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Baxendale integrability lemma for groups of random
transformations

Consider a Wiener process {gt}t≥0 on a polish group G, ie
sample cts, g0 = Id , increments gtg−1

s independent and time
homogeneous.

Theorem (Baxendale, Comp. Math. 1984)
Let G × B → B be a continuous group action on a Banach
space B by linear transformations. Then
∃c,d ∈ R with

||E{gtb}|| ≤ cedt ||b|| b ∈ B, t ≥ 0.

What are c,d?



First example

M compact Riemannian. G := Cr Diff(M). B = C0(M; R). Take
SDE for BM on M, solution flow {ξt}t is Wiener process on G.

Pt (f ) := E{f ◦ ξt}

What are c,d ? Not interesting, take f = constant .
More interesting if take B = Cr (M; R), cf Kifer.
This shows: f ∈ Cr (M; R)⇒ Pt f ∈ Cr (M; R)



Special cases; quantitative version, after
Elworthy-LeJan-Li

Suppose G is a smooth Hilbert manifold and a polish group and
{gt}t is an Lt -diffusion for a smooth non-autonomous right
invariant nuclear diffusion operator {Lt}t≥0, with g0 = Id . Let
ρ : G → GL(V ) be a smooth representation for finite
dimensional (or Hilbert) V . Then

d
dt

Eρ(gt ) = λt ◦ Eρ(gt )

for λt ∈ L(V ; V ) given by

λt = Comp(ρ∗ ⊗ ρ∗)σLt
Id + ρ∗δ

Lt ($)(Id).

Note the two terms.



Nuclear diffusions: the symbol

Symbol σLt
g : T ∗gG → TgG.

If trace class we say Lt is nuclear and can consider

σLt
Id ∈ g⊗π g.

Assume cts in t .

Aside:

σLt
g (df ,dh) : = dh

(
σLt

g (df )
)

= Γ(f ,h).



The first term

Since the derivative ρ∗ of ρ at identity is

ρ∗ : g→ L(V ; V )

We have
(ρ∗ ⊗ ρ∗)σLt

Id ∈ L(V ; V )⊗ L(V ; V )

and
Comp(ρ∗ ⊗ ρ∗)σLt

Id ∈ L(V ; V ).



The second term: generalised divergence

δLt maps smooth one forms to functions on G s.t.
I Lt (f ) = δLt (df )

I δLt (fφ)(g) = f (g)δLt (φ) + σLt
g (df , φ).

The vector valued form $ is $g := TR−1
g : TgG → g,

Maurer-Cartan. Then

δLt ($)(g) ∈ g.



Proof of formula
To prove d

dt Eρ(gt ) = λt ◦ Eρ(gt )
for λt ∈ L(V ; V ) given by

λt = Comp(ρ∗ ⊗ ρ∗)σLt
Id + ρ∗δ

Lt ($)(Id).

We have

ρ(gt ) = IdV + Mdρ
t +

∫ t

0
Ls(ρ)(gs) ds.

By right invariance:

Ls(ρ)(gs) = Ls(ρ ◦ Rgs )(Id) = Ls(ρ(−)ρ(gs))(Id)

= Ls(ρ)(Id).ρ(gs))

= δLs (dρ)(Id).ρ(gs).

But dρa(−) = ρ(a)(ρ∗ ◦$a).
Q.E.D.



Special case of BM on compact G

For Brownian motion on a compact Lie group G

λt = Comp(ρ∗ ⊗ ρ∗)σLt
Id + ρ∗δ

Lt ($)(Id).

reduces to
λ =

1
2

Comp(ρ∗(α
j)⊗ ρ∗(αj))

for {αj}j an o.n. base for g.



For ρ reducible

If
V = V 1⊕V 2 with ρ(g) = ρ1(g)⊕ ρ2(g)
then

λt (v1, v2) = (λ1
t (v1), λ2

t (v2)).



Application to higher order derivative estimates.
M = Sn

Fix x0 ∈ Sn.
Consider SO(n + 1) = isom(Sn), with SO(n) = SO(n + 1)x0 .
Define

p : SO(n + 1)→ Sn by Note SO(n) acts on the right
p(k) = k .x0. on SO(n + 1) preserving fibres.

Take a BM {kt}t on K = SO(n + 1) with k0 = 1.
Then ξt (y) := kt .y is a flow of BM’s on Sn.
Set

xt = kt .x0 = p(kt ).



decomposition

By El-LeJan-Li 2004, El-Kendall ’86, the BM on K = SO(n + 1)
has skew product decomposition:

kt = x̃t .gx̃.
t

for x̃t ∈ K “horizontal lift” of x. and gσt ∈ SO(n) independent of
{xt}t .

The derivative T x̃t : Tx0Sn → Txt S
n of y 7→ x̃t .y is just

Levi-Civita parallel translation //t along {xt}t . Thus

T ξt = //tρ
1(gx̃.

t ) : Tx0Sn → Txt S
n

for ρ1 : SO(n)→ O(Tx0Sn) given by

ρ1(g) = Tx0Lg



Hessians

For f : Rn → R ,

Hess(f )x : Rn × Rn → R with Hess(f )x (u, v) = D2f (x)(u, v).

