Geometry of Numbers

TCC module: Term 3 2024

Simon L Rydin Myerson

University of Warwick

For link to course webpage see https://maths.fan Manin's conjecture, $x \cdot y = 0$

Idea of application

Corollary

$$L^{\perp}$$
 has rank $n-d$ and $\det(L^{\perp})=\det(L)$.

- $Z(N) = \#\{x, y \in \mathbb{Z}^n \setminus \{0\} : x \cdot y = 0, \|x\| \cdot \|y\| \le N\}, \text{ let } L = L(x/\gcd(x)).$
 - $\#\{y \in L^{\perp} : \|y\| \leq \frac{N}{\|x\|}\} = \left(\frac{N}{\|x\|}\right)^{n-\frac{d}{d}} \frac{\operatorname{Vol}(B(0;1))}{\operatorname{L} \operatorname{det} L} \left(1 + O_n\left(\frac{\lambda_{n-\frac{d}{d}}(L^{\perp})}{N/\|x\|}\right)\right) \text{ if } \frac{N}{\|x\|} > \lambda_{\frac{d}{d}}(L^{\perp}).$
 - ▶ WLOG $||x|| \le ||y||$. We will (eventually) prove that most lattices are 'balanced', in the sense that $\lambda_i(M) \asymp \det(M)^{1/\operatorname{rank}(M)}$. One has to be careful: for given constants in \asymp a positive proportion of lattices violate this

PUSS

- constants in \approx , a positive proportion of lattices violate this.

 So for $n \geq 3$, $\nearrow(N)$ we will prove $\nearrow(N)$ by (N) by (N)
- $(N/\|x\|)^{n-1} \frac{\gcd(x)}{\|x\|} \sim c_n N^{n-1} \log N \qquad \sum (N/\|x\|)^{n-1} \frac{\gcd(x)}{\|x\|} \sim c_n N^{n-1} \log N \qquad \sum (N/\|x\|)^{n-1} \log N \qquad \sum (N/\|x\|)^{n$
- for some explicit $c_n > 0$. L- Jurking h = 2: ((1)) Different proofs were given by Franke-Manin-Tschinkel (89), Thunder (93), Robbiani (01), and Spencer (08). Morally speaking we follow Thunder.

Rational points

We can understand $x, y \in \mathbb{Z}^n \setminus \{0\} : x \cdot y = 0$ as rational points on a projective variety. \mathbb{P}^{n-1} has rational points $[x]: x \in \mathbb{Z}^n$, $(x_1, \dots, x_n) = 1$, with height h(P) = ||x||.

Moreover $\mathbb{P}^{n-1} imes \mathbb{P}^{n-1}$ has rational points

$$\{([x],[y]): x,y\in\mathbb{Z}^n,\gcd(x)=\gcd(y)=1\},$$

with height $||x|| \cdot ||y||$.

The equation $x \cdot y = 0$ defines a hypersurface H in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$, with the number of points of height $\leq N$ given by

$$\frac{1}{4}\#\{x,y\in\mathbb{Z}^n: \gcd(x)=\gcd(y)=1, \|x\|\cdot\|y\|\leq N\}$$

$$=\frac{1}{4}\sum_{\mu(d_1)\mu(d_2)} \frac{\chi(N/d_1d_2)}{\chi(N/d_1d_2)}.$$

Here $\mu(d)=\pm 1$ is the Möbius function, and the proof uses the identity $\sum_{d|m}\mu(d)=\mathbf{1}_{m=1}$ valid for $\|m\|\in\mathbb{Z}\setminus\{0\}$

The Manin-Peyre conjecture

Conjecture

Let V be a Fano variety and let H be an anticanonical height on $V(\mathbb{Q})$. There is a thin subset $T \subset V(\mathbb{Q})$ such that

for a certain explicit constant $c_{MP} > 0$.

E.g. for a hypersurface in \mathbb{P}^{n-1} , $H([x]) = ||x||^{n-\deg V}$.

Rational points: a heuristic

Let $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_n]^R$ be a system of homogeneous forms. Let $V(\vec{f}) \subset \mathbb{P}^{n-1}$ be the zero locus. Rational points: $(x_1, \dots, x_n) = 1$, $\vec{f} = \vec{0}$ with height h(P) = ||x||.

We assume $V(\vec{f})$ is irreducible/ $\overline{\mathbb{Q}}$, and that the f_i generate $I(V(\vec{f}))$.

Let $U \subset V(\vec{f})$ be a sufficiently small Zariski open subset. Define

afficiently small Zariski open subset. Define
$$M(B)= ext{measure}\{ec{t}\in\mathbb{R}^n:\|ec{f}(ec{t})\|\leq 1\}.$$
 B $o\infty$, we hope:

- 1. If $M(B) \ll 1$ as $B \to \infty$, we hope:

 - ▶ The number of rational points on *U* is finite.

