The modular approach for solving $\mathbf{x}^r + \mathbf{y}^r = \mathbf{z}^p$

Cambridge, September 2023

Diana Mocanu, University of Warwick

Introduction

Generalized Fermat Equation:

$$x^p + y^q = z^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$
(1)

Generalized Fermat Equation:

$$x^p + y^q = z^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$
(1)

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying 1/p + 1/q + 1/r < 1 the equation (1) admits only finitely many integer solutions (a, b, c) which are non-trivial (i.e. $abc \neq 0$) coprime (i.e. gcd(a, b, c) = 1). (Here solutions like $2^3 + 1^q = 3^2$ are counted only once.)

Generalized Fermat Equation:

$$x^p + y^q = z^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$

Theorem(Darmon-Granville 1995)

If we fix the prime exponents p, q, r such that 1/p + 1/q + 1/r < 1, then there are only finitely many coprime integers solutions to the above equation.

Introduction

Generalized Fermat Equation:

$$x^p + y^q = z^r, \quad p, q, r \in \mathbb{Z}_{\ge 2}.$$

We call (p,q,r) the signature of the equation.

Introduction

Generalized Fermat Equation:

$$x^p + y^q = z^r, \quad p, q, r \in \mathbb{Z}_{\geq 2}.$$

We call (p,q,r) the signature of the equation. Families of signatures that have been 'solved':

- $(n, n, n), n \ge 3$ Wiles, Taylor–Wiles 1995;
- $(n, n, 2), n \ge 4$ and $(n, n, 3), n \ge 3$ Darmon–Merel, Poonen 1998;
- $(3j, 3k, n), j, k \ge 2, n \ge 3$ Kraus 1998;
- $(2n, 2n, 5), n \geq 2$ Bennett 2006;
- (5,5,7), (5,5,19), and (7,7,5) Dahmen, Siksek 2014;
- $(5,5,n)^*$ Billerey, Chen, Dembélé, Dieulefait and Freitas 2022;
- $(11, 11, n)^*$, $(13, 13, n)^*$ Billerey, Chen, Dieulefait, Freitas and Najman 2022.

Asymptotic (r, r, p)

Today: $x^r + y^r = z^p$ where $r \ge 5$ is fixed and p varies.

Asymptotic (r, r, p)

Today: $x^r + y^r = z^p$ where $r \ge 5$ is fixed and p varies.

Theorem (M.)

Fix $r \ge 5$ such that $r \not\equiv 1 \mod 8$. Let $\mathbb{Q}^+ := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$, suppose that 2 is inert in \mathbb{Q}^+ and $2 \nmid h_{\mathbb{Q}^+}^+$. Then, there is a constant B_r (depending only on r) such that for each rational prime $p > B_r$, the equation $x^r + y^r = z^p$ has no integer solutions with 2|z.

Asymptotic (r, r, p)

Today: $x^r + y^r = z^p$ where $r \ge 5$ is fixed and p varies.

Theorem (M.)

Fix $r \ge 5$ such that $r \not\equiv 1 \mod 8$. Let $\mathbb{Q}^+ := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$, suppose that 2 is inert in \mathbb{Q}^+ and $2 \nmid h_{\mathbb{Q}^+}^+$. Then, there is a constant B_r (depending only on r) such that for each rational prime $p > B_r$, the equation $x^r + y^r = z^p$ has no integer solutions with 2|z.

Example

This implies that there are no integer solutions (x, y, z) with 2|z for p large enough for signatures:

(5,5,p), (7,7,p), (11,11,p), (13,13,p), (19,19,p), (23,23,p), (37,37,p), (43,43,p).

Modular Method - Sketch

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^p + y^p = z^p$. We construct the following Frey Curve:

 $E/\mathbb{Q}: Y^2 = X(X - x^p)(X + y^p)$

which has Artin conductor $N_p = 2$.

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^p + y^p = z^p$. We construct the following Frey Curve:

 $E/\mathbb{Q}: Y^2 = X(X - x^p)(X + y^p)$

which has Artin conductor $N_p = 2$.

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^r + y^r = z^p$ and 2|z. We construct a Frey elliptic curve over **the totally real** number field \mathbb{Q}^+ :

$$E_{x,y,z}: Y^2 = X(X - A)(X + B)$$
 (2)

defined over the totally real number field $\mathbb{Q}^+ := \mathbb{Q}(\zeta_r + \zeta_r^{-1}).$ The Artin conductor of E is

$$\mathcal{N}_p = 2^{e_2} \mathfrak{P}_r^{e_r}.$$

Step 2: Modularity. Wiles, Taylor-Wiles (1995) proved Modularity of semistable elliptic curves over Q.

 $E \rightsquigarrow f$

where f is a newform of weight 2 and level N, where N is the conductor of E.

