7. EXTENSIONS OF SZEMEREDI’S THEOREM

Shortly after Furstenberg published his ergodic theoretic proof of Szemerédi’s theorem, in joint work with
Katznelson they established a multidimensional version. For many years, the only known proofs of this
multidimensional Szemerédi theorem (Theorem 7.1 below) involved ergodic theory.

Let d € N. Given a set A C N, its upper density is defined by
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d(A) = hj{fnj;lopW’Aﬂ{l,...,N} ’
Theorem 7.1 (Furstenberg-Katznelson [10]). If A C N has d(A) > 0, then for every finite set F C N? there
ezists n € N and x € N¢ such that
ADz+nF :={z+nv:velF}.

For instance, if d = 2 and F = {0,1,...,k}?, it follows from Theorem 7.1 that any subset of N? with
positive upper density contains a square k x k grid.

Exercise 7.2. Show that, using only Szemerédi’s theorem, one can deduce that any subset of N? with positive
upper density contains a rectangular k x k grid, i.e. a set of the form

{(z1,22) + (in,jm) : 1 <4,j < k}
for some x1,29,n,m € N.
Here’s the multiple recurrence theorem they established.

Theorem 7.3. Let (X,B,u) be a probability space and let Ty,..., Ty : X — X be commuting measure
preserving transformations. Then for any A C B with u(A) > 0 there exists n € N such that

p(ANTy"AN---NT;"A) > 0.

Exercise 7.4. Show that Theorem 7.3 implies that, under the same conditions, for every k € N there exists
n € N such that

d k
plAn( (T "A | >o.
i=1j=1

To show that Theorem 7.3 implies Theorem 7.1, one needs a suitable extension of the Correspondence
Principle.

Proposition 7.5. Let d € N and E C N%. Then there ewists a probability space (X, B, i), commuting
=d(FE

measure preserving transformations Ty, ..., T4 on X and a set A € B such that u(A) ) and for any
ni,y...,ng € N say ng = (ni1,...,ni.4), we have
k
AEN(E—n)N-N(E—ng) >p (A N2y ", "2 Td_"’i’dA>
i=1

Exercise 7.6. Adapt the proof of Theorem 3.4 to give a proof of Proposition 7.5. [Hint: Take X = {0, 1}N51,
let T; be the shift in the i-th direction and let A ={x € X :x(,. o) = 1}.]

Exercise 7.7. Show that Theorem 7.1 follows from combining Theorem 7.3 with Proposition 7.5.

The proof of Theorem 7.3 follows the same basic structure as the proof of Theorem 3.3. In particular, it
uses the idea of exhausting the system (X, B, u, 71, . . ., Ty) by weak mixing and compact extensions; although
in this situation one also needs to consider more general behaviour.

Later Bergelson and Leibman proved the polynomial version of Szemerédi’s theorem, Theorem 1.18. In
fact they proved a multidimensional version as well. The polynomial Szemerédi theorem is deduced (using
the Correspondence Principle) from the following polynomial multiple recurrence result:

Theorem 7.8. Let (X, B, 1, T) be an invertible measure preserving system and let py,...,px € Z[x] satisfy
p:(0) =0. Then for any A € B with u(A) > 0 there exists n € N such that

p(ANT™P1 AN TP 4) > 0.
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The proof of Theorem 7.8 follows the strategy implemented by Furstenberg, and in particular uses directly
Theorem 6.19 and analogues of Theorems 6.17 and 6.18. To lift the polynomial recurrence property over
weak-mixing extensions one can use the van der Corput trick and a similar argument to the linear case.
However, in order to lift the polynomial recurrence property over compact extensions, one requires a suitable
version of the van der Warden theorem (Theorem 1.4).

Theorem 7.9. Let p1,...,px € Zlz] satisfy p;(0) = 0. For any finite partition N=C1U---UC, of N there
exists x,n € N and C € {C1,---,C,} such that

{z,z+pi(n), -,z +p(n)} CC.

It is clear the Theorem 7.9 is a corollary of Theorem 1.18; however it is required to prove Theorem 1.18,
so one needs to be able to prove Theorem 7.9 directly.

8. COLORING THEOREMS AND TOPOLOGICAL DYNAMICS

It turns out that to prove coloring results such as van der Waerden’s theorem, ergodic theory isn’t as
suitable as another branch of dynamics, called topological dynamics.

Definition 8.1. A topological dynamical system (or simply system) is a pair (X,T) where X is a
compact metric space and T : X — X is continuous.

Given a system (X, T), any closed set Y C X satisfying TY C Y gives rise to a subsystem (Y, T).
Definition 8.2. A system (X,T) is minimal if there is no proper subsystem.
An application of Zorn’s lemma shows that any topological dynamical system has a minimal subsystem.

Exercise 8.3. Show that a system (X, T) is minimal if and only if every point x € X has a dense orbit (the
orbit of a point x € X is the set {T"x : n € N}).

Exercise 8.4. Show that if a system (X,T) is minimal then T : X — X is surjective.

Proposition 8.5. If (X,T) is minimal and A C X is open and non-empty, then there exists n € N such
that ANT™™A 0.

Proof. The set B:= X \|J nT ™A is closed and TB C B. Since A # (), B # X, and hence by minimality
B = (. It follows that U”eN T ™A = X and hence some T~ ™A must have non-empty intersection with
A. |

neN

The connection between coloring theorems and topological dynamics is given by the following instance of
the correspondence principle.

