Geometry of Numbers TCC 2024 Exercises

April 30, 2024

Motivation

The motivation for these questions is explained in the summer project of Kate Thomas.

We are going to study, for a variable $t \in (0, 1)$ and a parameter N > 1 which can be thought of as very large, the quantity

$$I(t,N) = \int_{\substack{\alpha \in \operatorname{Mat}_{d}^{\operatorname{Sym}}(\mathbb{R}) \\ \|\alpha\| < 1}} \#\{A, B \in \operatorname{Mat}_{d \times d}(\mathbb{Z}) : \|A\| < N, \|tA\alpha - B\| < 1/N\}$$
$$= \sum_{A,B \in \operatorname{Mat}_{d \times d}(\mathbb{Z}) : \|A\| < N} \operatorname{measure}\{\alpha \in \operatorname{Mat}_{d}^{\operatorname{Sym}}(\mathbb{R}) : \|\alpha\| < 1, \|tA\alpha - B\| < 1/N\},$$

but we'll work up to it by steps.

Notation

For an $m \times n$ real matrix M, we define the 2-norm $||M|| = \sqrt{\sum M_{ij}^2}$. Recall the Smith normal form of A,

$$A = U^{-1} \operatorname{diag}(e_1, \dots, e_d) V^{-1},$$

where $U, V \in SL_n(\mathbb{Z})$ and $e_i \in \mathbb{N}$ with $e_1 \mid \cdots \mid e_d$.

We will use big-O/little-o and Vinogradov \ll notation. You may want to use the "divisor bound"

$$\{d \in \mathbb{N} : d|m\} \ll_{\varepsilon} m^{\varepsilon} (m \in \mathbb{N}).$$

In general, in these questions, when you're asked for an upper bound it's always OK for it to be multiplied by $O_{\varepsilon}((\text{some variable})^{\varepsilon})$.

Marking

Out of 100. You are strongly encouraged to collaborate with other students; if you take the course for credit you must write up your answers separately.

25% for sending me plausible strategies for two questions by the check-in deadline. (2 pages, clearly expressed, you can use more pages if you want.)

75% for submitting solutions to at least three questions (25 each, best three count). Many questions are open-ended or hard. I will be looking only for a plausible strategy followed through to its logical conclusion, whether or not it successfully answers the question. You are welcome to check with me if you're not sure. If between you all questions get answers, we should almost have a theorem!

Answer three questions. (Check-in: Show strategies for two.)

- 1. As a warm-up we'll count invertible matrices A with ||A|| < N, given values of e_1, \ldots, e_{n-1} , and e_n in a given range.
 - (a) 5 marks. Let $e \in \mathbb{N}$. Give an upper bound for the number of subgroups of $(\mathbb{Z}/e\mathbb{Z})^n$ of the form

$$L^{\text{mod } e}(v) = \{ nv \mod e : 0 \le n < e \} \qquad (v \in (\mathbb{Z}/e\mathbb{Z})^n).$$

(Notice that two different v in $(\mathbb{Z}/e\mathbb{Z})^n$ may lead to the same subgroup $L^{(\mod e)}(v)$.)

(b) 5 marks. Let d < n and let $e_i \in \mathbb{N}$ with $e_1 \mid \cdots \mid e_d$. Give an upper bound for the number of subgroups of $(\mathbb{Z}/e_d\mathbb{Z})^n$ of the form

$$L^{\text{mod } e_d}(e_1v_1, \dots, e_dv_d) =$$

$$\{n_1e_1v_1 + \dots + n_de_dv_d \mod e_d : 0 \le n_i < e_d/e_i\}$$

$$(v_i \in (\mathbb{Z}/e_de_i^{-1}\mathbb{Z})^n).$$

(c) 10 marks. Let A be an $n \times n$ invertible real matrix with columns a_1, \ldots, a_n . You are given that, possibly after permuting the columns of A,

$$a_n = x_1 a_1 + \ldots + x_{n-1} a_{n-1} + v$$

($x_i \ll_n 1, ||v|| \ll \det(A) / \det(L(a_1, \ldots, a_{n-1})), v \cdot a_i = 0).$

(This is proved using "singular value decomposition", which I will aim to discuss in lectures; it is a special case of the perhaps unenlightening Lemma 5.6 in this paper.)

Recall that if $\lambda_n(\Lambda) < 1$, then $|\Lambda \cap B(0,1)| \ll_n 1/\det(\Lambda)$. Let $L \subseteq \mathbb{Z}^n$ be a rank *n* lattice and let N, D > 1. Show that the number of an $n \times n$ invertible matrices A, with ||A|| < N, $|\det A| \le D$, and columns belonging to L, is

$$\ll_n \frac{D}{\det L} (N^n / \det L)^{n-1}.$$

(d) 5 marks. Putting the last two parts together, give an upper bound for the number of invertible integer matrices A with ||A|| < N, given values of e_1, \ldots, e_{n-1} , and e_n in a given range.

