The modular approach for solving

$$
\mathbf{x}^{\mathbf{r}}+\mathbf{y}^{\mathbf{r}}=\mathbf{z}^{\mathbf{p}}
$$

Cambridge, September 2023

Diana Mocanu, University of Warwick

Introduction

Generalized Fermat Equation:

$$
\begin{equation*}
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} . \tag{1}
\end{equation*}
$$

Introduction

Generalized Fermat Equation:

$$
\begin{equation*}
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} \tag{1}
\end{equation*}
$$

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying $1 / p+1 / q+1 / r<1$ the equation (1) admits only finitely many integer solutions (a, b, c) which are non-trivial (i.e. $a b c \neq 0$) coprime (i.e. $\operatorname{gcd}(a, b, c)=1$). (Here solutions like $2^{3}+1^{q}=3^{2}$ are counted only once.)

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2}
$$

Theorem(Darmon-Granville 1995)

If we fix the prime exponents p, q, r such that $1 / p+1 / q+1 / r<1$, then there are only finitely many coprime integers solutions to the above equation.

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} .
$$

We call (p, q, r) the signature of the equation.

Introduction

Generalized Fermat Equation:

$$
x^{p}+y^{q}=z^{r}, \quad p, q, r \in \mathbb{Z}_{\geq 2} .
$$

We call (p, q, r) the signature of the equation.
Families of signatures that have been 'solved':

- (n, n, n),$n \geq 3$ Wiles, Taylor-Wiles 1995;
- ($n, n, 2$), $n \geq 4$ and ($n, n, 3$), $n \geq 3$ Darmon-Merel, Poonen 1998;
- ($3 j, 3 k, n$), $j, k \geq 2, n \geq 3$ Kraus 1998;
- ($2 n, 2 n, 5), n \geq 2$ Bennett 2006;
- $(5,5,7),(5,5,19)$, and $(7,7,5)$ Dahmen, Siksek 2014;
- $(5,5, n)^{*}$ Billerey, Chen, Dembélé, Dieulefait and Freitas 2022;
- $(11,11, n)^{*},(13,13, n)^{*}$ Billerey, Chen, Dieulefait, Freitas and Najman 2022.

Asymptotic (r, r, p)

Today: $x^{r}+y^{r}=z^{p}$ where $r \geq 5$ is fixed and p varies.

Asymptotic (r, r, p)

Today: $x^{r}+y^{r}=z^{p}$ where $r \geq 5$ is fixed and p varies.

Theorem (M.)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+} and $2 \nmid h_{\mathbb{Q}^{+}}^{+}$. Then, there is a constant B_{r} (depending only on r) such that for each rational prime $p>B_{r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $2 \mid z$.

Asymptotic (r, r, p)

Today: $x^{r}+y^{r}=z^{p}$ where $r \geq 5$ is fixed and p varies.

Theorem (M.)

Fix $r \geq 5$ such that $r \not \equiv 1 \bmod 8$. Let $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$, suppose that 2 is inert in \mathbb{Q}^{+} and $2 \nmid h_{\mathbb{Q}^{+}}^{+}$. Then, there is a constant B_{r} (depending only on r) such that for each rational prime $p>B_{r}$, the equation $x^{r}+y^{r}=z^{p}$ has no integer solutions with $2 \mid z$.

Example

This implies that there are no integer solutions (x, y, z) with $2 \mid z$ for p large enough for signatures:

$$
(5,5, p),(7,7, p),(11,11, p),(13,13, p),(19,19, p),(23,23, p),(37,37, p),(43,43, p)
$$

Modular Method - Sketch

Modular Method - Sketch

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^{p}+y^{p}=z^{p}$. We construct the following Frey Curve:

$$
E / \mathbb{Q}: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)
$$

which has Artin conductor $N_{p}=2$.

Modular Method - Sketch

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^{p}+y^{p}=z^{p}$. We construct the following Frey Curve:

$$
E / \mathbb{Q}: Y^{2}=X\left(X-x^{p}\right)\left(X+y^{p}\right)
$$

which has Artin conductor $N_{p}=2$.

Step 1: Select a Frey curve.

Suppose we have $x, y, z \in \mathbb{Z}$, non-trivial, coprime with $x^{r}+y^{r}=z^{p}$ and $2 \mid z$. We construct a Frey elliptic curve over the totally real number field \mathbb{Q}^{+}:

$$
\begin{equation*}
E_{x, y, z}: Y^{2}=X(X-A)(X+B) \tag{2}
\end{equation*}
$$

defined over the totally real number field $\mathbb{Q}^{+}:=\mathbb{Q}\left(\zeta_{r}+\zeta_{r}^{-1}\right)$. The Artin conductor of E is

$$
\mathcal{N}_{p}=2^{e_{2}} \mathfrak{P}_{r}^{e_{r}}
$$

Modular Method - Sketch

Step 2: Modularity. Wiles, Taylor-Wiles (1995) proved Modularity of semistable elliptic curves over \mathbb{Q}.

$$
E \leadsto f
$$

where f is a newform of weight 2 and level N, where N is the conductor of E.

