
ERGODIC RAMSEY THEORY – NOTES

JOEL MOREIRA

These notes are being written for the TCC module on Ergodic Ramsey Theory, which runs in the Fall
of 2021. Ergodic Ramsey Theory is a relatively young subject of mathematics whose purpose is to apply
techniques, methods and ideas from ergodic theory, and more the general theory of dynamical systems, to
problems that arise in Ramsey theory, combinatorics, and number theory. The main interface between the
dynamical and the combinatorial realms is provided by the Correspondence Principle of Furstenberg, first
introduced in [5] to give a new ergodic theoretic proof of Szemerédi’s theorem on arithmetic progressions.

The module will start by introducing some of the problems from Ramsey theory that we will consider, as
well as the preliminary results from Ergodic theory, and then, after introducing the Furstenberg Correspon-
dence Principle we will go over the ergodic theoretic proof of Szemerédi’s theorem. The last half (or third)
of the course focuses on more recent developments in ergodic Ramsey theory (still to be decided).

We will not follow any single textbook from beginning to end, but both Furstenberg’s book [6] and
Einsiedler-Ward’s book [4] share the same spirit of introducing ergodic theory both as a theory on its own
and as a tool to approach problems in combinatorics and number theory. Bergelson’s survey [1] with the
same title as these notes obviously shares a great deal of content. A more advanced text on this subject
is the recent book of Host and Kra [10], which goes into much more depth. For an introductory text to
general ergodic theory, Walters [18] is an excellent source, which can be complemented with Glasner’s [7] or
Cornfeld-Fomin-Sinai’s [3]. For an introductory text to general Ramsey Theory, the book [9] by Graham,
Rothschild and Spencer of that title is still one of the best sources.

1. Ramsey Theory

Ramsey theory is a branch of combinatorics which, roughly speaking, explores structures that persist
when partitioned. Instead of trying to give a more precise description, we illustrate this principle with a few
examples of results from Ramsey theory.

Theorem 1.1 (Schur, [15]). Given a finite coloring of N, one can always find x, y ∈ N with x, y, x + y all
having the same colour.

To be clear, a finite coloring of N is a function f : N→ F , where F is a finite set (whose elements are the
“colours”). Two elements x, y of N have the same color if f(x) = f(y).

In fact, it is not necessary to color all of N before one finds a monochromatic (i.e. with a single color)
triple of the form {x, y, x+ y}. Here’s an alternative formulation of Schur’s theorem.

Theorem 1.2 (Schur, again). For every r ∈ N there exists N ∈ N such that whenever the set {1, . . . , N} is
colored with r colors there is a monochromatic triple of the form {x, y, x+ y} ⊂ {1, . . . , N}.

The difference between Theorems 1.1 and 1.2 is that in the latter, N is chosen depending only on the
number of colors r. To estimate the smallest N in terms of r is a difficult and interesting problem, but the
purely qualitative Theorem 1.2 as formulated turns out to be equivalent to the apparently weaker Theorem 1.1
(and not in the uninteresting sense that any two true statements are tautological equivalent).

Exercise 1.3. Prove that Theorems 1.1 and 1.2 are equivalent. [Hint: One implication is easy. For the
other, suppose you have counterexamples to Theorem 1.2 for every N , then you can use them to find a
counterexample to Theorem 1.1.]

The most common way to solve the previous exercise is to use, explicitly or implicitly, the so-called
compactness principle , which in this case is simply the statement that the set of all colorings of N

Date: October 20, 2021.



into r colors is a compact set. The compactness principle allows one to formulate many Ramsey theoretic
statements in an infinitary form, such as Theorem 1.1. This is the form that ergodic theory can handle,
but it is useful to keep in mind that the statements are equivalent to their finitistic forms.

The next theorem was considered by Khinchine as one of “Three Pearls in Number Theory” [12].

Theorem 1.4 (Van der Waerden, [17]). In any finite coloring of N there exist arbitrarily long monochromatic
arithmetic progressions.

In other words, for any k ∈ N there are x, y ∈ N such that the arithmetic progression {x, x + y, x +
2y, . . . , x+ ky} is monochromatic.

There is a natural finitistic form of van der Waerden’s theorem.

