Variants of the modular method

YRANT, 2024

Diana Mocanu, University of Warwick

Generalized Fermat Equation:

$$a^p + b^q = c^r$$
, p, q, r primes.

A solution $(a, b, c) \in \mathbb{Z}^3$ is called **non-trivial** if $abc \neq 0$ and **primitive** if gcd(a, b, c) = 1.

Generalized Fermat Equation:

$$a^p + b^q = c^r$$
, p, q, r primes.

A solution $(a, b, c) \in \mathbb{Z}^3$ is called **non-trivial** if $abc \neq 0$ and **primitive** if gcd(a, b, c) = 1.

Conjecture(Fermat-Catalan)

Over all choices of prime exponents p,q,r satisfying 1/p+1/q+1/r<1 the above equation has only finitely many (10) integer solutions (a,b,c) which are non-trivial and primitive. (Here solutions like $2^3+1^q=3^2$ are counted only once.)

Generalized Fermat Equation:

$$a^p + b^q = c^r$$
, p, q, r primes ≥ 2 .

We call (p, q, r) the signature of the equation.

Generalized Fermat Equation:

$$a^p + b^q = c^r$$
, p, q, r primes ≥ 2 .

We call (p, q, r) the signature of the equation.

Some families of signatures that have been 'solved':

- $(p, p, p), p \ge 3$ Wiles, Taylor–Wiles 1995;
- $(p, p, 2), p \ge 4$ and $(p, p, 3), p \ge 3$ Darmon–Merel, Poonen 1998;
- $(11, 11, p)^*, p \ge 2$, Billerey, Chen, Dieulefait, Freitas 2022 (BCDF22);
- $(13, 13, p)^*, (19, 19, p)^*, (23, 23, p)^*, (37, 37, p)^*, (43, 43, p)^*, p$ large enough M. 2022.

The Modular Method-Sketch

Assume $a^p + b^p = c^p$ with (a, b, c) non-trivial and p > 7.

Select a Frey curve	$E(a,b): y^2 = x(x-a^p)(x+b^p), \ \Delta_E = 2^4(abc)^{2p}, N_E = 2 \prod_{q abc} q$	
Modularity	Wiles: All rational semistable elliptic curves are modular	
	$\Rightarrow ar ho_{E,l} \cong ar ho_{f,l}, orall l$ for some newform f of weight 2 and level N_E	
Irreducibility	Mazur's Theorem on Isogenies: $ar{ ho}_{E,p}$ is irreducible for $p>7$	
	Ribet: $ar{ ho}_{E,p}\congar{ ho}_{g,p}$ for some newform g of weight 2 and level	
Level Lowering	$N_p = N_E / \prod_{\substack{q N_E \ p ord_q(\Delta_E)}} q = 2$	
Eliminate	There are no newforms at level 2	
Lillillate	There are no newforms at level 2	

New Directions - Darmon Program

• Limited number of instances of generalized Fermat equations possessing Frey elliptic curves $/\mathbb{Q}$ associated with them - known to Darmon from 1997

New Directions - Darmon Program

• Limited number of instances of generalized Fermat equations possessing Frey elliptic curves $/\mathbb{Q}$ associated with them - known to Darmon from 1997

(p,q,r)	Frey curve for $a^p + b^q = c^r$	$\mid \Delta$
(2, 3, p)	$y^2 = x^3 + 3bx + 2a$	$-2^63^3c^p$
(3, 3, p)	$y^2 = x^3 + 3(a-b)x^2 + 3(a^2 - ab + b^2)x$	$-2^43^3c^{2p}$
(4, p, 4)	$y^2 = x^3 + 4acx^2 - (a^2 - c^2)^2 x$	$2^6(a^2 - c^2)^2b^{2p}$
	$y^2 = x^3 - 5(a^2 + b^2)x^2 + 5\frac{a^5 + b^5}{a + b}x$	$2^45^3(a+b)^2c^{2p}$
	$y^2 = x^3 + (a^2 + ab + b^2)x^2$	
(7, 7, p)	$-\left(2a^4 - 3a^3b + 6a^2b^2 - 3ab^3 + 2b^4\right)x$	$2^{4}7^{2}(\frac{a^{7}+b^{7}}{a+b})^{2}$
	$-(a^6 - 4a^5b + 6a^4b^2 - 7a^3b^3 + 6a^2b^4 - 4ab^5 + b^6)$	
(p, p, 2)	$y^2 = x^3 + 2cx^2 + a^p x$	$2^{6}(a^{2}b)^{p}$
(p, p, 3)	$y^{2} + cxy = x^{3} - c^{2}x^{2} - \frac{3}{2}cb^{p}x + b^{p}(a^{p} + \frac{5}{4}b^{p})$	$3^3(a^3b)^p$
(p, p, p)	$y^2 = x(x - a^p)(x + b^p)$	$2^4(abc)^{2p}$

Signature (r, r, p) via Darmon's program

Assume $a^r + b^r = c^p$ with (a,b,c) primitive, non-trivial, r is a fixed prime, and p is a varying prime.

