $a^{r}+b^{r}=c^{p}$ with (a, b, c) primitive, non-trivial.

- Let $K:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$ and \mathfrak{p}_{r} the unique prime above r in K.
- Kraus constructs a Frey hyperelliptic curve $C_{r}(a, b) / K$.
- $J_{r}:=\operatorname{Jac}\left(C_{r}(a, b)\right) / K$, BCDF22 $\leadsto \rho_{J_{r}, l} \cong \bigoplus_{\mathfrak{r} \mid l} \rho_{J_{r}, \mathfrak{l}}$.

Select a Frey curve	$C_{r}(a, b) / K, \mathcal{N}:=2^{e_{2}} \mathfrak{p}_{r}^{2} \prod_{\mathfrak{q} \mid c} \mathfrak{q}$
Modularity	$\bar{\rho}_{J_{r}, \mathfrak{l}}: G_{K} \rightarrow G L_{2}\left(\mathbb{F}_{l}\right), \forall l$ is modular \Rightarrow $\Rightarrow \bar{\rho}_{J_{r}, \mathfrak{l}} \simeq \bar{\rho}_{\mathfrak{f}, \mathfrak{L}}$, for some Hilbert newform \mathfrak{f} of level \mathcal{N}
Irreducibility	$\bar{\rho}_{J_{r}, \mathfrak{p}}$, is absolutely irreducible (under some assumptions on r)
Level Lowering	$\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{\mathfrak{g}, \mathfrak{P}}$ for some Hilbert newform \mathfrak{g} of level $\mathcal{N}_{p}:=2^{2} \mathfrak{p}_{r}^{2}$
Eliminate	Compare traces of Frobenius

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a, b, c) \in \mathbb{Z}^{3}$ such that $a^{r}+b^{r}=c^{p}$ define

$$
C_{r}(a, b): y^{2}=\underbrace{(a b)^{(r-1) / 2} x h_{r}\left(\frac{x^{2}}{a b}+2\right)+b^{r}-a^{r}}_{f_{r}(a, b)}
$$

where $h_{r}(x):=\prod_{j=1}^{\frac{r-1}{2}}\left(x-\left(\zeta_{r}^{j}+\zeta_{r}^{-j}\right)\right)$ the defining polynomial of $K:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a, b, c) \in \mathbb{Z}^{3}$ such that $a^{r}+b^{r}=c^{p}$ define

$$
C_{r}(a, b): y^{2}=\underbrace{(a b)^{(r-1) / 2} x h_{r}\left(\frac{x^{2}}{a b}+2\right)+b^{r}-a^{r}}_{f_{r}(a, b)}
$$

where $h_{r}(x):=\prod_{j=1}^{\frac{r-1}{2}}\left(x-\left(\zeta_{r}^{j}+\zeta_{r}^{-j}\right)\right)$ the defining polynomial of $K:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$. The discriminant of the curve is

$$
\Delta\left(C_{r}(a, b)\right)=(-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^{r} c^{p(r-1)} .
$$

In particular, it defines a hyperelliptic curve of genus $\frac{r-1}{2}$.

Frey Curve and Conductor

Example

- $r=5: C_{5}(a, b): y^{2}=x^{5}+5 a b x^{3}+5 a^{2} b^{2} x+b^{5}-a^{5}$
- $r=7: C_{7}(a, b): y^{2}=x^{7}+7 a b x^{5}+14 a^{2} b^{2} x^{3}+7 a^{3} b^{3} x+b^{7}-a^{7}$

Frey Curve and Conductor

Example

- $r=5: C_{5}(a, b): y^{2}=x^{5}+5 a b x^{3}+5 a^{2} b^{2} x+b^{5}-a^{5}$
- $r=7: C_{7}(a, b): y^{2}=x^{7}+7 a b x^{5}+14 a^{2} b^{2} x^{3}+7 a^{3} b^{3} x+b^{7}-a^{7}$

Theorem (BCDF22,M3DC)

The common conductor of the compatible system $\rho_{J_{r}, \mathfrak{p}}$ is

$$
\mathcal{N}:=2^{e_{2}} \mathfrak{p}_{r}^{2} \prod_{\mathfrak{q} \mid c} \mathfrak{q} .
$$

In particular, J_{r} is semistable at all primes not dividing $2 r$.
Remark: BCDF22 shows that $e_{2}=2$.

Cluster Pictures

Recall $C_{r}(a, b) / K: y^{2}=f_{r}(a, b)$.

- The roots of $f_{r}(a, b)$ are given by $\alpha_{i}:=-\zeta_{r}^{i} a+\zeta_{r}^{-i} b$, where $i=0, \ldots, r-1$.

Cluster Pictures

Recall $C_{r}(a, b) / K: y^{2}=f_{r}(a, b)$.

- The roots of $f_{r}(a, b)$ are given by $\alpha_{i}:=-\zeta_{r}^{i} a+\zeta_{r}^{-i} b$, where $i=0, \ldots, r-1$.
- The cluster pictures of $C_{r}(a, b)$ at odd bad primes \mathfrak{q} of K are given as follows:

2. $\odot \bullet \bullet \cdots \bullet 00_{1}$, if $\mathfrak{q}=\mathfrak{p}_{r}$ and $\mathfrak{q} \nmid c$.