- 2. This is a continuation of question 1.
 - (a) 5 marks. Fix matrices A and B, and let $\det_k(A)$ be the largest $k \times k$ subdeterminant in the first k rows of A, that is

$$\det_k(A) = \max\{ |\det(A_{ij})_{i \in I, 1 \le j \le k} | : I \subset \{1, \dots, n\}, |I| = k \}.$$

Show that

measure{
$$\alpha \in \operatorname{Mat}_d^{\operatorname{Sym}}(\mathbb{R}) : ||tA\alpha - B|| < 1/N$$
} \ll_n
 $(tN)^{-n(n+1)/2} |\det(A)|^{-1} \prod_{1 \le k < n} \det_j(A)^{-1}.$

(b) 20 marks. Now let A, a_i and L be as in part 1c again. Show that for $N, D, D_k > 1$, the number of an $n \times n$ invertible matrices A, with ||A|| < N, $|\det A| \le D$, columns belonging to L, and every $k \times k$ subdeterminant in the first k rows of A of size at most $O(D_k)$, is

$$\ll_n \frac{D}{\det L} \prod_{k=1}^{n-1} \frac{N^{n-k}D_k}{\det(L)}$$

3. The questions above give some way to count the number of A, and to estimate the volume of the α 's. It remains to count the number of B. This will also reveal why we were concerned with the elementary divisors in question 1.

To simplify the problem, we'll strengthen the condition $||tA\alpha - B|| < 1/N$ to $tA\alpha = B$. Suppose A is an invertible $d \times d$ integer matrix. Define

$$\Lambda_A = (A^{-1}\operatorname{Mat}_{d \times d}(\mathbb{Z})) \cap \operatorname{Mat}_d^{\operatorname{Sym}}(\mathbb{R}).$$

Observe that

- $\#\{B \in \operatorname{Mat}_{d \times d}(\mathbb{Z}) : \exists \alpha \in \operatorname{Mat}_{d}^{\operatorname{Sym}}(\mathbb{R}) : \|\alpha\| < 1, tA\alpha = B\} = |\Lambda_A \cap B(0, t)|.$
- (a) 15 marks. Suppose that $e_1 = \cdots = e_{d-1} = 1$, so that $e_d = \det(A)$. Show that

$$A^{-1}\operatorname{Mat}_{d\times d}(\mathbb{Z}) = L(E_{11},\ldots,E_{dd},G)$$

where $E_{11}, E_{12}, \ldots, E_{dd}$ is a basis of $\operatorname{Mat}_d^{\operatorname{Sym}}(\mathbb{Z})$, and $G_{ij} = V_{id}U_{dj}/\det(A)$. Hence give, in terms of A,

- i. an upper bound for the index $[\Lambda_A : \operatorname{Mat}_d^{Sym}(\mathbb{Z})],$
- ii. lower bounds for the Minkowski minima of Λ , and
- iii. upper bounds for $|\Lambda_A \cap B(0,t)|$, in terms of A.
- (b) 10 marks. Now we will drop the assumption that $e_1 = \cdots = e_{d-1} = 1$, so that e_i could be any natural numbers with $e_1 \mid \cdots \mid e_d$ and $e_1 \cdots e_d = \det(A)$. Give a set of generators for Λ_A . Hence give bounds (i)-(iii) as above.

- 4. This is a continuation of question 3.
 - (a) 15 marks. Let A be an invertible $d \times d$ integer matrix with ||A|| < N. Using the results of question 3, what upper bounds can you give for

$$\{B \in \operatorname{Mat}_{d \times d}(\mathbb{Z}) : \exists \alpha \in \operatorname{Mat}_{d}^{\operatorname{Sym}}(\mathbb{R}) \text{ s.t. } \|tA\alpha - B\|_{2} < 1/N\}?$$

- (b) 10 marks. Let us think now about matrices in $A^{-1} \operatorname{Mat}_{d \times d}(\mathbb{Z})$ which are not symmetric, but which are close to a symmetric matrix. If there is $M \in A^{-1} \operatorname{Mat}_{d \times d}(\mathbb{Z})$ with $||M - M^T|| < ||A||^{-1}N^{-1-\varepsilon}$, what does this say about A? Does it seem that for typical A there is likely to be such an M? Can you improve your bound in part (a)?
- 5. 25 marks. Suppose that A has rank r < n, so A is an integer matrix with ||A|| < N, $\det(A) = 0$, and elementary divisors $e_1 | \dots | e_r \neq 0$ and $e_{r+1} = \dots = e_d = 0$. What upper bounds can you give for

 $\{B \in \operatorname{Mat}_{d \times d}(\mathbb{Z}) : \exists \alpha \in \operatorname{Mat}_{d}^{\operatorname{Sym}}(\mathbb{R}) \text{ s.t. } \|tA\alpha - B\|_{2} < 1/N\}?$