Exercise 1.5. Show that Theorem 1.4 is equivalent to the following statement:
“For any r, k ∈ N there exists N such that for any coloring of the set {1, . . . , N} with r colors there exists

a monochromatic arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky} ⊂ {1, . . . , N}.”

There is yet another equivalent formulation of van der Warden’s theorem with a more geometric flavour.

Exercise 1.6. Show that Theorem 1.4 is equivalent to the following statement:
“For any finite coloring of N and for any finite set F ⊂ N there exists a monochromatic affine image of

F , i.e. there exist a, b ∈ N such that the set aF + b := {ax+ b : x ∈ F} is monochromatic.”

The next result was conjectured by Erdős and Turán as an attempt to better understand the true nature
of van der Waerden’s theorem. After some initial progress it was finally settled by Szemerédi in a remarkably
involved combinatorial proof. In order to state it we need the notion of (upper) density.

Definition 1.7 (Upper density). Given a set A ⊂ N its upper density, denoted d̄(A) is the quantity

d̄(A) = lim sup
N→∞

1

N

∣∣A ∩ {1, . . . , N}∣∣.
Replacing lim sup with lim inf we obtain the analogous notion of lower density.

Here and elsewhere in these notes, when X is a finite set we denote by |X| its cardinality.

Exercise 1.8. Show that upper density is subadditive and shift invariant, i.e. if A,B ⊂ N and n ∈ N then
d̄(A ∪B) ≤ d̄(A) + d̄(B), and d̄(A− n) = d̄(A), where A− n := {x ∈ N : x+ n ∈ A}.

Theorem 1.9 (Szemerédi, [16]). If A ⊂ N has positive upper density, then it contains arbitrarily long
arithmetic progressions.

Note that Szemerédi’s theorem implies van der Waerden’s theorem, since for any finite coloring of N one
can use Exercise 1.8 to deduce that at least one of the colors has positive density.

Here is the finitistic form of Szemerédi’s theorem.

Exercise 1.10. Show that Theorem 1.9 is equivalent to the following statement:
“For any δ > 0 and k ∈ N there exists N such that any set A ⊂ {1, . . . , N} with |A| > δN contains an

arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky}.”

Exercise 1.11. Let k ∈ N. Show that there exists δ < 1 such that any set A ⊂ N with d̄(A) > δ contains an
arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky}.

More than twenty years before Szemerédi’s theorem was first proved, Roth obtained the special case
corresponding to arithmetic progressions of length 3.

Theorem 1.12 (Roth, [13]). Any set A ⊂ N with d̄(A) > 0 contains a 3-term arithmetic progression.

Roth’s proof of Theorem 1.12 made use of Fourier Analysis, and would later inspire Gowers to obtain
a full proof of Szemerédi’s theorem [8] by developing what is now called “Higher order Fourier Analysis”.
Another Ramsey theoretic result that can be obtained using Fourier Analysis is the following.

Theorem 1.13 (Sárközy, [14]). If A ⊂ N has d̄(A) > 0, then there exist x, y ∈ A whose difference is a
perfect square.
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Theorem 1.13 is connected with the study of sets of differences of large sets. In this context, we think of
a set A ⊂ N with positive upper density as a large set, and are interested in understand the structure of the
set of differences A−A := {x− y : x, y ∈ A}. A related concept is that of intersective sets:

Definition 1.14. A set R ⊂ Z is a called intersective if for every A ⊂ N with d̄(A) > 0, the intersection
(A−A) ∩R is non-empty.

Using this terminology, Theorem 1.13 states that the set of perfect squares is an intersective set.

Exercise 1.15. Show that the following are intersective sets.

• Any set with lower density 1.
• The set kN of all multiples of k, for an arbitrary k ∈ N.
• (∗) Any set of differences I − I for any infinite set I (not necessarily with positive upper density).

Exercise 1.16. Show that the following are not intersective sets.

• The odd numbers.
• The set N \ (kN) of numbers not divisible by k, for an arbitrary k ∈ N.

Sárközy’s theorem can be extended to more general polynomials than p(x) = x2. The exact extent of this
generalization was only fully understood after work of Furstenberg [5, 6] and of Kamae and Mendes-France
[11].