Conductor from the Cluster Picture

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_{r}, \mathfrak{q} \mid c$

Theorem (Dokchitser-Dokchitser-Maistret-Morgan, 2017)
Suppose C / K is semistable at a prime \mathfrak{q}. Then the exponent of the conductor at \mathfrak{q} is

$$
n_{\mathfrak{q}}:=\left\{\begin{array}{l}
\# A-1, \text { if } \mathcal{R} \text { is übereven }, \\
\# A
\end{array}\right.
$$

where $A=\{$ all even, not übereven, proper clusters $\}$.

Conductors from the Cluster Pictures

- Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_{r}, p}$, the representation corresponding to the action of G_{K} on the $J_{r}[p]$ is

$$
\mathcal{N}^{\prime}=2^{e_{2}^{\prime}} \mathfrak{p}_{r}^{r-1} \prod_{\mathfrak{q} \mid c} \mathfrak{q}^{(r-1) / 2}
$$

Conductors from the Cluster Pictures

- Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_{r}, p}$, the representation corresponding to the action of G_{K} on the $J_{r}[p]$ is

$$
\mathcal{N}^{\prime}=2^{e_{2}^{\prime}} \mathfrak{p}_{r}^{r-1} \prod_{\mathfrak{q} \mid c} \mathfrak{q}^{(r-1) / 2}
$$

- Since $\rho_{J_{r}, p} \cong \bigoplus_{\mathfrak{p} \mid p} \rho_{J_{r}, \mathfrak{p}} \Rightarrow \mathcal{N}^{\prime}=\mathcal{N}^{\frac{r-1}{2}}$

Conductors from the Cluster Pictures

- Using a more general Theorem from DDMM17 \Longrightarrow the conductor associated to $\rho_{J_{r}, p}$, the representation corresponding to the action of G_{K} on the $J_{r}[p]$ is

$$
\mathcal{N}^{\prime}=2^{e_{2}^{\prime}} \mathfrak{p}_{r}^{r-1} \prod_{\mathfrak{q} \mid c} \mathfrak{q}^{(r-1) / 2}
$$

- Since $\rho_{J_{r}, p} \cong \bigoplus_{\mathfrak{p} \mid p} \rho_{J_{r}, \mathfrak{p}} \Rightarrow \mathcal{N}^{\prime}=\mathcal{N}^{\frac{r-1}{2}}$
- $\mathcal{N}:=2^{e_{2}} \mathfrak{p}_{r}^{2} \prod_{\mathfrak{q} \mid c} \mathfrak{q}$

Thank you!

Signature (r, r, p) : Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)
Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_{r}

$$
\rho_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow G L_{2}\left(K_{\mathfrak{p}}\right)
$$

indexed by the prime ideals $\mathfrak{p} \mid p$ in \mathcal{O}_{K}.

Signature (r, r, p) : Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)

Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_{r}

$$
\rho_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow G L_{2}\left(K_{\mathfrak{p}}\right)
$$

indexed by the prime ideals $\mathfrak{p} \mid p$ in \mathcal{O}_{K}.

- They show that J_{r} is of $\mathrm{GL}_{2}(K)$-type, i.e. there is an embedding $K \hookrightarrow \operatorname{End}_{K}\left(J_{r}\right) \otimes_{\mathbb{Z}} \mathbb{Q},[K: \mathbb{Q}]=\frac{r-1}{2}=\operatorname{dim}\left(J_{r}\right)=g$.
- Moreover, $\rho_{J_{r}, p} \cong \bigoplus_{\mathfrak{p} \mid p} \rho_{J_{r}, \mathfrak{p}}$, where $\rho_{J_{r}, p}$ is the dimension $2 g=(r-1)$ representation corresponding to the action of G_{K} on the $J_{r}[p]$
- The proof uses Darmon's construction of Frey representations of signature (p, p, r).

Signature (r,r,p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_{r} / K is modular (for any prime $r \geq 3$), i.e. there exists a Hilbert newform \mathfrak{f} of parallel weight 2 and conductor \mathcal{N} such that the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow G L_{2}\left(\mathbb{F}_{p}\right)$ satisfies $\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{\mathfrak{f}, \mathfrak{F}}$ for all primes p (where $\mathfrak{p} \mid p$ in K and $\mathfrak{P} \mid p$ in $K_{\mathfrak{f}}$).

Signature (r,r,p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_{r} / K is modular (for any prime $r \geq 3$), i.e. there exists a Hilbert newform \mathfrak{f} of parallel weight 2 and conductor \mathcal{N} such that the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}: G_{K} \rightarrow G L_{2}\left(\mathbb{F}_{p}\right)$ satisfies $\bar{\rho}_{J_{r}, \mathfrak{p}} \simeq \bar{\rho}_{\mathfrak{f}, \mathfrak{F}}$ for all primes p (where $\mathfrak{p} \mid p$ in K and $\mathfrak{P} \mid p$ in $K_{\mathfrak{f}}$).

Theorem (Irreducibility, BCDF22)

Assume that $r \not \equiv 1(\bmod 4)$ and that $r \nmid a+b$. Then, for all primes $p \neq 2$ and all $\mathfrak{p} \mid p$ in K, the representation $\bar{\rho}_{J_{r}, \mathfrak{p}}$ is absolutely irreducible