Proposition 8.6. Let N = C1U- - -UC,. be an arbitrary finite coloring of N. There exists a minimal topological
dynamical system (X, T) and a cover X = Ay U---U A, by open sets such that for any nq,...,n; € N and
any i € {1,...,r},

AiﬂT’”lAiﬂ~~~OT*”"‘AﬁéfD = Ciﬂ(CZ-fn1)ﬂ~~ﬂ(C’ifnk)7é®
Proof. Let Xo = {1,...,7}0 let T : Xy — Xy be the left shift and let y € X, be the function x = Y ilg,.

Let Xy = T"x :n € N be the orbit closure of y, notice that (X;,7) is a subsystem of (Xo,T), and let
X C X be a minimal subsystem.

Let A; = {z € X :xo=14}. fye ANT™MAN.--NT™ ™A, for some ¢ and ng,...,ng, then
Yo = Yng = - = Yn, = 6. Since y € X C X, there exists a point 7"y in the orbit of x such that
(T™X)m = ym for every m < ny. In particular (T"x),, =i for every j =0,...,k (where for convenience we
define ng = 0) which means that x,,4,,, = i for every j and hence that n € C;N(C; —n1)N---N(C; —nyg). O

In view of Proposition 8.6, van der Warden’s theorem follows from the following multiple recurrence
theorem.

Theorem 8.7. Let (X, T) be a minimal system and X = C1 U ---UC,. a finite open cover of X. Then for
every k € N there exists n € N and ¢ € {1,...,r} such that
C;NT™"C;N---NnT~*C; £ 0.
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Exercise 8.8. Using Proposition 8.6, show that Theorems 1.4 and 8.7 are equivalent.
[Hint: To show that Theorem 1.4 implies Theorem 8.7, take any point x in X and construct a coloring of
N by looking at the orbit of ./

We assume minimality in the statement of Theorem 8.7 because it makes the proof easier (similar to how
we assume ergodicity in the proof of Theorem 6.1). However it can be shown directly that this assumption
can be discarded.

Exercise 8.9. Show that in Theorem 8.7, the assumption that (X,T) is minimal is not needed.
It turns out that Theorem 8.7 is equivalent to a version closer to Theorem 3.3.

Lemma 8.10. Suppose Theorem 8.7 holds for some k € N. Then for any minimal system (X,T) and any
open A C X, if A# () then there exists n € N such that ANT "AN---NT~F"A £ ().

Proof. As we've seen above, X = J,cy T—*A. By compactness it follows that X = Ufil T—*A for some
N € N. Using Theorem 8.7 we find ¢ < N and n € N such that § £ T *AN T-"TtAN-.-NT T4 =
T*i(A NT~"AN---N T’k”A), which implies that ANT"AN---NT~FA £ (. a

Proof of Theorem 8.7. The proof goes by induction over k. The case £k = 1 follows immediately from
Proposition 8.5.

Next, suppose k > 1 and the result has been established for any smaller value of k. Some C; must be
non-empty; suppose WLOG C; # (). Then apply the induction hypothesis and Lemma 8.10 to find n; € N
such that By :=C,NT-™CyN---NnT-E-Dncy £,

We now consider two cases. In the first case T~ By NCy # (). But then C;NT "™ C1N---NT~F1 0y £ 0
and we are done.

The second case is when T~"1 By Ny = @. In this case, T~"! B; must have a non-empty intersection with
some other C;; WLOG suppose D, := T~ " By NCs # (). We can now invoke again the induction hypothesis
and Lemma 8.10 to find ns € N such that By := Do NT ™Dy ---NT~(k-bn2p, # (). We consider three
new subcases.

In the first case T~"2 By N Cy # (). But then (since Dy C Cy), Co NT~"2Cy N ---NT~ 2y # () and we
are done.

In the second case, T~ "2 By N C; # (. But then (since Dy C T"™ By C T for each i € {1,...,k}),
CyNT-mtm)Cn...AT-krm+n2) ) £ () and we are done.

In the third case T~"2B3 must have a non-empty intersection with some other C;; WLOG suppose
D3 : =T By N(Cs 7& 0.

We can continue in this manner, but since we start with a finite open cover, after r steps we do not have
a final case and the proof will finish. (I

Using a similar strategy, we can establish directly the following coloristic corollary of Sarkdzy’s theorem.
Theorem 8.11. [fN = CyU---UC, there exists C € {C1,...,C,} and n,x € N such that {z,z+n?} C C.
The dynamical version of Theorem 8.11 is the following.

Theorem 8.12. Let (X,T) be a minimal system and suppose X = Cy U ---UC, is an open cover. Then
there exists C € {C4,...,Cp} andn € N such that T~""C N C # 0.

Similarly to Lemma 8.10, one can write an equivalent formulation of Theorem 8.11 using a single open
set.

Theorem 8.13. Let (X,T) be a minimal system and let A C X be open and non-empty. Then for some
neN, ANT-" A+ .

Exercise 8.14. Prove that the following are all equivalent statements:

(1) Theorem 8.11.

(2) Theorem 8.12.

(3) Theorem 8.13.

(4) Theorem 8.12 without the minimality assumption.
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