Theorem 1.17. Let p ∈ Z[x] be a polynomial with integer coefficients and no constant term. Then the set
R := {p(n) : n ∈ N} is intersective if and only if it contains a multiple of any k ∈ N (in other words, if p
has a root modulo k for every k).

Notice that an easy sufficient condition on a polynomial to have a root modulo k for every k, is to satisfy
p(0) = 0.

One can interpret Sárközy’s theorem as stating that any set A ⊂ N with positive upper density contains a
2-term arithmetic progression whose common difference is a perfect square. From this angle it makes sense
to ask about longer arithmetic progressions. The following powerful theorem of Bergelson and Leibman gives
an affirmative answer.

Theorem 1.18 (Polynomial Szemeréredi theorem, [2]). Let p1, . . . , pk ∈ Z[x] satisfy pi(0) = 0. Then any
set A ⊂ N with d̄(A) > 0 contains a “polynomial progression” of the form{

x, x+ p1(y), x+ p2(y), . . . , x+ pk(y)
}
.

Observe that by taking pi(y) = iy one recovers Szemerédi’s theorem from Theorem 1.18.

2. Ergodic theory background

In this section we collect some of the basic definitions and facts about ergodic theory that we will need
later on.

Definition 2.1 (Measure preserving transformation). Given two probability spaces (X,A, µ) and (Y,B, ν),
we say that a map1 T : X → Y preserves the measure or is a measure preserving transformation if
for every B ∈ B, the set T−1B := {x ∈ X : Tx ∈ B} is in A and satisfies µ(T−1B) = ν(B).

A map between probability spaces induces a linear operator between the corresponding Lp spaces.

Exercise 2.2. Let (X,A, µ) and (Y,B, ν) be probability spaces and let T : X → Y be a measurable map.

• Show that T preserves the measure if and only if for every f ∈ L2(Y ), the function f ◦ T belongs to
L2(X) and satisfies ∫

X

f ◦ T dµ =

∫
Y

f dν. (2.1)

• If both µ and ν are Radon measures, show that T preserves the measure if and only if (2.1) holds
for every f ∈ C(Y ). [Hint: C(Y ) is dense in L2(Y ).]

1To be completely precise, T may be defined only on a full measure subset of X.
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The basic object in ergodic theory is a measure preserving system (m.p.s. for short), which we now
define.

Definition 2.3 (Measure preserving system). A measure preserving system is a quadruple (X,B, µ, T ) where
(X,B, µ) is a probability space and T : X → X is a measure preserving transformation.

Example 2.4 (Circle rotation). Let X = [0, 1), endowed with the Borel σ-algebra B and the Lebesgue
measure µ. Given α ∈ R we consider the map T = Tα : X → X given by Tx = x+ α mod 1. The fact that
T preserves the measure µ follows from the basic properties of Lebesgue measure.

Alternatively, we can identify the space X with the compact group T = R/Z in the obvious way. The
Lebesgue measure on [0, 1) gets identified with the Haar measure on T, and T becomes the map Tx = x+ α̃
(where α̃ = α+ Z ∈ T). This map clearly preserves the Haar measure.

The reason to call this system a circle rotation is that the group T is isometrically isomorphic to the circle
S1 ⊂ C, viewed as a group under multiplication. The map T under this identification becomes the rotation
T : z 7→ θz, where θ = e2πiα ∈ S1.

The above example can be extended to “rotations” on any compact group X, endowed with the Borel
σ-algebra B and Haar measure µ. Taking any α ∈ X, the map T : x 7→ x + α preserves µ and hence
(X,B, µ, T ) is a measure preserving system, called a group rotation or a Kronecker system .

Example 2.5 (Doubling map). Again take (X,B, µ) to be the unit interval X = [0, 1] equipped with its Borel
σ-algebra and Lebesgue measure. Let T : X → X be the doubling map Tx = 2x mod 1.

At first sight it may seem that the doubling map doubles the measure, but in fact it preserves the measure!
For instance, given an interval [a, b] ⊂ [0, 1], the pre-image T−1[a, b] is the union of two intervals, each half
the length of the original interval:

T−1
(
[a, b]

)
=

[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
.

