6. PROOF OF SZEMEREDI’S THEOREM

In this section we sketch the proof of Szemerédi’s theorem and formulate the main steps. Recall that
we already showed how the combinatorial statement Theorem 1.9 is equivalent to the multiple recurrence
theorem Theorem 3.3. As was the case with other multiple recurrence theorems, we actually prove a stronger
statement involving averages.

Theorem 6.1. Let (X,B,u,T) be an ergodic system and let A € B with u(A) > 0. Then for every k € N,
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It turns out that the liminf in (6.1) is an actual limit, but this was not proved until 2005 [13], almost
30 years after Theorem 6.1 was first established. Observe that in Theorem 6.1 we assume that the system

is ergodic; but as was explained in the previous section this is just for convenience and one can still obtain
Theorem 3.3.

6.1. Kronecker factor. Let X be a compact metrizable abelian group, with the Borel g-algebra and Haar
measure and let @ € X. Then the map T : X — X given by Tx = x + « is a measure preserving
transformation. This transformation is ergodic precisely when « generates a dense subgroup of X. Systems
of this form are called Kronecker systems.

Theorem 6.2. An ergodic system (X, B, u,T) is (isomorphic* to) a Kronecker system if and only if every
f € L? is compact (in the sense of Definition 5.21).

Recall that a measure preserving system Y = (Y, B, v, S) is a factor of another system X = (X, A, u, T) if
there exists a measurable map ¢ : X — Y pushing u to v (i.e. satisfying u(¢=*B) = v(B) for every B € B)
and intertwining 7" and S, in the sense that So¢ = ¢oT. In this situation one can embed L?(Y) into L?(X)
by taking f € L?(Y) to f o7 € L?(X); noting that this map is an isometric operator. We will then assume
simply that L%(Y) C L?(X). Let H, denote the set of all compact functions in L?(X). If Y is a Kronecker
system, then every function in L?(Y') is compact, and hence L?*(Y) C H.. Conversely, if Y is a factor of X
with L?(Y) C H., then Y is a Kronecker system.

It turns out that every ergodic measure preserving system X = (X, A, s, T) has a factor Y = (Y, B,v, .5)
such that L2(Y) = H,; such factor is called the Kronecker factor of X.

Theorem 6.3 (Kronecker factor). Let X = (X, B, 1, T) be an ergodic system and let H. denote the space of
all compact functions in L*>(X). Then there exists a factor map 7 : X — Y such that

o Y is a Kronecker system.

o [2(Y)=H..

e Y is the maximal Kronecker factor of X in the sense that if Z is a Kronecker system and there is a
factor map ¢ : X — Z, then there exists a factor map ¢ : Y — Z such that ¢ =pom.

o Y is unique up to isomorphism, and can be described as’Y = (X, D, u,T), where D ={D € B:1p €
H.}.

It is possible that the Kronecker factor of a system is trivial (i.e., isomorphic to the identity transforma-
tion). This occurs precisely when H, consists only of constant functions, which in view of Theorem 5.24 is
equivalent to the system being weak mixing.

Remark 6.4. In view of Theorem 6.3, one can re-interpret the Jacobs-de Leeuw-Glicksberg in terms of
conditional expectations. Indeed, given f € L?(X) and writing f = f. + fum with f. € H, and fum € Huym,
we know that f. is the orthogonal projection of f onto the space H., which now we know is the same space
as the space L?>(X, D, i) (where D is the o-algebra described in the last item of Theorem 6.3) of L? functions
that are measurable with respect to D. It follows that f. = E[f | D]. This is often denoted by E[f | Y], and
we can then re-formulate Theorem 5.24 as stating that for any ergodic system X with Kronecker factor Y
and any f € L2(X), the difference f — E[f | Y] is a weak mizing function.

4Two systems X and Y are isomorphic if there exists a bijective factor map 7 : X — Y whose inverse is also a factor map.
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6.2. Special cases of multiple recurrence. We start by proving Theorem 6.1 when the system is weak
mixing.

Theorem 6.5. Let X = (X, B, 1, T) be a weak mizing system, let k € N and let fi1,..., fr € L>(X). Then

k k
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Replacing each f; with 14, a direct corollary of Theorem 6.5 is that Theorem 6.1 holds whenever the
system is weak mixing.
The main idea in the proof of Theorem 6.5 is to use the van der Corput trick.

Proof of Theorem 6.5. We proceed by induction on k. The case k = 1 follows from the mean ergodic theorem
(Theorem 2.17). Assume now that k£ > 1 and the result has been established for k¥ — 1. Splitting fi as the
sum of a constant and function with 0 integral, we reduce the proof to those two cases. If f; is a constant,
then (6.2) follows immediately by induction.

Assume next that fX fxdp = 0. Since the right hand side of (6.2) is 0, we will use the van der Corput

trick. Let u,, 1= Hle T™ f;. We have
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where the last equality follows from the fact that 7™ preserves the measure. After using induction hypothesis
on the k — 1 functions {Thf2 O T Thk=1) f, . fk} and taking averages we get
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Finally, taking an average on h and using Theorem 5.14 and condition (4) from Theorem 5.11 we obtain
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On the other end of the spectrum, we have Kronecker systems.

