4. POLYNOMIAL RECURRENCE

In this section we prove a polynomial recurrence theorem, which in view of the Correspondence Principle
implies Sarkozy’s theorem (Theorem 2.10). To prove it we introduce an important tool in Ergodic Ramsey
Theory — the van der Corput trick.

Another idea that is briefly explored in this section is that of a dichotomy between “structure” and
“randomness”, albeit in a very embryonic form. In this context, structure is captured by periodic functions,
and randomness (or “mixing”) is captured by the notion of total ergodicity. This kind of dichotomy will
become more clear (and useful) in the following sections.

4.1. The van der Corput trick. If the Correspondence Principle is the soul of Ergodic Ramsey Theory,
its beating heart is the so-called van der Corput trick. There are many variations of this technique (the
interested reader may read the expository article [3]), catered for specific applications throughout Ergodic
Ramsey Theory.

The original lemma due to van der Corput [5] is concerned with uniform distribution in the unit interval.

Definition 4.1. A sequence (x,)%2 , taking values in [0,1] is said to be uniformly distributed or equidis-
tributed if for every interval (a,b) C [0,1],
. 1
]\}E}nooﬁ‘{ne[I,N]:xne(a,b)}‘:b—a. (4.1)
Due to the fact that there are uncountably many intervals (a, b) inside [0, 1], it is not clear that uniformly
distributed sequences even exist. However, we have the following criterion by Weil [22] (for a proof, see [15,
Theorems 1.1.1 and 1.2.1]).

Lemma 4.2 (Weyl criterion). Let (x,)22, be a sequence taking values in [0, 1]. The following are equivalent.
(1) (xn)5%y is uniformly distributed.
(2) The sequence of measures iy = % Ei:[:l 0, converges in the weak™ topology to the Lebesgue measure.
(3) For every continuous function f € C[0,1],

N 1
lim e Zf(xn) :/0 f(t)dt.
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Example 4.3. Let o« € R\ Q. Then the sequence x, = na mod 1 is uniformly distributed. Indeed, for every
h,N € N we have

N N 2riha(N+1) 2riho
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N N N e2mtha ]
n=1 n=1

and the last expression converges to 0 as N — oo.

Exercise 4.4. Show that the sequence x,, = /n mod 1 is uniformly distributed.
Exercise 4.5. Show that the sequence x,, = logn mod 1 is not uniformly distributed.
Here is the original version of the van der Corput trick.

Lemma 4.6. Let (2,)52, be a sequence taking values in R. If for every m € N the sequence n — Ty ym —
x, mod 1 is uniformly distributed, then also the sequence n — x,, mod 1 is uniformly distributed.

We will prove a more general result below. As a corollary of Lemma 4.6 we obtain Weyl’s equidistribution
theorem.

Corollary 4.7. Let f € R[t] be a polynomial with real coefficients. If al least one of the coefficients of f,
other than the constant term, is irrational, then f(n) mod 1 is uniformly distributed.
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Proof. We proceed by induction on the degree d = d(f) of the largest degree term of f with an irrational
coefficient. If d = 1, then the sequence f(n) mod 1 is the sum of a periodic sequence (say of period p) and
the sequence n — na mod 1 where « is the irrational coefficient of degree 1. Since pa is still irrational,
one can adapt the argument in Example 4.3 to show that f(n) mod 1 is indeed uniformly distributed when
d=1.

Next suppose that d > 1. For each m € N, the sequence ¢, : n+— f(n+m) — f(n) is itself a polynomial
with d(gm) = d(f) — 1 by induction, g,, mod 1 is uniformly distributed, and in view of Lemma 4.6, so is
f(n) mod 1. O

The most useful versions of the van der Corput trick for Ergodic Ramsey Theory deal with sequences of
vectors in a Hilbert space; here is a simple formulation that will be useful later.

Lemma 4.8. Let H be a Hilbert space and let (z,)5%, be a bounded sequence taking values in H. If for
every d € N,

N
li n—+d n = 4.
R Z_: Tnyd, T 0 (4.3)

then

lim — E z, = 0.
N—ooo N

n=1

There is also a version for uniform Cesaro averages, which can be proved in the same way (see Exercise 4.9
below).