Exercise 2.6. Show that the doubling map does indeed preserve the Lebesgue measure. [Hint: use Exer-
cise 2.2]

Here is the first theorem of ergodic theory.

Theorem 2.7 (Poicaré recurrence theorem). Let (X,B, µ, T ) be a measure preserving system and let A ∈ B
with µ(A) > 0. Then for some n ∈ N we have

µ(A ∩ T−nA) > 0. (2.2)

Proof. The sets A, T−1A, T−2A, . . . all have the same (positive) measure, and all live in X which has measure
1. Therefore we must have µ(T−iA ∩ T−jA) > 0 for some i > j. Finally, letting n = i− j, observe that

µ(A ∩ T−nA) = µ
(
T−j(A ∩ T−nA)

)
= µ(T−iA ∩ T−jA) > 0.

�

While Poicaré’s recurrence theorem is a simple result, it has a lot of potential for extensions, which in
turn reveal a lot about the structure of measure preserving systems. For instance, one may ask how small
can we choose n? How large is the set of n for which (2.2) holds? How large can we make the measure of
the intersection be?

In order to address some of these questions, we make the following definition.

Definition 2.8. A set R of natural numbers is called a set of recurrence if for every measure preserving
system (X,B, µ, T ) and every A ∈ B with µ(A) > 0 there exists n ∈ R such that µ(A ∩ T−nA) > 0.

With this notion we can reformulate Poicaré’s recurrence theorem as stating that N is a set of recurrence.

Exercise 2.9. Show that the set 2N of even numbers is a set of recurrence but the set 2N−1 of odd numbers
is not.

Here is a more sophisticated result, due to Furstenberg, which will be proved later in the course.
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Theorem 2.10. The set Q := {m2 : m ∈ N} of perfect squares is a set of recurrence. In fact, for every
m.p.s. (X,B, µ, T ), every A ∈ B and for every ε > 0 there exists a perfect square n = m2 ∈ N such that

µ(A ∩ T−nA) > µ(A)2 − ε

It turns out that the notion of sets of recurrence coincides with the notion of intersective sets.

Proposition 2.11. A set R ⊂ N is a set of recurrence if and only if it is intersective (see Definition 1.14).

Proposition 2.11 provides the first connection we’ve encountered between combinatorics and Ramsey
theory; to prove it we will need the Furstenberg Correspondence Principle.

Exercise 2.12. (∗) Show that if R ⊂ N is a set of recurrence and is decomposed as R = A∪B then either A
or B is a set of recurrence. [Hint: Proceed by contradiction and take the product system of the two presumed
counter-examples.]

2.1. Ergodicity. The word ergodic arises from Boltzman’s “ergodic hypothesis” in termodynamics, which
describes a system where, over long periods of time, the time spent by a system in some region of the phase
space of microstates with the same energy is proportional to the volume of this region2. In the language of
measure preserving systems, the ergodic hypothesis would imply that the proportion of time that the orbit
of a point (i.e. the sequence x, Tx, T 2x, . . . ) is in a set A, tends to µ(A). This is in fact the conclusion of
the ergodic theorem, which will be discussed below.

However, there is an obvious obstruction to the ergodic hypothesis: suppose (Xi,Ai, µi, Ti) is a measure
preserving system for each i = 1, 2 with X1 and X2 disjoint. Now let Y = X1 ∪X2, let B be the σ-algebra
generated by A1 ∪ A2, let ν = 1

2µ1 + 1
2µ2 and let S : Y → Y be the map that maps x ∈ Xi to Tix, for

i = 1, 2. Then (Y,B, ν, S) is a measure preserving system, but a point x ∈ X1 (or, more precisely, its orbit)
will never visit X2, even though µ(X2) = 1/2 > 0. A system is ergodic when it avoids this behavior.

Definition 2.13. A measure preserving system (X,B, µ, T ) is ergodic if every set A ∈ B satisfying T−1A =
A is trivial in the sense that either µ(A) = 0 or µ(A) = 1.

Proposition 2.14. A measure preserving system (X,B, µ, T ) is ergodic if and only if every f ∈ L2 which
is invariant in the sense that f ◦ T = f a.e. is constant a.e.