Theorem 6.6. Let X be a Kronecker system, let k € N and let f € L°°(X). Then for every e > 0, the set

k
{nEN:/ HTmfd,u>/ kadu—e}
X i=0 X

s syndetic.

To see why Theorem 6.6 implies that Theorem 6.1 holds for Kronecker systems, apply Theorem 6.6 to
the indicator function 14 of a set A € B with u(A) > 0 and let S be the syndetic set of n for which
wANT™AN---NT k" A) > u(A)/2. Let L € N be bound on the gaps of S (so that every interval of
length L contains an element of S). Then for N — M large enough we have |[M,N]NS| > (N—-M —L)/L >
(N — M)/(2L) and hence

UC-lim p(AN---NT7*A)> lim L Z wAN---NTFA) > n4) > 0.
n T N-M5oo N — M - 4L
neSN[M,N]
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Proof of Theorem 6.6. Let X, k, f and € > 0 be as in the statement of the theorem. By re-scaling we
may assume that | f|lc < 1. Since f is a compact function, it follows from Exercise 5.23 that the set
S:={neN:|T"f— f| <e/k®} is syndetic. Observe that for each n € S and i € {0,1,...,k} we have
] ] i—1)n i—1)n i—2)n n i n €
T f = FIl <77 f =TIl 4+ ([T D f = TEDf| 4o | T = f| =T f = fI| < =
Using the Cauchy-Schwarz inequality repeatedly we conclude that for every n € S
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We have now shown that either a system X is weak mixing, and hence Theorem 6.1 holds, or it is not
weak mixing, and hence it has a non-trivial Kronecker factor, where Theorem 6.1 holds. In either case, we
have proved that any ergodic system has a non-trivial factor where Theorem 6.1 holds. The basic idea of
the proof of Theorem 6.1 for general systems is to keep finding larger factors where the conclusion holds,

ultimately covering all of X. To make the necessary definitions we will take advantage of a useful theorem
of Rokhlin.

6.3. Rokhlin’s skew-product lemma. Two probability spaces (X, B, ) and (Y,D,v) are isomorphic if
the (trivial) measure preserving systems (X, B, u, Id) and (Y, D, v, Id) are isomorphic. It is a known result
that if u is a Borel measure on a compact metric space with no point masses, then (X, B, 1) is isomorphic
to [0, 1] with the Borel o-algebra and the Lebesgue measure. In particular any two such probability spaces
are isomorphic! Tt follows in particular that, when understood as probability spaces with the (appropriate)
Lebesgue measure, [0, 1] is isomorphic to [0, 1]2. The following lemma improves upon these ideas and provides
a useful way to understand factors.

Lemma 6.7. Let X = (X,B,u,T) be an ergodic measure preserving system and let Y = (Y,C,v,S) be a
factor, with factor map w : X — Y. Then there exists a probability space (Z,D,\) and a measurable map
p:Y = Aut(Z) (called a co-cycle) taking values in the set of measure preserving transformations of (Z, D, \)
such that X is isomorphic to (Y x Z,C @ D,v ® A, R), where R(y,z) = (Sy, p(y)(z)) (in other words, X is
a skew-product over Y ).

Example 6.8. Take X = [0,1]? with the (Borel) Lebesque measure and let T : (y,z) — (y + a,x +y) for
some fized irrational . Let Y = [0,1], also endowed with the (Borel) Lebesgue measure and let S : y — y+a.
Then the projection w : X — Y onto the first coordinate is a factor map of measure preserving systems.

In this case we can take Z = [0,1] and p(y) to be the rotation on Z by y (in other words p(y) : z
z+ymod 1).

6.4. Relative weak mixing and compactness. Recall that a m.p.s. X is weak mixing if and only if the
product X x X is ergodic. The following definition extends this concept to a relative notion.

Definition 6.9. Let X = (X, B,u,T) and Y = (Y,C, v, S) be ergodic systems and let m : X — Y be a factor
map. Let (Z,D,)\) and p be given by Lemma 6.7. The relative product of X with itself over Y is the
system

XxyX:=(YXZXZCRIDRID,vRARJNT xyT),

where T xv T : (y, z1, 22) — (Sy, p(y)z1, p(y)22).
We say that X is weak mixing relative to (or ¢« weak mixing extension of) Y is the relative product
X xy X s ergodic.

Exercise 6.10. Show that a system is weak mizing if and only if it is relative weak mixing with respect to
the trivial factor (i.e. the factor to the one-point system,).
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Next recall that a system is a Kronecker system if and only if every L? function is compact, i.e., for any
f € L? the orbit {T"f : n € N} is pre-compact. For a subset of a Hilbert space, pre-compact is equivalent to
totally bounded, so f is compact if and only if for any e > 0 there are finitely many functions g1, ..., g, € L?
such that {T"f : n € N} C |J,_, B(g;,€). This inclusion can be written as

vneN  min [T"f = gillz2) <e.

We can now relativize the notion of a compact (or Kronecker) factor.