Proof of Lemma 4.8. For any € > 0 and any D e N, if N € N is large enough we have

Nzxn‘DZ Z£n+d

n=1 n=1

Hence it suffices to show that, if D is large enough,

1 &1 &
B Z N Z Tn+d
d=1 n=1

lim sup
N—oo

Using the Cauchy-Schwarz inequality we have
2
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< o2 > h]]\f[n_fllop ¥ D (Tntdys Totas) (4.4)
di,d2=1 n=1
Note that, for dy # da, it follows from (4. ) that L Zn U{&ntdys Tnrd,) = 0 as N — co. We conclude that
the quantity in (4.4) is bounded by % = 5 Wthh is arbitrarily small for large enough D. ([l

Exercise 4.9. Adapt the proof of Lemma 4.8 to the following version for uniform Cesdaro averages (see
Remark 2.18): Let H be a Hilbert space and let (x,)52 1 be a bounded sequence taking values in H. If for
every d € N,

N
, 1
o N /;V[@"*d’ Zn) =0 (45)

then




Exercise 4.10. (x)

Let p € R[z] have at least one irrational coefficient (other than the constant term) and let U C [0,1] be
open and non-empty. Is it true that the set {n € N: p(n) mod 1 € U} is syndetic? [Hint: Use Exercise 4.9
to obtain versions of Lemma 4.6 and Corollary 4.7 for uniform Cesaro averages and then use a similar
argument as for Ezercise 2.23.]

4.2. Totally ergodicity.

Definition 4.11. A measure preserving system (X,B,u,T) is totally ergodic if for every n € N, the
measure preserving system (X, B, u, T™) is ergodic.

A convenient notation we will often use from now on is the following: given a m.p.s. (X,B,u,T) and a
function f € L?(X), we denote by T f the composition foT (another way to think about this is, as an abuse
of language, to denote by 7' the associated Koopman operator).

Example 4.12. Recall the circle rotation (X, B, u,T) described in Example 2.4, where X = [0,1], B is the
Borel o-algebra, p is the Lebesque measure and T : x — x + o mod 1. This system is totally ergodic if and
only if a is irrational. Indeed, if « is rational, say o = p/q, then qo is an integer and hence T? is the
identity map on [0, 1], which is trivially not ergodic.

On the other hand, if « is irrational, then the system is ergodic. To see this we use the ergodic theorem.
Then we need to show that for every f € L? the average

1N
N 3
iy 2T
n=1

is a constant function. Bul this is easy to check for functions t — e(nt) with n € Z, and finite linear
combinations of functions of this kind form a dense subset of L.

Finally, for every n € N, the measure preserving system (X, B, u,T™) is the circle rotation by na; since
na is also irrational when « is, the system (X, B, u,T) is tolally ergodic in this case.

When a system (X, B, u, T) is totally ergodic, we obtain from the ergodic theorem the following corollary.

Corollary 4.13. Let (X, B, u,T) be a measure preserving system. Then it is totally ergodic if and only if
for every f € L*(X) and every q,r € N,
1 X
) . an+r ¢ _ s s 2
Jim ;T f /X fdpu. in L*(X) (4.6)
Proof. If the system is not totally ergodic, then there exists ¢ € N and a non-constant f € L%(X) such that
T9f = f. Thus (4.6) implies that the system is totally ergodic.

To prove the converse direction, let (X, B, u,T) be totally ergodic and let f € L*(X) and ¢, € N be
arbitrary. Applying the ergodic theorem (Theorem 2.17) to the (ergodic) system (X, B, u, T?) we conclude
that

1 & 1 &
: - qn+r e i - q\n s — s _
ngrloan_:lT f=lim > (TN S) /XT fdp /deﬂ‘

n=1

O

Remark 4.14. A measure preserving system (X, B, u, T) is called invertible if T is invertible a.e. and the
inverse is measurable and measure preserving. In this situation we can allow ¢ and r in Corollary 4.13 to
be negative, but if the system is not invertible, then the expression T™f does mot make sense for a negative
value of n.

Newvertheless, Corollary 4.13 still makes sense when r < 0, even if the system is not invertible. Indeed, in
this case the expression gn +r is positive for all but finitely many values of n, and since we take an average
over N we can just ignore those finitely many values.

One could interpret the expression 79" %" appearing in (4.6) as T’ »(") where p is a linear polynomial. The
following theorem reveals the power of the van der Corput trick, which allows one to upgrade Corollary 4.13
to general polynomials.
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Theorem 4.15. Let (X, B, 1, T) be a totally ergodic system and let p € Z[z] be such that either the system
1s tnvertible or the polynomial has a positive leading coefficient. Then for every f € L*(X),

lim —ZT”(”) f= / fdu. in L*(X) (4.7)

Proof. We proceed by induction on the degree of p. If p is linear, then the result follows from Corollary 4.13,
so assume that p has degree at least 2. Eq. (4.7) holds for f if and only if it holds for f — ¢ where ¢ is a
constant; therefore, after subtracting fX fdu from f we can assume that fX fdu =0. Letting x,, = TP f

we need to show that limp _ o % 227:1 z,, = 0, and to this end we will invoke the van der Corput lemma
(Lemma 4.8). Fixing d € N we can compute

