8.1. Piecewise syndetic sets. We’ve encountered above the notion of syndetic sets: subsets of N with
bounded gaps. The dual notion to syndetic sets is that of thick sets.

Definition 8.15. A set T' C N is thick if it contains arbitrarily long intervals, i.e.,
VYN eN3Imy e Nst. {my,my+1,....my+ N} CT.

Exercise 8.16. (1) Show that a set T C N is thick if and only if its complement N\ T is not syndetic.
(2) Show that a set S C N is syndetic if and only if its complement N\ S is not thick.
(3) Show that a set T C N is thick if and only if for any syndetic set S C N, the intersection SNT # ().
(4) Show that a set S C N is syndetic if and only if for any thick set T C N, the intersection SNT # ().

Definition 8.17. A set A C N is piecewise syndetic if A = SNT for a syndetic set S C N and a thick
set T C N.

Note that all three notions of syndetic, thick and piecewise syndetic are upwards closed, i.e. if A possesses
one of those properties and B D A, then B also possesses the same property.

The relation between piecewise syndetic sets and partition Ramsey theory is made apparent by the
following lemma.

Lemma 8.18 (Brown’s lemma). Let A be piecewise syndetic, and suppose that A = Ay U---UA,.. Then at
least one of the A; is piecewise syndetic.

Proof. By an inductive argument it suffices to prove the lemma when r = 2. Suppose A =SN7T = A; U 4,
where S is syndetic and 7" is thick. Let S =5 \ Ap. If S is syndetic, then A; = SNT is piecewise syndetic.
If S is not syndetic, then its complement 7" := N\ S is thick, and hence As = T'N S is piecewise syndetic. O

Since N is piecewise syndetic, for any coloring of N one of the colors is piecewise syndetic. Therefore, if
one seeks to show that any finite coloring of N contains a certain monochromatic pattern, it suffices to show
that every piecewise syndetic set contains it.

8.2. Minimal systems and (piecewise) syndetic sets. Let (X,T) be a topological dynamical system,
let U C X be open and let € X. We denote by V(z,U) := {n € N: T"z € U} the set of visit times of z
to U. The connection between minimal systems and syndetic sets is given in the following lemma.

Lemma 8.19. A system (X,T) is minimal if and only if for every non-empty open set U C X and every
x € X, the set V(x,U) is syndetic.

Proof. Tt for every non-empty open set U C X and every z € X, the set V(x,U) is syndetic, then in
particular V(z,U) # 0 and it follows that every point has a dense orbit. In view of Exercise 8.3, (X,T) is
minimal.

Conversely suppose that (X,7T) is minimal and let U C X be open and non-empty, and let © € X. Then
Y := X \U;2, T 'U is a closed and T-invariant subset of X which is not all of X since UNY = (). By
minimality it follows that ¥ = 0 and hence X = (Jiog T ~iU. By compactness there exists 7 € N such
that X = JI_,T°U. Given any n € N, the point 7”2 € X must belong to one of the T~*U and hence
Ttz € U. In other words, for every n € N there exists i € {0,...,7} such that n+1i € V(z,U), and this
implies that V(z,U) is syndetic. O

A topological dynamical system (X, T') is called transitive if there exists at least one point with a dense
orbit. In a transitive system, we can replace sets of visits with the closely related sets of return times (sets
of visits V(x,U) where z € U).

Exercise 8.20. Show that o transitive system (X, T) is minimal if and only if for every for every non-empty

open set U C X and every x € U, the set V(x,U) is syndetic.

There is a version of Lemma 8.19 that applies to non-minimal systems. Recall that every system (X, T)
has a minimal subsystem.

Lemma 8.21. Let (X, T) be a transitive system, suppose x € X has a dense orbit, let Y C X be a minimal
subsystem and let U C X be an open set such that UNY # (. Then V(z,U) is piecewise syndetic.
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Proof. Let y € Y and let S = V(y,U). By Lemma 8.19, S is syndetic, so there exists r € N such that
S—A{1,...,r} =N.

For each N € N let my € N be such that TNz is so close to y that for each n € {0,1..., N}, whenever
Ty € T7"U, also T™(T™~z) € T~"U. Therefore V(z,U) D my + (SN{0,...,N}) for every N € N. We
claim that the union A := |Jyeymn + (SN{0,..., N}) is piecewise syndetic, and this will finish the proof.

Indeed, the union 7' = |Jycymn + {0,..., N} is thick, and letting S := (N\T)U A we clearly have
A= SNT, so it suffices to prove that S is syndetic. Take any = € N. If z ¢ T, then x € S. Otherwise,
x € my+{0,...,N} for some N € N, so that x = my + n for some n € {0,...,N}. We can then find
1€{l,...,r} such that n+i € S, and hence z +i=my +n+i¢€ S. We conclude that S is syndetic and
hence A is piecewise syndetic. (Il

8.3. Partition regular patterns. We will use Lemma 8.21 to derive a strengthening of the van der Waerden
theorem (Theorem 1.4). In fact, we will develop a more general framework: call a pattern on N a collection
P of finite subsets of N. Elements of a pattern P may be called configurations. The pattern is shift
invariant if for every C € P and n € N also C'+n € P. We say that the pattern P is monochromatic if
for every finite coloring of N there exists C' € P which is monochromatic.

Example 8.22. Let R C N and let P := {{z,z +r} : 2 € N,r € R}. Then P is a shift invariant pattern.
If R is the set of perfect squares, then P is monochromatic, in view of Theorem 8.11.

Theorem 8.23. Let P be a shift invariant pattern. Then the following are equivalent:

(1) P is monochromatic.

(2) For every minimal system (X, T) and every non-empty open U C X, there is a configuration C € P
such that (e T "U # 0.

