Def: Given two m.p.s. $X=(X, p, \mu, T)$ and $\bar{Y}=(Y, C, v, s)$, a fader map is a mat $\pi: X \rightarrow Y$ st. $\pi \mu=\nu$ (i.e. $\left.\forall A \in e, \mu\left(\pi^{-1} A\right)=\nu(A)\right)$ and $\pi \cdot T=S \cdot \pi$ are.

If a factor mat is invertible and the inters is also a fatter max, we says that I is an isomorphism and I and \bar{I} are isomorphic.
Ex: The poogetion from a product $\bar{X} \times$ to either \bar{I} o $\overline{\text { is a factor map. }}$ Ex: The Benarlli system $\left(\{0,1\}^{N}\right.$, Boil, Motudt $\left(\frac{1}{2}, \frac{1}{2}\right)$-messene, Shift $)$ is isomophicto the doubling mat $([0,1)$, Bol , Les, $x \mapsto 2 \times \bmod 1)$.
Kronecker factor
Def: A m.P.S. X is a knowecher system if it is is omophlic $t_{\sigma}\left(K\right.$, Bour, $\left.H_{\text {kan }}, T\right)$ whee K is a compact (matrizable) abelian goon and $T: x \longmapsto x+\alpha$ for some $\alpha \in K$.
A kronecker system is ergodic inf a grates a dens subgroup.
Recall: A function $f \in L^{2}(x)$ is compact if $\left\{T^{n} f: n \in \mathbb{N}\right\}$ is pe-compact. Denoted by H_{c} the set of all compact functions.
This Anmop.p.s. X is a knorecke system of $H_{c}=L^{2}(x)$.
Obs. Given a factor map $\pi: X \rightarrow \bar{Y}$ we can embed $L^{2}(Y)$ into $L^{2}(X)$ by taking $f \in L^{2}(Y)$ to $f \circ \pi \in L^{2}(X)$.
The: Every eggosic system X has a factor I with the following papetires: (1) $)^{2}(Y)-H(v)$

いしいールにいへ
（2）I is a honecker system
（3）For any other Kronecker system Z that is a factor of \bar{X}, Z is also a factor of I．
I is called the Wronecthe factor of X．
Multiple recurrence in Kronecker systems：
The：$(M R)$ Let $I_{1}=(X, \beta, \mu, T)$ be an ergodic system and let $A \in B$ with $\mu(A)>0$ ．Then $\forall k \in \mathbb{N}$

$$
\liminf _{n \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

Pf of（MR）for Wronecthe systems：We will use the following fact：
Fact：If f is compact，then $\forall \varepsilon>0, S=\left\{n:\left\|T^{n} f=f\right\|<\varepsilon\right\}$ is syndetic．

$$
\begin{aligned}
& \mu\left(A \cap T^{n} A \cap \cdots \cap T^{k n} A\right)=\int_{X} 1_{A} \cdot T^{n} 1_{A} \cdot T^{2 n} 1_{A} \cdots T^{k n} 1_{A} d \mu . \text { Fix } \varepsilon<\frac{\mu(A)}{k^{2}} \text {, lt } \text { She as above } \\
& \text { for } f=1_{A}
\end{aligned}
$$

Far any $n \in S$ we have $\left\|+^{i_{1}} 1_{A}-1_{A}\right\| \leqslant\left\|T^{i_{1}}-T^{(i-1)} \mathcal{F}_{A}\right\|+\ldots+\left\|T^{n} 1_{A}-1_{A}\right\|$

$$
\begin{aligned}
& =\left\|T^{n} 1_{A}-1_{A}\right\|+\left\|T^{n} 1_{A}-1_{A}\right\|+\ldots+\left\|T^{n} 1_{A}-1_{A}\right\| \\
& \leqslant k \varepsilon
\end{aligned}
$$

$$
\mu\left(A \cap 7^{-n} A \cap \cdots \cap T^{n x} A\right) \geq \int_{x} 1_{A} \cdot 1_{A} \cdots 1_{A} d \mu-k^{2} \varepsilon=\mu(A)-k^{2} \varepsilon>0 \quad(\forall n \in S)
$$

Therefore $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k_{n}} A\right)}{\geqslant\left(\mu(A)-k^{2} \varepsilon\right) 1_{S}(n)}=\left(\mu(A)-k^{2} \varepsilon\right) d(S)>0$

$$
\left(\begin{array}{ll}
T=I_{d} \text { in sutsigan } \\
\end{array}\right.
$$

$$
\begin{aligned}
& L^{2}(x) \rightarrow L^{2}(x) \simeq I d \\
& f \mapsto f \cdot T^{n} \\
& L^{\infty}(x) \rightarrow L^{\infty}(x) \\
& \rho \mapsto T^{n}
\end{aligned}
$$

If of (MP) for weak mixing systems:
If fact we will slow that $\forall f_{1}, \ldots, f_{k} \in L^{\infty}(x)$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \cdots \cdot T^{k n} f_{k}=\int_{x} f_{1} d \mu \cdot \int_{x} f_{2} d \mu \cdots \int_{x} f_{k} d_{\mu}\left(i n L^{2}\right)
$$

