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mpedee |
Simple symmetric exclusion process

On the d-dim discrete torus

TS = {% L keZd = {—m,...,m}d} c T = (R/{Z —1/2})°

for n =2m+ 1 we consider a Simple Symmetric Exclusion Process (SSEP)
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State space and generator

Particle configuration n € {0, 1}TZ:

n(x) = 0 < side x is empty
n(x) = 1 < side x is occupied

DO ()é&k() 0 @ © T)(Z)7 zZ#X,Y,
{ Xery (N

) @®@ 0 0O ® © © ® @ n (z) 77()/): z =X,

D00 ® 0O e ® 0O O n(x), z=y,
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State space and generator

Particle configuration n € {0, 1}TZ:

n(x) = 0 < side x is empty
n(x) = 1 < side x is occupied

OO ) oé&a() 0 @ O n(z), z#x,y,
f Xery (N

) @®@ 0 0O ® © © ® @ n (z) 77()/): zZ=X

D00 ® 0O e ® 0O O n(x), z=y,

Gn F(n) = = ZZ () = F(n)]  [Kipnis, Landim '99]

j=1 xeT,

SSEP is already parabolically rescaled: space ~ % time ~ n?l
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@e@er | o
Non-equilibrium SSEP

Let n/, t > 0, be a SSEP.
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@e@er | o
Non-equilibrium SSEP

Let n/, t > 0, be a SSEP.

Equilibrium SSEP:

For fixed po € [0, 1], the measure B(po)@ﬂrg is invariant for SSEP n;':

If n(x) ~ B(po), x € T¢, are independent then n?(x) ~ B(po), x € T¢, are independent.
~ Enf(x) = po, Varny = po(1 — po).
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@e@er | o
Non-equilibrium SSEP

Let n/, t > 0, be a SSEP.

Equilibrium SSEP:

For fixed po € [0, 1], the measure B(po)@ﬂrg is invariant for SSEP n;':

If n(x) ~ B(po), x € T¢, are independent then n?(x) ~ B(po), x € T¢, are independent.
~ Enf(x) = po, Varny = po(1 — po).

Non-Equilibrium SSEP:

We consider po : T — [0,1] and let 1§(x) ~ B(po(x)), x € T, are independent.
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@e@er | o
Non-equilibrium SSEP

Let n/, t > 0, be a SSEP.

Equilibrium SSEP:

For fixed po € [0, 1], the measure B(po)@ﬂrg is invariant for SSEP n;':

If n(x) ~ B(po), x € T¢, are independent then n?(x) ~ B(po), x € T¢, are independent.
~ Enf(x) = po, Varny = po(1 — po).

Non-Equilibrium SSEP:

We consider po : T¢ — [0,1] and let n§(x) ~ B(po(x)), x € T¢, are independent.

What is En{(x)?
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Mean behavior

Set p{(x) := Enf(x).
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Mean behavior

Set p{(x) := Enf(x).
Then

dpi(x) = EGE ni(x)dt = E
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Mean behavior

Set pf(x) := En{(x).
Then

> d
dpi(x) = EG; ni (x)dt = EZ- >~ [0 9(x) = n(x)] dt
Jj=1 y€Tp

n2

24

J

d
E(nf(x + &) + ¢ (x — &) — 2n(x)) dt
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LN and LT |
Mean behavior

Set pf(x) := En{(x).
Then

dpi(x)

G ni(x)dt =B >~ [ 9(x) — n(x)] dt

Jj=1 y€T,

- % ZE(W?(X + &) +ni(x —¢)—2n(x)) dt

j=t

= %Anp?(x)dt.
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Mean behavior

Set pf(x) := En{(x).
Then

dpi(x)

G ni(x)dt =B >~ [ 9(x) — n(x)] dt

Jj=1 y€Tp
n2 J
=5 > E@(x + ) +ni(x — &) — 2n(x)) dt
j=1

= %Anp?(x)dt.

In particular, the empirical distribution

o1
Pe =713 Z pe(x)0x,

x€TY

solves

dlo. ) = 3

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP December 10, 2024

A"@? ﬁ?)dt




LN and LT |
Mean behavior

Set pf(x) := En{(x).
Then

dpi(x) = EGs i (x)dt =By D [ (x) —n(x)] at

Jj=1 y€Tp
n2 J
=5 > E@(x + ) +ni(x — &) — 2n(x)) dt
j=1

= %Anp?(x)dt.

In particular, the empirical distribution

o1
Pe =713 Z pe(x)0x,

x€TY
solves

~n 1 ~n n—oo 00 1 (e} (o)
d{p, pt) = 5 (B, i)t "= dp = SDpTdt, pgt = po
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Law of large numbers

Theorem [see e.g. in Kipnis, Landim ’99]
Let po : T¢ — [0,1] be an initial density profile and 7§(x) ~ B(po(x)) be inde-

pendent. Then
|
=3 Z 1e(x)0x
x€Td

converges in probability to p°(x)dx, where p° := P py solves

1
dpi” = 58pdt,  po” = po-
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Law of large numbers

Theorem [see e.g. in Kipnis, Landim ’99]
Let po : T¢ — [0,1] be an initial density profile and 7§(x) ~ B(po(x)) be inde-

pendent. Then
|
=3 > me(x)8
x€Td

converges in probability to p°(x)dx, where p° := P py solves

1
dpi” = 58pdt,  po” = po-

d
o (e =T3S [ (e — (e )]

j=1 x€Tp

= 27 (s ) (B, ) + 5 ” (<¢,ﬁ>)<

2 —_—
0n,j¢| 7Tﬂ7+ﬁ*2777'jﬂ> +o,

where 7;1(x) 1= n(x + ¢).
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Secenn)
Density fluctuation field and CLT