Modular Method - Sketch

Step 2: Modularity. Wiles, Taylor-Wiles (1995) proved Modularity of semistable elliptic curves over \mathbb{Q}.

$$
E \leadsto f
$$

where f is a newform of weight 2 and level N, where N is the conductor of E.

Step 2: Modularity.

Freitas, Hung and Siksek (2013) proved Modularity of elliptic curves over totally real fields (up to a finite number of exceptions).

$$
E \leadsto \mathfrak{f}
$$

where \mathfrak{f} is a Hilbert newform of parallel weight 2 and level \mathcal{N}, where \mathcal{N} is the conductor of E

Modular Method - Sketch

Step 3: Irreducibility.

The representation $\bar{\rho}_{E, p}$ is irreducible by
a Theorem due to Mazur (1978).

Modular Method - Sketch

Step 3: Irreducibility.

The representation $\bar{\rho}_{E, p}$ is irreducible by a Theorem due to Mazur (1978).

Step 3: Irreducibility.

 Freitas and Siksek (2015) proved irreducibility of $\bar{\rho}_{E, p}$ for elliptic curves E over totally real number fields under a few technical assumptions, if \mathbf{p} is large enough.
Modular Method - Sketch

Step 4: Level Lowering

Ribet's Level Lowering Theorem (1986) implies that there exists a rational newform f of level $N_{p}=2$ and weight 2 such that $E \sim_{p} f$.

Modular Method - Sketch

Step 4: Level Lowering

Ribet's Level Lowering Theorem (1986) implies that there exists a rational newform f of level $N_{p}=2$ and weight 2 such that $E \sim_{p} f$.

Step 4: Level lowering. Use level lowering theorems, which require irreducibility of $\bar{\rho}_{E, p}$, to conclude that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p}
$$

where \mathfrak{f} is a Hilbert newform over \mathbb{Q}^{+}of parallel weight 2 , of trivial character, and rational Hecke eigenvalues, with level equal to the Artin conductor \mathcal{N}_{p} of E.

Level Lowering

Step 5: Eliminate

Simply there are no newforms at level
$N_{p}=2$, hence giving the desired contradiction.

Level Lowering

Step 5: Eliminate

Simply there are no newforms at level $N_{p}=2$, hence giving the desired contradiction.

Step 5: Eliminate

Prove that among the finitely many Hilbert newforms predicted above, none of them corresponds to $\bar{\rho}_{E, p}$ and get the desired contradiction.

Modular Method - Step 5

Step 5 is challenging in general.

Example

The approach we used:

1. an 'Eichler-Shimura'-type result;
2. image of inertia comparison arguments;
3. the study of certain S-unit equations;
to get a contradiction.

Modular Method - Recap

Recap steps 1,2,3,4:

Assuming we have a (non-trivial, primitive) solution
(x, y, z) to $x^{r}+y^{r}=z^{p}$ with $2 \mid z \quad+$ some class field theoretic assumptions

Modular Method - Recap

Recap steps 1,2,3,4:

Assuming we have a (non-trivial, primitive) solution

$$
(x, y, z) \text { to } x^{r}+y^{r}=z^{p} \text { with } 2 \mid z \quad+\text { some class field theoretic assumptions }
$$

Step $1(x, y, z) \leadsto E_{x, y, z}$, Frey elliptic curve

Modular Method - Recap

Recap steps 1,2,3,4:

Assuming we have a (non-trivial, primitive) solution

$$
(x, y, z) \text { to } x^{r}+y^{r}=z^{p} \text { with } 2 \mid z \quad+\text { some class field theoretic assumptions }
$$

Step $1(x, y, z) \sim E_{x, y, z}$, Frey elliptic curve
Steps 2,3,4 Get a Hilbert newform \mathfrak{f}, of level \mathcal{N}_{p}, such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p}
$$

Modular Method - Step 5

1. Eichler-Shimura gives an elliptic curve E^{\prime} with conductor \mathcal{N}_{p} such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p} \simeq \bar{\rho}_{E^{\prime}, p}
$$

Modular Method - Step 5

1. Eichler-Shimura gives an elliptic curve E^{\prime} with conductor \mathcal{N}_{p} such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p} \simeq \bar{\rho}_{E^{\prime}, p}
$$

2. Image of inertia comparison at the bad prime 2 gives $v_{2}\left(j_{E^{\prime}}\right)<0$.

Modular Method - Step 5

1. Eichler-Shimura gives an elliptic curve E^{\prime} with conductor \mathcal{N}_{p} such that

$$
\bar{\rho}_{E, p} \simeq \bar{\rho}_{\mathrm{f}, p} \simeq \bar{\rho}_{E^{\prime}, p}
$$

2. Image of inertia comparison at the bad prime 2 gives $v_{2}\left(j_{E^{\prime}}\right)<0$.
3. Elliptic curves E^{\prime} with such properties are parametrized by S-unit equations. By finiteness of solutions to S-unit equations + the class field theoretic assumptions we get the contradiction.

Modular Method

Select a Frey Curve - Modularity - Irreducibility - Level lowering - Eliminate

Thank you!

