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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2. (1)

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p, q, r satisfying 1/p+ 1/q + 1/r < 1 the equation
(1) admits only finitely many integer solutions (a, b, c) which are non-trivial (i.e. abc ̸= 0)
coprime (i.e. gcd(a, b, c) = 1). (Here solutions like 23 + 1q = 32 are counted only once.)
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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2.

Theorem(Darmon-Granville 1995)

If we fix the prime exponents p, q, r such that 1/p+ 1/q + 1/r < 1, then there are only
finitely many coprime integers solutions to the above equation.
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Introduction

Generalized Fermat Equation:

xp + yq = zr, p, q, r ∈ Z≥2.

We call (p, q, r) the signature of the equation.

Families of signatures that have been ’solved’:

(n, n, n), n ≥ 3 Wiles, Taylor–Wiles 1995;

(n, n, 2), n ≥ 4 and (n, n, 3), n ≥ 3 Darmon–Merel, Poonen 1998;

(3j, 3k, n), j, k ≥ 2, n ≥ 3 Kraus 1998;

(2n, 2n, 5), n ≥ 2 Bennett 2006;

(5, 5, 7), (5, 5, 19), and (7, 7, 5) Dahmen, Siksek 2014;

(5, 5, n)* Billerey, Chen, Dembélé, Dieulefait and Freitas 2022;

(11, 11, n)*,(13, 13, n)* Billerey, Chen, Dieulefait, Freitas and Najman 2022.
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Asymptotic (r, r, p)

Today: xr + yr = zp where r ≥ 5 is fixed and p varies.

Theorem (M.)

Fix r ≥ 5 such that r ̸≡ 1 mod 8. Let Q+ := Q(ζr + ζ−1
r ), suppose that 2 is inert in Q+

and 2 ∤ h+Q+ . Then, there is a constant Br (depending only on r) such that for each

rational prime p > Br, the equation xr + yr = zp has no integer solutions with 2|z.

Example

This implies that there are no integer solutions (x, y, z) with 2|z for p large enough for
signatures:

(5, 5, p), (7, 7, p), (11, 11, p), (13, 13, p), (19, 19, p), (23, 23, p), (37, 37, p), (43, 43, p).

7 / 29



Asymptotic (r, r, p)

Today: xr + yr = zp where r ≥ 5 is fixed and p varies.

Theorem (M.)

Fix r ≥ 5 such that r ̸≡ 1 mod 8. Let Q+ := Q(ζr + ζ−1
r ), suppose that 2 is inert in Q+

and 2 ∤ h+Q+ . Then, there is a constant Br (depending only on r) such that for each

rational prime p > Br, the equation xr + yr = zp has no integer solutions with 2|z.

Example

This implies that there are no integer solutions (x, y, z) with 2|z for p large enough for
signatures:

(5, 5, p), (7, 7, p), (11, 11, p), (13, 13, p), (19, 19, p), (23, 23, p), (37, 37, p), (43, 43, p).

8 / 29



Asymptotic (r, r, p)

Today: xr + yr = zp where r ≥ 5 is fixed and p varies.

Theorem (M.)

Fix r ≥ 5 such that r ̸≡ 1 mod 8. Let Q+ := Q(ζr + ζ−1
r ), suppose that 2 is inert in Q+

and 2 ∤ h+Q+ . Then, there is a constant Br (depending only on r) such that for each

rational prime p > Br, the equation xr + yr = zp has no integer solutions with 2|z.

Example

This implies that there are no integer solutions (x, y, z) with 2|z for p large enough for
signatures:

(5, 5, p), (7, 7, p), (11, 11, p), (13, 13, p), (19, 19, p), (23, 23, p), (37, 37, p), (43, 43, p).

9 / 29



Modular Method - Sketch

Step 1: Select a Frey curve.
Suppose we have x, y, z ∈ Z, non-trivial,
coprime with xp + yp = zp. We
construct the following Frey Curve:

E/Q : Y 2 = X(X − xp)(X + yp)

which has Artin conductor Np = 2.

Step 1: Select a Frey curve.
Suppose we have x, y, z ∈ Z, non-trivial,
coprime with xr + yr = zp and 2|z. We
construct a Frey elliptic curve over the
totally real number field Q+:

Ex,y,z : Y
2 = X(X −A)(X +B) (2)

defined over the totally real number field
Q+ := Q(ζr + ζ−1

r ). The Artin conductor of
E is

Np = 2e2Per
r .
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Modular Method - Sketch

Step 2: Modularity. Wiles,
Taylor-Wiles (1995) proved Modularity
of semistable elliptic curves over Q.

E ; f

where f is a newform of weight 2 and
level N , where N is the conductor of E.

Step 2: Modularity.
Freitas, Hung and Siksek (2013) proved
Modularity of elliptic curves over totally real
fields (up to a finite number of exceptions).

E ; f

where f is a Hilbert newform of parallel
weight 2 and level N , where N is the
conductor of E
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Modular Method - Sketch

Step 3: Irreducibility.
The representation ρE,p is irreducible by
a Theorem due to Mazur (1978).

Step 3: Irreducibility.
Freitas and Siksek (2015) proved
irreducibility of ρE,p for elliptic curves E
over totally real number fields under a few
technical assumptions, if p is large enough.
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Modular Method - Sketch

Step 4: Level Lowering
Ribet’s Level Lowering Theorem (1986)
implies that there exists a rational
newform f of level Np = 2 and weight 2
such that E ∼p f .

Step 4: Level lowering. Use level lowering
theorems, which require irreducibility of
ρE,p, to conclude that

ρE,p ≃ ρf,p

where f is a Hilbert newform over Q+ of
parallel weight 2, of trivial character, and
rational Hecke eigenvalues, with level equal
to the Artin conductor Np of E.
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Level Lowering

Step 5: Eliminate
Simply there are no newforms at level
Np = 2, hence giving the desired
contradiction.

Step 5: Eliminate
Prove that among the finitely many Hilbert
newforms predicted above, none of them
corresponds to ρ̄E,p and get the desired
contradiction.
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Modular Method - Step 5

Step 5 is challenging in general.

Example

The approach we used:

1. an ’Eichler-Shimura’-type result;

2. image of inertia comparison arguments;

3. the study of certain S-unit equations;

to get a contradiction.
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Modular Method - Recap

Recap steps 1,2,3,4:
Assuming we have a (non-trivial, primitive) solution

(x, y, z) to xr + yr = zp with 2|z + some class field theoretic assumptions

Step 1 (x, y, z) ; Ex,y,z, Frey elliptic curve
Steps 2,3,4 Get a Hilbert newform f, of level Np, such that

ρE,p ≃ ρf,p
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Modular Method - Step 5

1. Eichler-Shimura gives an elliptic curve E′ with conductor Np such that

ρE,p ≃ ρf,p ≃ ρE′,p

.

2. Image of inertia comparison at the bad prime 2 gives v2(jE′) < 0.

3. Elliptic curves E′ with such properties are parametrized by S-unit equations. By
finiteness of solutions to S-unit equations + the class field theoretic assumptions
we get the contradiction.
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Modular Method

Select a Frey Curve - Modularity - Irreducibility - Level lowering - Eliminate
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Thank you!
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