Proof. For every A ∈ B the indicator function 1A is in L2, and hence we obtain the “only if” implication.
For the converse implication, suppose the system is ergodic and f ∈ L2 is invariant. Then for every t ∈ R,

the set At := {x ∈ X : f(x) > t} is invariant and hence has either measure 0 or 1. Let r = inf{t : µ(At) = 0}.
Then µ(Ar) = 0 because Ar =

⋃
n≥1Ar+1/n. On the other hand µ(At) = 1 for every t < r and hence

µ({x : f(x) ≥ r}) = 1. We conclude that f = r a.e. �

The ergodic theorems assert, roughly speaking, that ergodic systems satisfy the ergodic hypothesis. Given
a measure preserving system (X,B, µ, T ), the set I ⊂ L2(X) consisting of (almost everywhere) T -invariant
functions, i.e. I := {f ∈ L2(X) : f ◦ T = f} is a closed subspace. Therefore we can consider the orthogonal
projection PI : L2(X) → I defined so that PIf is the element of I which is closest to f . It is not hard to
show that PI is a linear operator, and that it satisfies 〈f − PIf, g〉 = 0 for every g ∈ I. Here and in these
notes, the inner product in L2 is defined by

〈f, g〉 =

∫
X

f(x)g(x) dµ(x).

Theorem 2.15 (Birkhoff’s pointwise ergodic theorem, L2 version). Let PI : L2(X)→ I denote the orthog-
onal projection onto the subspace of T -invariant functions. Then for every f ∈ L2

lim
N→∞

1

N

N∑
n=1

f ◦ Tn = PIf a.e.. (2.3)

If the system is ergodic, then I consists only of the constant functions and PIf =
∫
X
f dµ a.e. Therefore

for ergodic systems we have the following corollary.

2https://en.wikipedia.org/wiki/Ergodic_hypothesis
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Corollary 2.16. Let (X,B, µ, T ) be an ergodic measure preserving system. Then for every A ∈ B and
almost every x ∈ X,

lim
N→∞

1

N

∣∣∣{n ∈ {1, . . . , N} : Tnx ∈ A
}∣∣∣ = µ(A).

Proof. Apply Theorem 2.15 to the indicator function 1A of A and observe that, for each x ∈ X,

N∑
n=1

(1A ◦ Tn)(x) =
∣∣∣{n ∈ {1, . . . , N} : Tnx ∈ A

}∣∣∣.
�

A different version of the ergodic theorem was obtained by von Neumann, usually called the mean ergodic
theorem because it deals with convergence in L2 (or more generally in Lp) instead of almost everywhere
convergence. This version has the advantage that it holds even if one changes the averaging scheme from
{1, . . . , N} to any sequence of intervals {aN , aN + 1, . . . , aN + N}. Moreover, the simpler proof of von
Neumann’s theorem can be easily modified to apply to measure preserving actions of any amenable group.

Theorem 2.17 (von Neumann’s mean ergodic theorem, L2 version). Let PI : L2(X) → I denote the
orthogonal projection onto the subspace of T -invariant functions. Then for every f ∈ L2

lim
N−M→∞

1

N −M

N∑
n=M

f ◦ Tn = PIf in L2(X). (2.4)

Remark 2.18.

lim
N−M→∞

1

N −M

N∑
n=M

hn = c

means that for every ε > 0 there exists some K such that if M,N ∈ N satisfy N − M > K, then∣∣∣∣∣ 1

N −M

N∑
n=M

hn − c

∣∣∣∣∣ < ε. This mode of convergence is often used in ergodic theory and is called a uniform

Cesàro limit or a uniform Cesàro average, as opposed to the kind of averages used in the pointwise
ergodic theorem, called simply Cesàro averages.

Exercise 2.19. Show that

lim
N−M→∞

1

N −M

N∑
n=M

hn = c

is equivalent to

∀ (IN )N∈N lim
N→∞

1

|IN |
∑
n∈IN

hn = c

where (IN )N∈N is a sequence of intervals IN = {aN + 1, aN + 2, . . . , aN + bN} whose lengths bN tend to
infinity.

Given a measure preserving system (X,B, µ, T ), the Koopman operator ΦT : L2(X) → L2(X) is the
linear operator defined by the equation ΦT f := f ◦ T . Since T is measure preserving, it follows that ΦT is
an isometry, i.e., 〈ΦT f,ΦT g〉 = 〈f, g〉. Therefore Theorem 2.17 is a corollary of the following.