Rational points heuristically, II

120+4723161

- 2. If $M(B) \to \infty$ but $M(B) \ll_{\epsilon} B^{\epsilon}$ as $B \to \infty$, we hope:
 - $ightharpoonup V(\vec{f})$ has some kind of group structure,

•
$$\{P \in U(\mathbb{Q}) : h(P) \leq B\} \sim C(\log B)^{r/2}$$
 for suitable $C \geq 0$, $r \in \mathbb{N}$, h .

- 3. If for some $\delta > 0$ we have $M(B) \gg B^{\delta}$ as $B \to \infty$, we hope:
 - ▶ The degree of $V(\vec{f})$ is small and/or its dimension is large,
 - $\{P \in U(\mathbb{Q}) : h(P) \leq B\} \sim CB(\log B)^{r-1}$ for suitable C, r, A

The Hardy-Littlewood heuristic

- ▶ $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > 2 \setminus d_i$ variables with integer coefficients.
- ▶ We assume: $\vec{\alpha} \cdot \vec{f} = \sum^{R} \alpha_i F_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $Z_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \|\vec{x}\| \leq B\}.$

Heuristic

- ▶ Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- ▶ That is, let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $Z_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\sim c_{\vec{f}}B^{s-\sum d_i}$
- ▶ But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $Z_f(B) = 1$.
- ▶ Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Predict

$$Z_{\vec{f}}(B) - 1 = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_{N \to \infty} \lim_{N \to \infty} p^{nR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$$

X, mrg. by

Predict

$$Z_{\vec{f}}(B) - 1 = \underbrace{(1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]}_{\text{ℓ of l in $P_{\mathbb{Q}}^n$ defined by $f_1 = \cdots = f_r = 0$.} \\ \text{Let V be a smooth projective variety in $P_{\mathbb{Q}}^n$ defined by $f_1 = \cdots = f_r = 0$.}$$

We can assume that f_i has integral coefficients with gcd 1. Then V has a reduction mod p, a variety V_p in $\mathbb{P}^n_{\mathbb{F}_2}$.

Let N_p be the number of \mathbb{F}_p -points on V_p . The natural guess for N_p is that it is roughly $p^{\dim V}$. Indeed one could project onto the first D co-ordinates and in some sense this gives a way to parametrise most of the points on V_n .

For all but finitely many p, we have $\lim_{N\to\infty} p^{nR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)] = N_p/p^{\dim V}$.

If the product $\prod N_p/p^{\dim V}$ diverges, we actually have a natural way to correct this prediction too.

$$\int_{a}^{b} \int_{a}^{b} \int_{a$$

An extra power of log

The following is an explanation of what is written in section 2.1 of https: //archive.mpim-bonn.mpg.de/id/eprint/2194/1/preprint_1993_79.pdf, which assumes some slightly more technical maths (and is also in French). I will look around to see if there is a good introduction to some of these ideas.

We look at

$$F(s) = \prod_{p} \left(1 - p^{1-s} \frac{N_p - p^{\dim V}}{p^{\dim V}} \right)^{-1}.$$

This is well defined for $\Re s>1$, where $\Re s$ is the real part. What is more, it is (up to a bounded multiplicative factor) the same as the "Artin L-function $L_S(s,\operatorname{Pic} V_{\bar{Q}})$ of the Picard group of $V_{\bar{Q}}$ ", which has a meromorphic continuation to the whole complex plane. And, crucially, $L_S(s,\operatorname{Pic} V_{\bar{Q}})$ has a pole at s=1 with multiplicity equal to the rank of $\operatorname{Pic} V_{\bar{Q}}$.

$$Z(N) = \sum_{x \in \mathbb{Z}^n \setminus \{0\}, \|x\| \le \sqrt{N}} \#\{y : y \cdot x = 0, \|x\| \le \|y\| \le \sqrt{N}/\|x\|\} + \#\{y : y \cdot x = 0, \|x\| < \|y\| \le \sqrt{N}/\|x\|\}$$

Let
$$B(R) = \{ y \in \mathbb{R}^n : ||y|| \le R \}$$
 or $\{ y \in \mathbb{R}^n : ||y|| < R \}$, let $gcd(z) = 1$.

$$\#L(z)^{\perp} \cap B(R) = \frac{\text{Vol}(B(R))}{\|z\|} + O(1 + \frac{R}{\lambda_1(L(z)^{\perp})})^{n-1}$$

$$\sum_{\|z\| \leq \sqrt{N}/g, \gcd(z)=1} \#L(z)^{\perp} \cap D(N/d\|z\|)$$
$$-\sum_{\|z\| \leq \sqrt{N}/g, \gcd(z)=1} \#L(z)^{\perp} \cap D(d\|z\|)$$