Geometry of Numbers

TCC module: Term 32024

Simon L Rydin Myerson

University of Warwick
For link to course webpage see https://maths.fan Manin's conjecture, $x \cdot y=0$

Idea of application
Corollary
L^{\perp} has rank $n-d$ and $\operatorname{det}\left(L^{\perp}\right)=\operatorname{det}(L)$.

$Z(N)=\#\left\{x, y \in \mathbb{Z}^{n} \backslash\{0\}: x \cdot y=0,\|x\| \cdot\|y\| \leq N\right\}$, let $L=L(x / \operatorname{gcd}(x))$.

- $\#\left\{y \in L^{\perp}:\|y\| \leq \frac{N}{\|x\|}\right\}=\left(\frac{N}{\|x\|}\right)^{n-\phi} \underset{1}{\operatorname{Vol}(B(0 ; 1))} \operatorname{det} L\left(1+O_{n}\left(\frac{\lambda_{n}{ }^{\frac{}{4}}}{N / \|\left(L^{\perp}\right)}\right)\right)$ if $\frac{N}{\|x\|}>\lambda_{\alpha_{d}}\left(L^{\perp}\right)$.
- WLOG $\|x\| \leq\|y\|$. We will (eventually) prove that most lattices are 'balanced', in the sense that $\lambda_{i}(M) \asymp \operatorname{det}(M)^{1 / \operatorname{rank}(M)}$. One has to be careful: for given constants in \asymp, a positive proportion of lattices violate this.
- So for $n \geq 3$, $\bar{X}(\mathbb{N})$ we will prove $Z(N) \quad b-L$ aves like

- Different proofs were given by Franke-Manin-Tschinkel (89), Thunder (93), bof Robbiani (01), and Spencer (08). Morally speaking we follow Thunder.

Rational points

We can understand $x, y \in \mathbb{Z}^{n} \backslash\{0\}: x \cdot y=0$ as rational points on a projective variety． \mathbb{P}^{n-1} has rational points $[x]: x \in \mathbb{Z}^{n},\left(x_{1}, \ldots, x_{n}\right)=1$ ，with height $h(P)=\|x\|$ ． Moreover $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ has rational points

$$
\left\{([x],[y]): x, y \in \mathbb{Z}^{n}, \operatorname{gcd}(x)=\operatorname{gcd}(y)=1\right\}
$$

with height $\|x\| \cdot\|y\|$ ．
The equation $x \cdot y=0$ defines a hypersurface H in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ ，with the number of points of height $\leq N$ given by

$$
\begin{aligned}
& \begin{array}{c}
\text { つ, ソ= } \\
\frac{1}{4} \#\left\{x, y \in \mathbb{Z}^{n}:\{\operatorname{gcd}(x)=\operatorname{gcd}(y)=1,\|x\| \cdot\|y\| \leq N\}\right.
\end{array} \\
& =\frac{1}{4} \sum_{d_{1}, d_{2} \in \mathbb{N}} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \underline{Z\left(N / d_{1} d_{2}\right)} .
\end{aligned}
$$

Here $\mu(d)= \pm 1$ is the Möbius function，and the proof uses the identity $\sum_{d \mid m} \mu(d)=\mathbf{1}_{m=1}$ valid for $\|m\| \in \mathbb{Z} \backslash\{0\}$

The Manin-Peyre conjecture

Conjecture

$$
\begin{aligned}
& F=f(W(\mathbb{Q})), \quad f: W \rightarrow V \text { degree } \geq 2 \\
& T=C \cup F, C=2 \text { curd }
\end{aligned}
$$

Let V be a Fans variety and let H be an anticanonical height on $V(\mathbb{Q})$. There is a thin subset $T \subset V(\mathbb{Q})$ such that

$$
\text { Subset of } V(\mathbb{\mathbb { R }})
$$

$$
\#\{P \in V(\mathbb{Q}) \backslash T: H(P) \leq X\} \sim c_{M P} X(\log X)^{\text {rank } \mathrm{Pic}_{\mathbb{Q}}(V)-1}
$$

for a certain explicit constant $c_{M P} \geq 0$.
E.g. for a hypersurface in $\mathbb{P}^{n-1}, H([x])=\|x\|^{n-\operatorname{deg} v}$.

$$
N^{h-r} \operatorname{ligN}
$$

Rational points: a heuristic

Let $\vec{f}(\vec{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{R}$ be a system of homogeneous forms. Let $V(\vec{f}) \subset \mathbb{P}^{n-1}$ be the zero locus. Rational points: $\left(x_{1}, \ldots, x_{n}\right)=1, \vec{f}=\overrightarrow{0}$ with height $h(P)=\|x\|$.