Theorem 2.20 (von Neumann’s mean ergodic theorem, Hilbert space version). Let H be a Hilbert space, let
Φ : H → H be an isometry and let I ⊂ H be the subspace of invariant vectors, i.e. I = {f ∈ H : Φf = f}.
Let P : H → I be the orthogonal projection onto I. Then for every f ∈ H,

lim
N−M→∞

1

N −M

N∑
n=M

Φnf = Pf in norm (2.5)
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Proof. If f ∈ I then (2.5) holds trivially (with both sides equal to f).
On the other hand, if f = g − Φg for some g ∈ H, then for any h ∈ I we have

〈f, h〉 = 〈g, h〉 − 〈Φg, h〉 = 〈g, h〉 − 〈g,Φh〉 = 0

hence f is orthogonal to I and so Pf = 0. Moreover we have that
∑N
n=M Φnf = ΦMg − ΦN+1g, which has

norm at most 2‖g‖, and so the limit in the left hand side of (2.5) is also 0.
Call J the subspace of the vectors of the form g − Φg. We claim that H = I ⊕ J and this concludes the

proof. To prove the claim, letting f ⊥ J , we have:

‖f − Φf‖ = ‖f‖2 + ‖Φf‖2 − 2Re〈f,Φf〉
= 2‖f‖2 − 2Re〈f,Φf〉 − 2Re〈f, f − Φf〉 = 2‖f‖2 − 2Re〈f, f〉 = 0

so f ∈ I and hence I = J⊥ and this finishes the proof. �

Corollary 2.21. A measure preserving system (X,B, µ, T ) is ergodic if and only if for every A,B ∈ B,

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩B) = µ(A)µ(B). (2.6)

Proof. If the system is not ergodic, then there exists A ∈ B with µ(A) ∈ (0, 1) which is invariant. Therefore,
taking B = X \A, we see that T−nA ∩B = ∅ for every n, contradicting (2.6).

Let f = 1A and g = 1B . Observe that 1T−nA = f◦Tn = ΦnT f . Therefore µ(T−nA∩B) =
∫
X

ΦnT 1A·1B dµ =

〈ΦnT 1A, 1B〉. Since strong (or norm) convergence in L2 implies weak convergence, it follows from(2.4) that

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩B) = 〈PIf, g〉.

Finally, in view of ergodicity, we have that PIf is the constant
∫
X
f dµ = µ(A), and (2.6) follows from the

fact that
∫
X
µ(A)g dµ = µ(A)µ(B). �

Setting A = B in Corollary 2.21 we see that, in ergodic system, one can improve Poincaré’s recurrence
theorem by finding n ∈ N such that µ(T−nA ∩ A) is arbitrarily close to µ2(A). One can in fact obtain a
stronger version of this fact, which also applies to non-ergodic systems.

Definition 2.22. A set S ⊂ N is called syndetic if it has bounded gaps. More precisely, S is syndetic if
there exists L ∈ N such that every interval {n, n+ 1, . . . , n+L− 1} of length L contains some element of S.

Exercise 2.23. Let (an) be a sequence of non-negative real numbers and let a ∈ R. Show that if

lim
N−M→∞

1

N −M

N∑
n=M

an = a,

then for every ε > 0 the set

{n ∈ N : an ≥ a− ε}
is syndetic.

Theorem 2.24 (Khintchine’s recurrence theorem). Let (X,B, µ, T ) be a measure preserving system, let
A ∈ B and let ε > 0. Then there exists n ∈ N such that µ(A ∩ T−nA) > µ2(A)− ε, and moreover the set{

n ∈ N : µ(A ∩ T−nA) > µ2(A)− ε
}

is syndetic.

Proof. Applying Theorem 2.17 to the indicator function 1A of A we have

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩A) =

∫
X

PI1A · 1A dµ.
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Since PI is an orthogonal projection it follows that
∫
X
PI1A · 1A dµ = ‖PI1A‖2. We now use the Cauchy-

Schwarz inequality to get

‖PI1A‖2 ≥
(∫

X

PI1A dµ

)2

= µ(A)2.

�
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