Signature (r, r, p) via Darmon's program

Assume $a^r + b^r = c^p$ with (a,b,c) primitive, non-trivial, r is a fixed prime, and p is a varying prime.

- Step 1: Kraus constructs a Frey hyperelliptic curve $C_r(a,b)/\mathbb{Q}$, of genus $\frac{r-1}{2}$.
- Let $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}),\ J_r:=\mathsf{Jac}(C_r(a,b))/K$
- Today: Compute the conductor of $C_r(a,b)/K = \text{Artin conductor of } \rho_{J_r,l}$.

Signature (r, r, p) via Darmon's program

Assume $a^r + b^r = c^p$ with (a, b, c) primitive, non-trivial, r is a fixed prime, and p is a varying prime.

- Step 1: Kraus constructs a Frey hyperelliptic curve $C_r(a,b)/\mathbb{Q}$, of genus $\frac{r-1}{2}$.
- Let $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1}),\ J_r:=\operatorname{Jac}(C_r(a,b))/K$
- Today: Compute the conductor of $C_r(a,b)/K = \text{Artin conductor of } \rho_{J_r,l}$.
- ullet BCDF22 $\leadsto orall l$ of good reduction, $ho_{J_r,l}\cong igoplus_{\mathfrak{l}\mid l}
 ho_{J_r,\mathfrak{l}}$, where

$$\overline{\rho}_{J_r,\mathfrak{l}}:G_K\to GL_2(\mathbb{F}_{\mathfrak{l}}).$$

- Steps 2,3,4 apply to $\overline{
 ho}_{J_r,\mathfrak{l}}$.
- BCDF22 \rightsquigarrow (11, 11, p) has no solution with 2|a+b or 11|a+b.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c) \in \mathbb{Z}^3$ such that $a^r + b^r = c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x):=\prod_{j=1}^{\frac{r-1}{2}}(x-(\zeta_r^j+\zeta_r^{-j}))$ the defining polynomial of $K:=\mathbb{Q}(\zeta_r+\zeta_r^{-1})$.

• $C_r(a,b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Kraus' Frey hyperelliptic curves

Given primitive, non-trivial $(a,b,c)\in\mathbb{Z}^3$ such that $a^r+b^r=c^p$ define

$$C_r(a,b): y^2 = \underbrace{(ab)^{(r-1)/2} x h_r \left(\frac{x^2}{ab} + 2\right) + b^r - a^r}_{f_r(a,b)}$$

where $h_r(x) := \prod_{j=1}^{\frac{r-1}{2}} (x - (\zeta_r^j + \zeta_r^{-j}))$ the defining polynomial of $K := \mathbb{Q}(\zeta_r + \zeta_r^{-1})$.

• $C_r(a,b)$ is a hyperelliptic curve of genus $\frac{r-1}{2}$.

Example

- $r = 5 : C_5(a,b) : y^2 = x^5 + 5abx^3 + 5a^2b^2x + b^5 a^5$
- $r = 7 : C_7(a,b) : y^2 = x^7 + 7abx^5 + 14a^2b^2x^3 + 7a^3b^3x + b^7 a^7$

Frey Curve and Conductor

The discriminant of the curve is

$$\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.$$

Frey Curve and Conductor

The discriminant of the curve is

$$\Delta(C_r(a,b)) = (-1)^{\frac{r-1}{2}} 2^{2(r-1)} r^r c^{p(r-1)}.$$

Theorem (M3DC (*))

The conductor of $C_r(a,b)/K$ (equivalently the Artin conductor of $ho_{J_r,l}$) at odd primes is

$$\mathcal{N} = 2^{e_2} \mathfrak{p}_r^{r-1} \prod_{\mathfrak{q} \mid c} \mathfrak{q}^{(r-1)/2}.$$

In particular, J_r is semistable at all primes not dividing 2r.

(*) joint work with Martin Azon, Mar Curcó-Iranzo, Maleeha Khawaja, Celine Maistret

Definition

Let p be an odd prime, K a p-adic field and C/K a hyperelliptic curve of genus g given by

$$y^2 = f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n).$$

Let $\mathcal{R}=\{a_1,\cdots,a_n\}$ denote the set of roots of f. Let \mathfrak{p} be the unique prime of \mathcal{O}_K . We define the cluster picture Σ_p associated to C with respect to p as

$$\Sigma_p := \{ \mathfrak{s} \in \mathcal{P}(\mathcal{R}) | = D_{z,d} \cap \mathcal{R} \text{ for some } z \in \bar{K}, d \in \mathbb{Q} \}$$

where $D_{z,d} := \{x \in \bar{K} | v_{\mathfrak{p}}(x-z) \ge d\}.$

• In short, Σ_p are the subsets of \mathcal{R} which are cut out by bounded p-adic discs in K.

$$E: y^2 = x(x-p+1)(x-p+2)$$

$$E: y^2 = x(x-p)(x-p+1)$$

$$E: y^2 = x(x-p)(x-p+1)$$

$$= x(x-p)(x-p^2)$$

$$= x(x-p)(x-p^2)$$

$$= x(x-p)(x-p^2)$$

$$= x(x-p)(x-p^2)$$

$$= x(x-p)(x-p^2)$$

Recall $C_r(a,b)/K: y^2 = f_r(a,b)$.