For f : M → R

Hess(f )x : TxM×TxM → R with Hess(f )x (u, v) = ∇2f (x)(u, v).

It is bilinear, symmetric (using Levi-Civita), so consider linear

Hess(f )x : TxM � TxM → R.



To look at Hess(Pt f )

Pt f (x0) = E{f (ξt (x0)} f : M → R

dPt fx0(v0) = E{dfxt ◦ T ξt (v0)} v0 ∈ Tx0M

Hess(Pt f )(u0 � v0) = E{dfxt ◦ ∇T ξt (u0 � v0)

+ Hess(f )xt (Tx0ξt (u0)� Tx0ξt (v0))}



Helped via isometries

Now for us:

Hess(Pt f )x0(u0 � v0)

= E{dfxt ◦ ∇T ξt (u0 � v0) + Hess(f )xt (Tx0ξt (u0)� Tx0ξt (v0))}

= E{Hess(f )xt (Tx0ξt (u0)� Tx0ξt (v0))}

since ∇(T ξt ) = 0 because ξt is an isometry.



Use of decomposition ξt = kt = x̃t .g x̃.
t , redundant noise

as El-LeJan-Li

Hess(Pt f )(u0 � v0) = E{Hess(f )xt (Tx0ξt (u0)� Tx0ξt (v0))}
= E{Hess(f )xt (Tx0 x̃t � Tx0 x̃t )ρ(gx̃.

t )(u0 � v0)}
= E{Hess(f )xt (//t � //t )ρ(gx̃.

t )(u0 � v0)}

where ρ : G = SO(n)→ GL(Rn � Rn) ≈ GL(Tx0M � Tx0M) is

ρ(g)(u � v) = Tx0g(u)� Tx0g(v).

Using independence replace (//t � //t )ρ(gx̃.
t ) by

W�
t : �2Tx0M → �2Txt M where

D
dt

W�
t = Λxt W

�
t .

Λxt := (//t � //t )λt (//t � //t )−1 : �2Txt M → �2Txt M



The splitting

ALSO Tx0M � Tx0M splits under the othogonal group into

R
∑

(ei � ei)
⊕
{ker〈−,−〉 : Tx0M � Tx0M → R}

Set

Ξx0 =
∑

ej � ej

.
Then

u0 � v0 =
1
n
〈u0, v0〉Ξx0 + {u0 � v0 −

1
n
〈u0, v0〉Ξx0}.

Preserved by //t � //t .



Splitting of Λ

Set
Ξxt =

∑
//tej � //tej t ≥ 0.

Easy computation gives:

Λxt (Ξxt ) = 0

Λx0

(
u0 � v0 −

1
n
〈u0, v0〉Ξx0

)
= −n

(
u0 � v0 −

1
n
〈u0, v0〉Ξx0

)
.

∴ from

u0 � v0 =
1
n
〈u0, v0〉Ξx0 + {u0 � v0 −

1
n
〈u0, v0〉Ξx0},

we get

W�
t (u0 � v0) =

1
n

(1− e−nt )〈u0, v0〉Ξxt + e−nt//tu0 � //tv0.



The result for Sn

We saw

W�
t (u0 � v0) =

1
n

(1− e−nt )〈u0, v0〉Ξxt + e−nt//tu0 � //tv0.

∴

Hess(Pt f )(u0 � v0) = E{Hess(f )xt (W
�
t (u0�v0))}

= E{Hess(f )xt (
1
n

(1−e−nt )〈u0, v0〉Ξxt

+e−nt//tu0 � //tv0)}

=
1
n

(1− e−nt )〈u0, v0〉Pt (∆f )

+e−ntE{Hess(f )xt (//tu0� //tv0)}.

In particular if u0, v0 are perpendicular,

∇2Pt f (u0, v0) = e−ntE{Hess(f )xt (//tu0, //tv0)}.



Higher order

�q(Rn) = �q
0(Rn) +�q−2

0 (Rn)� Ξ + ...

For q = 3

u � v � w =
1

n + 2
(〈u, v〉w + ...)� Ξ

+ u � v � w − 1
n + 2

(〈u, v〉w + ...)� Ξ



3rd order for spheres

We get ∇3(Pt f )(u � v � w) given by

=
1

n + 2
e−(n−1)t (1− e−(n+2)t ) (〈u, v〉E{d∆f (//tw) + ...})

+ e−3ntE{∇3fxt (//tu � //tv � //tw)}

=
1

n + 2
e−t (1− e−(n+2)t )

(
〈u, v〉{P1

t (∆1(df ))//tw + ...}
)

+ e−3ntE{∇3fxt (//tu � //tv � //tw)}.

for the Kodaira-Hodge semigroup on 1-forms.



Further

Written for higher order, symmetrised, for Sn in [1].