<$n+d7xn>:/ Tp(n+d)f Tp(n fdu /Tp(ner) p(n f Fdp = <Tp(n+d)*p(n)f’f>.
X X

Since n +— p(n + d) — p(n) is a polynomial of degree smaller than the degree of p, we can use the induction
hypothesis (together with the fact that convergence in L?(X) implies convergence in the weak topology) to

conclude
LN 1N )
1 — 3 p(n+d)—p(n —
A}IHI N g (Tntds Tn) ]\}IIH E T Lf

n=1 n=1

This establishes the hypothesis (4.5) of the van der Corput lemma, so we conclude that lim — Z Tn =0,

N—oo N
n=1

as desired. 0

Remark 4.16. Both Corollary 4.13 and Theorem 4.15 have versions for uniform Cesaro averages, which
can be proved in the exact same way. The choice to present the reqular Cesaro versions was made with the
hope that the main ideas became more transparent.

4.3. Total ergodicity and finite factors. This subsection is not necessary to the proof of Sarkozy’s
theorem, but it leads to some important ideas that will appear in later sections.
Here is another example of an ergodic system that is not totally ergodic.

Example 4.17. Let X = {0,1}, B the discrete o-algebra, u the normalized counting measure and T : x
2+1mod 2. In other words (X, B, u, T) is a transposition on 2 points. Then this system is ergodic, since the
only sets with measure in (0,1) are the singletons {0} and {1}, and neither of them is invariant. However,
the system is not totally ergodic, since T? is the identity map and leaves both singletons (which have positive
measure) invariant.

While Example 4.17 seems rather trivial, it turns out that finite systems are in some sense the only
obstruction to total ergodicity. To better capture this, we need the notion of factor maps.

Definition 4.18 (Factor map). Let (X, A, u, T) and (Y,B,v,S) be m.p.s. and let ¢ : X =Y. Then ¢ is a
factor map if it is surjective, preserves the measure (i.e. u(¢—*B) = v(B) for every B € B) and intertwines
T and S, in the sense that So¢p =¢poT.

More generally, one can allow ¢ to be a surjective map between full measure sets Xog € A and Yy € B such
that T~' Xy = Xy and S™'Yy =Y}, and the relation S o ¢ = ¢ o T only needs to hold in X,.

We say that the system (Y, B,v,S) is a factor of (X, A, u,T) if there is a factor map ¢ : X — Y. We
will also say that, in this case, (X, A, u, T) is an extension of (Y,B,v,S).

Theorem 4.19. Let (X, A, u, T) be a measure preserving system. Then it is totally ergodic if and only if it
does not allow for any non-trivial finite factor.

Proof. Let (Y, B,v,S) be a non-trivial finite system and suppose that there is a factor map 7 : X — Y. Let
y € Y be such that v({y}) € (0,1) and let A = 7= ({y}). Then u(A) = v({y}) € (0,1). Let k = |Y|.
Then S* acts trivially on Y, and in particular S~%{y} = {y}. Therefore T-%¥A = A and we conclude that
(X, A, u, T*) is not ergodic.
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To prove the converse direction, suppose that (X, A, 1, T') is not totally ergodic. Let n € N be such that
T™ is not ergodic and let A € A be such that u(A) € (0,1) and T-"A = A. It follows that the o-algebra
B generated by the sets A, T~ A,..., T~ "D A is invariant under 7', finite and non-trivial. Let ¥ be the
(finite) set of atoms of B, and let m : X — Y be the containment map (i.e. w(x) is the atom of B that
contains x; more explicitly 7(z) =) pes B). It is easy to check that 7 is indeed a factor map. O

Exercise 4.20. Finish the proof of Theorem 4.19 by explicitly describing the measure preserving system
structure of Y and showing that 7 is indeed a factor map.

Exercise 4.21. Let (X, A, 1, T) be a measure preserving system and let (Y, B,v,S) be a factor. Prove that:
o If (X, A, n,T) is ergodic, then so is (Y,B,v,5).
o If (X, A, pn,T) is totally ergodic, then so is (Y,B,v,S).
4.4. Proof of Sarkozy’s theorem. Let (X, B, i, T) be a measure preserving system. Consider the following
subspaces of L?(X):

N
. 1 n
Hyq = {f € L*(X) : T*f = f for some k € N}; Hy, := {f € L*(X):VkeN, Jim = Z;T’“ 'f:O}
Exercise 4.22. Show that if f,g € H.qt are bounded, then their product f - g is also in Hyqt. Can you find
an example showing that the same is not tru for Hy,?