Definition 6.11. Let X = (X,B,u,T) and Y = (Y,C,v, S) be ergodic systems and let m : X — Y be a
factor map. Let (Z,D,\) be given by Lemma 6.7 and consider the measures p, = 0, ® X for each y € Y.

A function f € L?(X) is compact relative to Y if for every ¢ > 0 there are finitely many functions
g1,---,9r € L?(X) such that

VneN 11;1}; IT"f — gill2(n,) <€  forv-a.e. y.

The system X is compact relative to (or a compact extension of) Y if there is a dense set of relatively
compact functions in L?(X).

Exercise 6.12. Show that an ergodic system is a Kronecker system if and only if it is compact relative to
the trivial (one point) factor.

Exercise 6.13. Show that the system X = (X, B, u,T) given by X = [0,1], B = Borel, u = Lebesgue and
T:(xz,y) — (v +a,y+x), where « is irrational, is a compact extension of the rotation by «v (i.e. the system
Y = (V,D,v,S) where Y =[0,1], D = Borel, v = Lebesgue and S : z — =+ ).

Note that in Definition 6.11 we do not require that every function f € L?(X) be compact relative to Y
but only that a dense subset of L? has this property. The next exercise helps explain why.
The notation |x| for a real number z, denotes the largest integer n such that n < z.

Exercise 6.14. Let X be as in the previous exercise. Show that the function f(x,y) = e(y|1/x]) is not
conditionally compact with respect to Y.

It is often helpful to think of “compact” as a generalization of “finite”. The next exercise explains in
which sense the notion of “relatively compact” generalizes the notion of “relatively finite”.

Exercise 6.15. Let X and Y be ergodic systems and let 7 : X — Y be a factor map. Let (Z,D,\) be given
by Lemma 6.7 and suppose that Z is finite. Show that X is a compact extension of Y.

6.5. Sketch of the proof.

Definition 6.16 (Sz systems). An ergodic system (X, B, 1, T) is called Sz (for Szemerédi) if it satisfies the
conclusion of the Theorem 6.1

We already saw that every ergodic system has a non-trivial factor that is Sz (either the whole system if
it is weak mixing, or its non-trivial Kronecker factor otherwise). The idea of the proof of Theorem 6.1 is
that any proper factor which is Sz is contained in a strictly larger factor which is also Sz. There are 3 main
components. The first states that the Sz property can be lifted by weak mixing extensions.

Theorem 6.17. If an ergodic system X is a weak mizring extension of a system Y and Y is Sz, then so is
X.

The proof of Theorem 6.17 is very similar to the proof of Theorem 6.5 which dealt with the “absolute”
case. In particular it combines a similar induction with the van der Corput trick.
Similarly, the next results states that the Sz property can be lifted by compact extensions.

Theorem 6.18. If an ergodic system X is a compact extension of a system Y and Y is Sz, then so is X.

The proof of Theorem 6.18 draws on the ideas from the proof of Theorem 6.6 which dealt with the
“absolute” case, but is more complicated and requires additional insights. One useful (but not entirely
necessary) tool is the van der Waerden theorem, in the finitistic form described in Exercise 1.5.

The third major step is a relative version of the Jacobs-de Leeuw-Glicksberg decomposition. Recall that
a consequence of this decomposition is that whenever a system X is not weak mixing, it has a non-trivial
factor Y which is a Kronecker system.
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Theorem 6.19. If a non-trivial extension w : X — Y of ergodic systems is not relatively weak mizing,
then there exists an intermediate relatively compact extension, i.e., there exists a system Z and factor maps
m X —=>Z and 7o : Z — Y such that # = my o w1, T is non-triwvial and Z is a compact extension of Y.

We are now ready to finish the proof of Theorem 6.1. The idea is to consider a maximal factor of X which
is a Sz system. Here maximal means with respect to the natural partial order on all factors of X given by
Y < Z if Y is a factor of Z.> An equivalent description of this partial order is obtained by corresponding
each factor to a subset of L?(X) (as explained after Theorem 6.2); then Y < Z if and only if L*(Y) C L*(2).

To consider a maximal Sz factor of X one can use Zorn’s lemma (or, alternatively, a transfinite induction).
To be able to apply this lemma, one needs to show that the Sz property is “closed”, in the following sense.

Lemma 6.20. Let X be an ergodic system and suppose that there is a totally ordered family of factors Y,
such that |J, L*(Ya) is dense in L?(X). If every Yo is Sz, then so is X.

Lemma 6.20 implies that Zorn’s lemma can be applied and hence that X has a maximal Sz factor, say Y.
If X is a non-trivial extension of Y there are two cases. In the first case, X is a weak mixing extension of Y
and hence by Theorem 6.17 X is Sz. In the second case, X is not a weak mixing extension of Y, and hence
by Theorem 6.19 there is a non-trivial extension Z of Y which is a compact extension of Y and a factor of
X. By Theorem 6.18, Z is Sz, but this contradicts the fact that Y was the maximal factor of X that was Sz.
Therefore, X must be Sz itself and this finishes the proof.
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