(3) For every topological system (X,T) and every finite open cover X = C1 U --- U C,, there is a
configuration C € P and i € {1,...,r} such that (. T~"C; # 0.

(4) For every r € N there exists N € N such that for any coloring of the interval [1, N] with r colors
there exists C € P contained in [1, N] which is monochromatic.

(5) For every syndetic set S C N there exists C € P such that C C S.

(6) For every piecewise syndetic set A C N there exists C € P such that C C A.

(7) For every piecewise syndetic set A C N there exists C' € P such that the set

{n eN:C+ncC A}
is piecewise syndetic.

Proof. The implication (3)=-(1) follows at once from Proposition 8.6. To see why (1)=-(2), take a minimal
system (X,T), an open set ) # U C X and let x € X be arbitrary. As we saw before, finitely many pre-
images of U cover X (by minimality and compactness) so we can color n € N according to which pre-image
of U contains the point T"z. Applying (1) to this coloring it follows that (2) holds. The implication (2)=-(3)
follows immediately from the fact that every system has a minimal subsystem.

It is clear that (4) implies (1); the converse implication follows from the “compactness principle” discussed
in Section 1.

To prove that (1)=-(5), notice that any syndetic set S induces a coloring of N by covering it with finitely
many shifts; since P is shift invariant, if S — ¢ contains a configuration in P, then so does S. Conversely, if
(5) holds, then in view of Lemma 8.19 so does (2).

Using Lemma 8.18 we deduce that (6)=-(1). It is trivial that (7)=-(6) so to finish the proof it will suffice
to show that (2)=(7). Let A= SNT for a syndetic S and a thick T. For each N € N let my € N such that
{mn,...,mny+N}CT.

Consider the left shift 7 : {0, 1} — {0,1}o and let X C {0,1}"o be the orbit closure of the point 14.
Passing to a subsequence of (my) if needed, we can assume that the limit y = limy_00 7"V 14 exists. Then
y € X and hence the orbit closure X; of y is a subsystem of X. It can be proved that the point (0,0,...)
does not belong to X; (cf. Exercises 8.24 and 8.25 below). Therefore the clopen set U := {z € X : zg = 1}
has non-empty intersection with any subsystem of X, and in particular U has non-empty intersection with
a minimal subsystem Y of (X, T).
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Using part (2) on the open subset U NY of Y we find a configuration C' € P such that W := [, T-'U
satisfies WNY # (). We can now apply Lemma 8.21 to deduce that B := {n € N: T"14 € W} is piecewise
syndetic. For every n € B and i € C we have T"14 € T~'U, so T" "1, € U son+i € A. We conclude that
n+ C C A and this finishes the proof. |

Exercise 8.24. Show that the point y constructed at the end of the proof of Theorem 8.23 is the indicator
function of a syndetic set.

Exercise 8.25. Show that if y € {0,1}"0 is the indicator function of a syndetic set then (0,0, ...) does not
belong to the orbit closure of y under the shift.

Combining Theorem 8.23 with van der Waerden’s theorem we obtain the following strengthening.

Corollary 8.26. Let A C N be piecewise syndetic and let k € N. Then there exists n € N such that the
intersection AN (A—n)N---N(A—kn) is piecewise syndetic.

Proof. Theorem 1.4 can be reformulated as stating that P := {{z,z+mn,...,x+kn} : x,n € N} is monochro-
matic. In view of condition (7) in Theorem 8.23, there exists x,n € N such that the set B := {m € N :
m~+{x,x+n,...,z+kn} C A} is piecewise syndetic. The desired conclusion now follows from the observation
that AN(A—n)N---N(A—kn) D B+ux. O

8.4. Monochromatic sums and products. In this subsection we use the facts established above to prove
the following theorem.

Theorem 8.27. I[f N=CyU---UC,, there exists z,y € N and t € {1,...,r} such that
{z,2+y,zy} C C. (8.1)

Proof. We will construct inductively four sequences:

e an increasing sequence (y;);>1 of natural numbers,
o two sequences (B;);>o and (D;);>1 of piecewise syndetic subsets of N,

o a sequence (t;);>o of colors in {1,...,7},
such that B; C C%, for every ¢ > 0.
Initiate by choosing to € {1,...,7} such that C;, is piecewise syndetic, and let By := Cy,. Assume now

that ¢ > 1 and that we have already defined (tj)j;%), (yj)j;ll, (Bj)j;%) and (Dj)j;ll We apply Corollary 8.26
to find y; € N such that

Dii=Bia () (Bia—u? ) (8:2)
j=1

is piecewise syndetic (with the convention that for ¢ = j, the (empty) product yj2 ---y? | equals 1). Observe
that y;D; is also piecewise syndetic, and therefore Lemma 8.18 provides some ¢; € {1,...,r} such that
B; :=y,D; N Cy, is piecewise syndetic. This finishes the construction of the sequences.

Note that B; C y; D; C y;B;_1; iterating this fact we obtain

v0< )<, B; Cyjr1yir2--yiB;. (8.3)

Since the sequence (t;) takes only finitely many values, there exist (infinitely many) j < ¢ such that ¢; = t,.
Let & € B;, let y := yj41--- ¥, and let « := &/y. We claim that {z,2 + y,zy} C C;,, which will complete
the proof. Indeed 2y = & € B; C Cy, and from (8.3) we have zy € B; C yB; so x € B; C Cy; = Cy,. Finally
we have

yx+y) = F+y*€Bi+y’ CyDi+y’
using (8.2) C yi(Bio1 — y]2'+1 e yEa)
using (8.3) C vy (yj+1 Y1 By — y]2+1 s yz‘2—1yi) +y?
= yBi—y +v* =yB,,
which implies that © +y € B; C Cy; = Cy,. O
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