Step 2: Modularity. Wiles, Taylor-Wiles (1995) proved Modularity of semistable elliptic curves over \mathbb{Q} .

 $E \rightsquigarrow f$

where f is a newform of weight 2 and level N, where N is the conductor of E.

Step 2: Modularity.

Freitas, Hung and Siksek (2013) proved Modularity of elliptic curves over totally real fields (up to a finite number of exceptions).

$E \leadsto \mathfrak{f}$

where \mathfrak{f} is a Hilbert newform of parallel weight 2 and level $\mathcal N,$ where $\mathcal N$ is the conductor of E

Step 3: Irreducibility.

The representation $\overline{\rho}_{E,p}$ is irreducible by a Theorem due to Mazur (1978).

Step 3: Irreducibility.

The representation $\overline{\rho}_{E,p}$ is irreducible by a Theorem due to Mazur (1978).

Step 3: Irreducibility.

Freitas and Siksek (2015) proved irreducibility of $\overline{\rho}_{E,p}$ for elliptic curves Eover totally real number fields under a few technical assumptions, **if p is large enough**.

Step 4: Level Lowering

Ribet's Level Lowering Theorem (1986) implies that there exists a rational newform f of level $N_p = 2$ and weight 2 such that $E \sim_p f$.

Step 4: Level Lowering

Ribet's Level Lowering Theorem (1986) implies that there exists a rational newform f of level $N_p = 2$ and weight 2 such that $E \sim_p f$.

Step 4: Level lowering. Use level lowering theorems, which require irreducibility of $\overline{\rho}_{E,p}$, to conclude that

$$\overline{\rho}_{E,p}\simeq\overline{\rho}_{\mathfrak{f},p}$$

where f is a Hilbert newform over \mathbb{Q}^+ of parallel weight 2, of trivial character, and rational Hecke eigenvalues, with level equal to the Artin conductor \mathcal{N}_p of E.

Level Lowering

Step 5: Eliminate

Simply there are no newforms at level $N_p=2$, hence giving the desired contradiction.

Level Lowering

Step 5: Eliminate

Simply there are no newforms at level $N_p=2$, hence giving the desired contradiction.

Step 5: Eliminate

Prove that among the finitely many Hilbert newforms predicted above, none of them corresponds to $\bar{\rho}_{E,p}$ and get the desired **contradiction.**

Step 5 is challenging in general.

Example

The approach we used:

- 1. an 'Eichler-Shimura'-type result;
- 2. image of inertia comparison arguments;
- 3. the study of certain S-unit equations;

to get a contradiction.

Recap steps 1,2,3,4: Assuming we have a (non-trivial, primitive) solution

(x, y, z) to $x^r + y^r = z^p$ with 2|z| + some class field theoretic assumptions

Recap steps 1,2,3,4: Assuming we have a (non-trivial, primitive) solution

(x, y, z) to $x^r + y^r = z^p$ with 2|z + some class field theoretic assumptions

Step 1 $(x, y, z) \rightsquigarrow E_{x,y,z}$, Frey elliptic curve

Recap steps 1,2,3,4:

Assuming we have a (non-trivial, primitive) solution

(x, y, z) to $x^r + y^r = z^p$ with 2|z| + some class field theoretic assumptions

Step 1 $(x, y, z) \rightsquigarrow E_{x,y,z}$, Frey elliptic curve Steps 2,3,4 Get a Hilbert newform f, of level \mathcal{N}_p , such that

$$\overline{\rho}_{E,p} \simeq \overline{\rho}_{\mathfrak{f},p}$$

.

1. Eichler-Shimura gives an elliptic curve E' with conductor \mathcal{N}_p such that

$$\overline{\rho}_{E,p} \simeq \overline{\rho}_{\mathfrak{f},p} \simeq \overline{\rho}_{E',p}$$

.

1. Eichler-Shimura gives an elliptic curve E' with conductor \mathcal{N}_p such that

$$\overline{\rho}_{E,p} \simeq \overline{\rho}_{\mathfrak{f},p} \simeq \overline{\rho}_{E',p}$$

2. Image of inertia comparison at the bad prime 2 gives $v_2(j_{E'}) < 0$.

.

1. Eichler-Shimura gives an elliptic curve E' with conductor \mathcal{N}_p such that

$$\overline{\rho}_{E,p}\simeq\overline{\rho}_{\mathfrak{f},p}\simeq\overline{\rho}_{E',p}$$

- 2. Image of inertia comparison at the bad prime 2 gives $v_2(j_{E'}) < 0$.
- 3. Elliptic curves E' with such properties are parametrized by S-unit equations. By **finiteness of solutions** to S-unit equations + the class field theoretic assumptions we get the contradiction.

Modular Method

Select a Frey Curve - Modularity - Irreducibility - Level lowering - Eliminate

Thank you!