Exercise 4.23. (x)
Show that the collection {A € B : 14 € Hyq1} is a o-algebra.

Observe that in a totally ergodic system the space H,,: consists only of constant functions, while the
space H;. contains every function with 0 integral. The following proposition generalizes this observation.

Proposition 4.24. For any measure preserving system (X, B, u, T), the spaces Hyqt and Hyi. are orthogonal
and L*(X) = Hyq © Hye.

Proof. Let f € L*(X) be such that T*f = f for some k € N and let g € Hy.. Then (f,g) = (T*f, Trg) =
(f,T*g). Tterating this observation we deduce that (f,g) = (f,T*"g) for every n € N. Averaging over n we

then deduce
1 & 1 &
. H — » kn _ s 1: - kn _
(f,9) = Jim = Zl<f,T 9) <f,nggoN §le g> 0,
n= n=
showing that H,..; and Hy. are orthogonal.
Now suppose that f € L2?(X) is orthogonal to H,.:, we need to show that f € H;. But for every
k € N, the space H,, contains the invariant subspace Iy for the system (X, B, u, T*). It follows that f is
orthogonal to Ij for every k, and in view of the mean ergodic theorem, limy_ % Zf:le Tk" f =0, so that
indeed f € Hqe. [l

We are now ready to prove Sarkozy’s theorem (Theorem 1.13). Using the correspondence principle, or
more precisely, using Proposition 2.11, our task is reduced to establishing polynomial recurrence, formulated
in Theorem 2.10. The proof we provided for the Poincaré recurrence theorem (Theorem 2.7) does not
extend far beyond the scope of Theorem 2.7. However, we saw a different proof of Poincaré’s recurrence
when proving the stronger Khintchine’s recurrence (Theorem 2.24) using the ergodic theorem. Our proof
of Theorem 2.10 follows this second strategy, replacing the ergodic theorem with the “polynomial ergodic
theorem” for totally ergodic systems that we obtained in Eq. (4.7).

We will in fact establish a stronger version of Theorem 2.10.

Definition 4.25. A polynomial p € Z[x] is called divisible or intersective if for every k € N there exists
n € N such that p(n) is a multiple of k.

If p(0) = 0 or, more generally, p has an integer root, then it is divisible. However there are polynomials,
such as p(z) = (22 — 3)(2? — 5)(2? — 15) which have no integer root but are divisible. It is easy to see that
if p is not divisible, then there exists a finite system where recurrence does not occur at times of the form
p(n). In other words, if p is not divisible, then the set {p(n) : n € N} is not a set of recurrence. The converse
of this observation is the content of the following theorem, which significantly extends Theorem 2.10.
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Theorem 4.26. Let (X, B, 1, T) be a measure preserving system, let A € B, let € > 0 and let p € Z[z] be a

divisible polynomial with a positive leading coefficient. Then there exists n € N such that u(ANT P A) >
u2(A) —e.
Proof. Decompose 14 = f+ g with f € H,4 and g € Hy. Since H, 4 contains the constant functions, using
the Cauchy-Schwarz inequality we have (14, f) = || f]|?> > (f,1)* = u(A)2. Find h € H, such that T*h = h
for some k € N, and such that ||f — k|| < €/2. In particular it follows that (14,h) > pu(A)? —€/2.

Using divisibility of p, find a € N such that p(a) = 0 mod % and consider the polynomial ¢(n) = p(a+kn).
Then T9™h = h for all n € N. As in the proof of Theorem 4.15, an application of the van der Corput trick
implies that

N—oo

1N
lim — " T9"g=0.
im N':1 g=20

Finally, we have

1 X L X
im — —aq(n) = lim — (m)(f_ (n)
lim E wWANT 4™ A)y = lim N g <1A,h+Tq (f—h)+T1 g>

n=1 n=1

N
1
— im a(m)(p _ q(n)
1A,h+1\;1m N;ﬁlT (f —h)+T9g

Y

(1a,h)y —€/2 > /L(A)Q — €.
O

Exercise 4.27. Adapt the proof of Theorem 4.26 to obtain that, under the same conditions, if additionally
w(A) >0, then

N
1
: - —p(n)
J\}lm N 3:1 wANT A) > 0.

Exercise 4.28. (%) Using Ezercise 4.9 in the proof of Theorem /.26, show that for any set E C N with
d(E) > 0, the set {n € N:n? € E — E} is syndetic.
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