• The roots of $f_r(a,b)$ are given by $\alpha_i := \zeta_r^i a - \zeta_r^{-i} b$, where $i=0,\ldots,r-1$.

Recall $C_r(a,b)/K: y^2 = f_r(a,b)$.

- The roots of $f_r(a,b)$ are given by $\alpha_i := \zeta_r^i a \zeta_r^{-i} b$, where $i=0,\ldots,r-1$.
- The cluster pictures of $C_r(a,b)$ at odd bad primes q of K are given as follows:
 - 1. $(\bullet)_n \bullet)_n \cdots (\bullet)_n \bullet$, if $\mathfrak{q} \neq \mathfrak{p}_r$ and $\mathfrak{q} \mid c$. Here $n := pv_{\mathfrak{q}}(c) \in \mathbb{Z}$.
 - 2. $\bullet \bullet \bullet \bullet \cdots \bullet \bullet \bullet_{\frac{1}{2}}$, if $\mathfrak{q} = \mathfrak{p}_r$ and $\mathfrak{p}_r \nmid c$.

where \mathfrak{p}_r is the unique prime above r in K.

Conductor from the Cluster Picture

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_r, \mathfrak{q}|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime \mathfrak{q} . Then the exponent of the conductor at \mathfrak{q} is the number of "twins".

Conductor from the Cluster Picture

Semistable case: $\mathfrak{q} \neq \mathfrak{p}_r, \mathfrak{q}|c$

Theorem (Dokchitser–Dokchitser–Maistret–Morgan, 2017)

Suppose C/K is semistable at a prime \mathfrak{q} . Then the exponent of the conductor at \mathfrak{q} is the number of "twins".

 \rightarrow exponent of q in the conductor is $\frac{r-1}{2}$

Conductors from the Cluster Pictures

Using a more general Theorem from DDMM17 \leadsto the Artin conductor associated to $ho_{J_r,l}$

$$\mathcal{N} = 2^{e_2} \mathfrak{p}_r^{r-1} \prod \mathfrak{q}^{(r-1)/2}.$$

Thank you!

Signature (r, r, p): Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)

Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_r

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathsf{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals $\mathfrak{p}|p$ in \mathcal{O}_K .

Signature (r, r, p): Step 1

Theorem (Billerey-Chen-Dieulefait-Freitas, 2022)

Let p be a rational prime. There is a compatible system of K-rational Galois representations associated with J_r

$$\rho_{J_r,\mathfrak{p}}:G_K\to \mathsf{GL}_2(K_{\mathfrak{p}})$$

indexed by the prime ideals $\mathfrak{p}|p$ in \mathcal{O}_K .

- They show that J_r is of $GL_2(K)$ -type, i.e. there is an embedding $K \hookrightarrow \operatorname{End}_K(J_r) \otimes_{\mathbb{Z}} \mathbb{Q}$, $[K:\mathbb{Q}] = \frac{r-1}{2} = \dim(J_r) = g$.
- Moreover, $\rho_{J_r,p} \cong \bigoplus_{\mathfrak{p}\mid p} \rho_{J_r,\mathfrak{p}}$, where $\rho_{J_r,p}$ is the dimension 2g = (r-1) representation corresponding to the action of G_K on the $J_r[p]$
- ullet The proof uses Darmon's construction of Frey representations of signature (p,p,r).

Signature (r, r, p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_r/K is modular (for any prime $r\geq 3$), i.e. there exists a Hilbert newform $\mathfrak f$ of parallel weight 2 and conductor $\mathcal N$ such that the representation $\overline{\rho}_{J_r,\mathfrak p}:G_K\to GL_2(\mathbb F_p)$ satisfies $\overline{\rho}_{J_r,\mathfrak p}\simeq\overline{\rho}_{\mathfrak f,\mathfrak P}$ for all primes p (where $\mathfrak p|p$ in K and $\mathfrak P|p$ in $K_{\mathfrak f}$).

Signature (r, r, p): Steps 2,3

Theorem (Modularity, BCDF22)

The abelian variety J_r/K is modular (for any prime $r\geq 3$), i.e. there exists a Hilbert newform $\mathfrak f$ of parallel weight 2 and conductor $\mathcal N$ such that the representation $\overline{\rho}_{J_r,\mathfrak p}:G_K\to GL_2(\mathbb F_p)$ satisfies $\overline{\rho}_{J_r,\mathfrak p}\simeq\overline{\rho}_{\mathfrak f,\mathfrak P}$ for all primes p (where $\mathfrak p|p$ in K and $\mathfrak P|p$ in $K_{\mathfrak f}$).

Theorem (Irreducibility, BCDF22)

Assume that $r \not\equiv 1 \pmod{4}$ and that $r \nmid a + b$. Then, for all primes $p \neq 2$ and all $\mathfrak{p}|p$ in K, the representation $\overline{\rho}_{J_r,\mathfrak{p}}$ is absolutely irreducible