Putting $f_{i}=1_{A}$ we de luce $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap \cdots T^{-k n} A\right)=\mu(A)^{k+1}$

$$
\lim _{N \rightarrow \infty} \frac{1}{\mu} \sum_{n=1}^{N} 1_{A} \cdot T^{n} 1_{A} \cdots \frac{E}{} T^{n k} 1_{A} d \mu=\int 1_{A} \cdot \mu(A)^{k} d \mu
$$

Pf: Subtracting $\int_{x} f \dot{k} d p$ foo f_{k} and using induction, we can assume tl lat $f_{x} f_{k} d p=0$.

$$
\begin{aligned}
& \text { Lt } u_{n}=\prod_{i=1}^{k} T^{i n} f_{i} \quad\left\langle u_{n+d} u_{n}\right\rangle=\int_{x} \prod_{i=1}^{k} T^{i(n+d)} f_{i} \cdot \prod_{i=1}^{k} T^{i n} \bar{f}_{i} d \mu \\
& =\int_{x} \prod_{i=2}^{k} T^{(i-1) n}\left(T^{i d} f_{i} \cdot \bar{f}_{i}\right) \cdot\left(T^{d} f_{1} \cdot \bar{f}_{1}\right) d \mu \\
& \left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{n}\left\langle u_{n+d}, u_{n}\right\rangle=\int_{x}\left[\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{i} \prod_{i=2}^{k} T^{(i-1) n}\left(T^{i d} f_{i} \cdot \bar{f}_{i}\right)\right] \cdot\left(T^{d} f_{i} \cdot \bar{f}_{1}\right) d_{p}\right. \\
& =\prod_{i=1}^{k} \int_{X} T^{i d} f_{i} \cdot \bar{f}_{i} d p \\
& \lim _{D \rightarrow \infty} \frac{1}{D} \sum_{j=1}^{D} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left\langle u_{n+d}, u_{n}\right\rangle=\lim _{D \rightarrow \infty} \frac{1}{D} \sum_{d=1}^{D} \prod_{i=1}^{k} \int_{x} T^{i d} f_{i} \cdot \bar{f}_{i} d \mu
\end{aligned}
$$

$$
\leq \lim _{D \rightarrow \infty} \frac{1}{D} \sum_{d=1}^{D}\left|\prod_{i=1}^{k-1}\left\|f_{i}\right\|^{2}\right|\left|\int_{x} T^{k d} f_{k} \cdot \bar{f}_{k} d \mu\right|
$$

Bathe val lemma $\frac{1}{N} \sum_{n=1}^{N} u_{n} \rightarrow 0$ as $N \rightarrow \infty$.

$$
L^{2}(x)=H_{w} \oplus H_{c}
$$

If \bar{X} is not wac mixing, than it has a non-tivival Kronecker factor.
Def: We say that an ergodic system is SZ if it satisfies the MR the rem.

 (Z, ρ, λ) and a masmable function $P: Y \rightarrow \operatorname{Art}(Z) s, \lambda . \bar{X}$ is is ot. $(Y \times Z, C \otimes D, v \otimes \lambda, R)$, where $R(y, z)=(s y, \rho(y) z)$.

Recall \mathbb{X} is walk mixing of $X \times \bar{X}$ is ergodic $\wedge 1 . \wedge$ vedic

Def: A^{v} system $\frac{X}{}$ is a weak mixing extension of \bar{Y} if (Using the notation form Rockhlin's lemme) the relative product

$$
(Z \times Y \times Z, D \otimes C \otimes D, \lambda \otimes v \otimes \lambda, R) \text { is ergodic }
$$

where $R\left(z_{1}, y, z_{2}\right)=\left(\rho(y) z_{1}, S y, \rho(y) z_{2}\right)$
The: If \bar{X} is a weak mixing extension of Y and \bar{Y} is $S Z$, then \bar{X} is $S Z$.
Recall: ff $H \in$ of $\forall \varepsilon>0 \exists g_{1}, \cdots, g_{r}$ st. $\&\left\{T^{n} f: n \in M \mid \subset \bigcup_{i=1}^{r} B\left(g_{i}, \varepsilon\right)\right.$

$$
\Leftrightarrow \forall n \in \mathbb{N} \min _{1 \leqslant i<r r}\left\|T^{n} f-g_{i}\right\|<\varepsilon
$$

Def: Ans system X is a compact extension of a system I if (using the notation of Rollin's lemuel there is a $\frac{\text { dense set of relatively compact functions. }}{\forall \Sigma>0}$
$f \in L^{2}(\underline{Z})$ is vel. Compact if $\sqrt{子} g_{1}, \ldots, g_{r} \in L^{2}(\forall)$ s.t.

$$
\forall n \in \mathbb{N} \quad V\left(\left\{y: \min _{1 \leqslant i<r}\left\|T^{n} f-g_{i}\right\|_{L_{2}\left(p_{y}\right)}\right\}\right)=1
$$

The: If \bar{X} is a compact extension of a $s Z$ system, then is $S Z$.]
Thu: Let $\pi: X \rightarrow$ I be a factor map between ergodic systems. If X is hot a weak mixing extension of Ψ, then there exists an intermediate extension Z such that Z is a compact extension of $\overline{\text {. }}$

X

Z_{1}
$!$
$!$