Should be do-able for Riemannian symmetric spaces, compact,
eg oriented Grassmannians SO(p+q)

SO(p)xSO(q) , compact Lie groups.
But complicated: it will depend on the representation theory for
tensor products of representations of a given compact Lie
group.

A more algebraic approach is mentioned in [1].

Non-compact symmetric spaces seem a challenge; for example
spaces of positive definite symmetric matrices, (or hyperbolic
spaces O(1,n)

SO(n) ??).



For general compact M, with cohesive diffusion
generator A: higher order derivatives

Need to consider r- jets ie Taylor expansions order r , d (r)fx ,
and their duals, higher order tangent vectors.
Higher order tangent space: T (r)

x M

d (r)fx : T (r)
x M → R.



For general compact M, with cohesive diffusion
generator A: Step 1

Choose SDE for A. Equivalently put A in Hörmander form.

Get stochastic flow {ξt}t . Wiener process in Diffs(M), any
s ≥ 0.



For general compact M, with cohesive diffusion
generator A

Replace p : SO(n + 1)→ Sn by

p : Diff s → M p(θ) = θ(x0)

and SO(n) by G = Diffs
x0

. By El-LeJan-Li, flow is a skew product

ξt = x̃t ◦ gx̃.
t .

Set
/̂/t = T (r)x̃t : T (r)

x0 M → T (r)
x0 M

parallel translation for a certain connection on T (r)M. Take

ρ : Diff s
x0
→ GL(T (r)

x0 M) g 7→ T (r)g.



general formula

We get

d (r)(Pt (f ))x0 = E{d (r)f ◦ T (r)
x0 ξt}

= E{d (r)f ◦ /̂/tρ(gx̃.)}
= E{d (r)f ◦W T (r)

t }

for
D
dt

W T (r)

t = Λρxt W
T (r)

t .

Main problem: choose flow/SDE/ Hörmander form for A so that
/̂/t preserves metric.



Aside on connections and SDE

Consider SDE on M for elliptic diffusion generator A

dxt = A(xt )dt + X (xt ) ◦ dBt

with X : MxRm → TM such that X (x)− = X (x ,−) : Rm → TxM
onto.
It induces Riemannian metric on M, essentially σA

Get pseudo-inverse Yx : TxM → Rm each x ∈ M.
Determines a metric connection on M : For vector field V and
u ∈ TxM define

∇̆uV = X (x)(d{y → Yy (V (y))}u) ∈ TxM



The other connection

For SDE as above, if u ∈ TxM, define vector field

Z u(−) = X (−)Yx (u) ∈ T−M

Get another connection by Lie differentiation

∇̂uV = LZ u (V )(x)

This has parallel translation /̂/t used above.
It may or may not be metric.
It gives a connection on jet bundles etc.



gradient SDE

For isometric immersion j : M → Rm let

X (x)(e) = ∇{y → 〈j(y),e〉}(x)

Then
Yx = dy j

Both connections are the Levi-Civita connection on M.



gradient SDE inducing connections on jet bundles

Can use an isometric immersion and extend X to give
X : MxJqRm → Jq(M) with a right inverse Y
so that the corresponding ∇̆ agrees with ∇̂.
But the Y is not a pseudo-inverse so this does not prove they
are metric.



Can’t expect flows of isometries

An SDE for BM on M corresponds to a a “virtual immersion” in
sense of Mendes & Radeschi (2019) if it induces the Levi-Civita
connection on TM.

For M compact they show that it induces a flow of isometries iff
M is a symmetric space and it is the SDE we used.



Can expect volume preserving flows

Baxendale (unpublished, early 1980’s) showed that there are
virtual immersions with volume preserving flows for all
Riemannian manifolds.



Different SDE give ”different” answers

E.G. Treat S3 as a Lie group, SU(2). Take left invariant SDE
and solution {gt}t from identity, so flow is

k 7→ k .gt = Rgt k .

∴ ∇2Pt f (u0, v0) = E{∇2fgt .xo (TRgt u0,TRgt v0)}.



Do different symmetric space structures give different
answers?

E.G. Identify S3 as SU(2) with symmetric space structure from

p : SU(2)xSU(2)→ SU(2)

p(h, k) = hk−1

so we treat S3 as SU(2)xSU(2)
SU(2) with SU(2) identified with the

diagonal in SU(2)xSU(2).



References for derivatives of heat semigroups and
kernels

See the bibliography of Second order Bismut Formulae and
Applications to Neumann Semigroups on manifolds Li-Juan
Cheng, Anton Thalmaier, Feng-Yu Wang, Arxiv 2022 but these
are mostly for Bismut type formulae.
See also the discussion in Xue-Mei Li.Hessian formulas and
estimates for parabolic Schrodinger operators. J. Stoch.
Anal.,2(3): Art.7, 53, 2021

Earlier work by Norris, Driver, Sheu, Krylov, Stroock &
Turetsky.



THAT’S IT!

THANK YOU!