We assume $V(\vec{f})$ is irreducible $/ \overline{\mathbb{Q}}$, and that the f_{i} generate $I(V(\vec{f}))$.
Let $U \subset V(\vec{f})$ be a sufficiently small Zariski open subset. Define

$$
\begin{aligned}
& M(B)=\text { measure }\left\{\vec{t} \in \mathbb{R}^{n}:\|\vec{f}(\vec{t})\| \leq 1\right\} . \\
& 3 \rightarrow \infty, \text { we hope: }
\end{aligned}
$$

1. If $M(B) \ll 1$ as $B \rightarrow \infty$, we hope:

- The degree of $V(\vec{f})$ is large and/or its dimension is small, $\left(x^{k}+y^{n}+e^{k} \mid \leq 1\right.$
- The number of rational points on U is finite.

Rational points heuristically, II

$$
\left\{t \in \mathbb{R}^{2}:\|t\| \leq B,\|\mathcal{Z}(t)\| \leq 1\right\}
$$

2. If $M(B) \rightarrow \infty$ but $M(B) \ll_{\epsilon} B^{\epsilon}$ as $B \rightarrow \infty$, we hope:

- $V(\vec{f})$ has some kind of group structure,

$$
\left|x^{\prime}+y^{\prime}+z^{3}\right|<1
$$

- $\{P \in U(\mathbb{Q}): h(P) \leq B\} \sim C(\log B)^{r / 2}$ for suitable $C \geq 0, r \in \mathbb{N}, h$.

3. If for some $\delta>0$ we have $M(B) \gg B^{\delta}$ as $B \rightarrow \infty$, we hope:

- The degree of $V(\vec{f})$ is small and/or its dimension is large,
- $\{P \in U(\mathbb{Q}): h(P) \leq B\} \sim C B(\log B)^{r-1}$ for suitable C, r, \mathfrak{a}.

The Hardy-Littlewood heuristic

- $\vec{f}(\vec{x}) \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]^{R}$ will be a system of R homogenous forms of degrees d_{i} in $s>k \sum d_{i}$ variables with integer coefficients.
- We assume: $\vec{\alpha} \cdot \vec{f}=\sum^{R} \alpha_{i} F_{i}$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^{R} \backslash\{\overrightarrow{0}\}$.
- We study $Z_{\vec{f}}(B)=\#\left\{\underline{\left.\left.\vec{x} \in \mathbb{Z}^{s}: \vec{f}(\vec{x})=\overrightarrow{0},\|\vec{x}\| \leq B\right\} . \quad \text { o LSet } S C(\lambda)\right)}\right.$

Heuristic

- Model \vec{x} by a random real vector \vec{X}, and model $f_{i}(\vec{x})$ by $\left\lfloor f_{i}(\vec{X})\right\rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B, B]^{s}$. Maybe $Z_{\vec{f}}(B) \sim(2 B)^{s} \cdot \mathbb{P}\left[\vec{f}(\vec{X}) \in[0,1)^{R}\right]$, which is typically $\sim c_{\vec{f}} B^{s-k} \sum d_{i}$.
- But: if $R=1, f(\vec{x})=x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}$, then $Z_{f}(B)=1$.
- Fix: let \vec{X}_{p} be uniformly distributed on \mathbb{Z}_{p}^{s}. Predict

$$
Z_{\vec{f}}(B)-1=(1+o(1))(2 B)^{s} \cdot \mathbb{P}\left[\vec{f}(\vec{X}) \in[0,1)^{R}\right] \prod_{p} \lim _{N \rightarrow \infty} p^{n R} \mathbb{P}\left[p^{N} \mid \vec{f}\left(\vec{X}_{p}\right)\right]
$$

Predict

Let V be a smooth projective variety in $\mathbb{P}_{\mathbb{Q}}^{n}$ defined by $f_{1}=\cdots=f_{r}=0$.
We can assume that f_{i} has integral coefficients with gcd 1 . Then V has a reduction $\bmod p$, a variety V_{p} in $\mathbb{P}_{\mathbb{F}_{p}}^{n}$.
Let N_{p} be the number of \mathbb{F}_{p}-points on V_{p}. The natural guess for N_{p} is that it is roughly $p^{\operatorname{dim} V}$. Indeed one could project onto the first D co-ordinates and in some sense this gives a way to parametrise most of the points on V_{p}.

For all but finitely many p, we have $\lim _{N \rightarrow \infty} p^{n R} \mathbb{P}\left[p^{N} \mid \vec{f}\left(\vec{X}_{p}\right)\right]=N_{p} / p^{\operatorname{dim} V}$.
If the product $\prod N_{p} / p^{\operatorname{dim} V}$ diverges, we actually have a natural way to correct this prediction too.

$$
\begin{aligned}
& \int \prod_{r} c_{r}\left(1-\frac{1}{r^{\prime}}\right) \rightarrow \int_{w_{\text {eve }}} \prod_{1}\left(1-\frac{1}{r}(1, r)\right)((1, r)
\end{aligned}
$$

An extra power of log

The following is an explanation of what is written in section 2.1 of https: //archive.mpim-bonn.mpg.de/id/eprint/2194/1/preprint_1993_79.pdf, which assumes some slightly more technical maths (and is also in French). I will look around to see if there is a good introduction to some of these ideas. We look at

$$
F(s)=\prod_{p}\left(1-p^{1-s} \frac{N_{p}-p^{\operatorname{dim} V}}{p^{\operatorname{dim} V}}\right)^{-1}
$$

This is well defined for $\Re s>1$, where $\Re s$ is the real part. What is more, it is (up to a bounded multiplicative factor) the same as the "Artin L-function $L_{S}\left(s\right.$, Pic $\left.V_{\bar{Q}}\right)$ of the Picard group of $V_{\bar{Q}}$ ", which has a meromorphic continuation to the whole complex plane. And, crucially, $L_{s}\left(s, \operatorname{Pic} V_{\bar{Q}}\right)$ has a pole at $s=1$ with multiplicity equal to the rank of Pic $V_{\bar{Q}}$.
$Z(N)=\#\left\{x, y \in \mathbb{Z}^{n} \backslash\{0\}: x \cdot y=0,\|x\| \cdot\|y\| \leq N\right\}$, let $L=L(x / \operatorname{gcd}(x))$.

$$
\begin{aligned}
& i f\|y\|<\|x\|, \leqslant \cup a p \quad x \& y \\
& Z(N)=\sum_{x \in \mathbb{Z}^{n} \backslash\{0\},\|x\| \leq \sqrt{N}} \#\{y: y \cdot x=0,\|x\| \leq\|y\| \leq \sqrt{N} /\|x\|\} \\
& +\#\{y: y \cdot x=0,\|x\|<\|y\| \leq \sqrt{N} /\|x\|\}
\end{aligned}
$$

Let $B(R)=\left\{y \in \mathbb{R}^{n}:\|y\| \leq R\right\}$ or $\left\{y \in \mathbb{R}^{n}:\|y\|<R\right\}$, let $\operatorname{gcd}(z)=1$.
$\# L(z)^{\perp} \cap B(R)=\frac{\operatorname{Vol}(B(R))}{\|z\|}+O\left(1+\frac{R}{\lambda_{1}\left(L(z)^{\perp}\right)}\right)^{n-1}$
$\sum_{\|z\| \leq \sqrt{N} / g, g c d(z)=1} \# L(z)^{\perp} \cap D(N / d\|z\|)$
$-\sum_{\|z\| \leq \sqrt{N} / g, g \operatorname{gd}(z)=1} \# L(z)^{\perp} \cap D(d\|z\|)$