We now consider the fluctuations of the SSEP around its mean:

(%) == n? (i (x) — pA(x)) -
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of

&= D Gl

x€Td
can be expanded as follows

~ ~ d ~ —_—
Gr f ((@.0) = %f' (0, 0)) (An, ) + #f” ((2,$)) {|0njepl® , 71 + 71 — 2n77m)

+0 (1/n%+1)
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of

&= D Gl

x€Td
can be expanded as follows

~ ~ d ~ —_—
Gr f ((@.0) = %f' (0, 0)) (An, ) + #f” ((2,$)) {|0njepl® , 71 + 71 — 2n77m)

+0 (1/n%+1)
Again

mo 1 o
d{p,¢) = 5 (Anp, (7)dt + mart.
L P P e
d{mart.)e = 5 <\8n.,js0|2  Tyile + 71— 2mfmt> dt
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Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:
n g n n
G (x) = n2 (¢ (x) — pi(x)).

The generator of

&= D Gl

x€Td
can be expanded as follows

~ ~ d ~ —_—
Gr f ((@.0) = %f' (0, 0)) (An, ) + #f” ((2,$)) {|0njepl® , 71 + 71 — 2n77m)

+0 (1/n%+1)

n 1 =n oo 1 oo
d<§07<t> = §<An§07<t>dt + mart. — d(@?Ct > = §<A§05<t >dt -+ mart.
1 ~n ~n R o o oo
d{mart.)e = 5 <\5n,js0|2 s Tifle + e — 2mfmt> dt — d(mart.) = (Ap, p” — p pe )dt
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Central limit theorem

Theorem 2 [Galves, Kipnis, Spohn; Ravishankar "90]

Let the initial density profile po be smooth. Then the density fluctuation field

a1
G = o Z Ce(x)x

x€Td
converges in D ([0, T],D’) to the generalized Ornstein-Uhlenbeck process that
solves the linear SPDE

a6 = 386 de + V- (/e (1 = p)aws )

with the centered Gaussian initial condition such that

E [(¢5°,#)*] = (po(1 = po)e, )
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|dea of proof

@ Consider the semimartingale (¢, &) and its quadratic variation.
n 1 “n
d(@? Qt > = 5 <An(,07 Ct >dt —+ mart.

1 ~n | =n Thon
d(mart.); = 5 <|3n,j@\27ﬁﬁr + i — 2"hTﬂh> dt
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|dea of proof

@ Consider the semimartingale (i, &) and its quadratic variation.

d{p,Cf) (Dng, C7)dt 4 mart.

1
2
1 I ey
d{mart.): = 5 <|a"7j90‘277—j77t + it — 2’met> dt
@ Convergence of (mart.);:
n n n n 1 n n n n ]' n n
NeTiNe = P TjPr + a2 (piTiCe + ¢iips) + T CeTiCe s

where 17 = p] + WC{'
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|dea of proof

@ Consider the semimartingale (i, &) and its quadratic variation.

d{p,Cf) (Dng, C7)dt 4 mart.

1
2
1 sn | on o7
d{mart.): = 5 <|a"7j90‘277—j77t + it — 2nmm> dt

@ Convergence of (mart.);:
n n n n 1 n n n n 1 n n
NeTiNe = P TjPr + a2 (piTiCe + ¢iips) + T CeTiCe s

where 17 = p] + WC{'

@ Control of I [5¢7(x)7¢/ (x)] = E[(n7(x) = pf(x)) (nf(x + &) — pi(x + &))] — 0
[Ferrari et al. '91]
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|dea of proof

@ Consider the semimartingale (i, &) and its quadratic variation.

L
d(@» Qt > = 5 <An(,07 {t >dt —+ mart.

1 I ey
d{mart.): = 5 <|f9n,j<p\2ﬁmt + it — 2nmm> dt
@ Convergence of (mart.);:
n n n n 1 n n n n 1 n n
NeTiNe = P TjPr + a2 (piTiCe + ¢iips) + T CeTiCe s
where 17 = p] + WC{'

@ Control of | 5¢7(x)7¢/ (x)] = E[(1(x) — p{(x)) (0 (x + &) — pi(x + &))] = 0
[Ferrari et al. '91]

@ Use of tightness argument and the Holley-Stroock theory
[Holley, Stroock '79]
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Secenn)
Our goal

Our goal: Obtain the rate of convergence of

&= ¢ =007
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Secenn)
Our goal

Our goal: Obtain the rate of convergence of

sup [Ef ((,7)) — Ef ({9, ¢))] = 0
te[0,T]
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Secenn)
Our goal

Our goal: Obtain the rate of convergence of

sup [Ef ((,7)) — Ef ({9, ¢))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP

December 10, 2024



Our goal
Our goal: Obtain the rate of convergence of

sup |Ef ((¢,C7)) —Ef ((,¢))] =0

te[0,7]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)
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Checesy
Our goal

Our goal: Obtain the rate of convergence of

sup_[EF ((¢,C7)) — Ef ((,67))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.
Quantitative results:
@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)

@ [Cornalba, Fischer '23, Djurdjevac, Kremp, Perkowski '24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)
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Checesy
Our goal

Our goal: Obtain the rate of convergence of

sup_[EF ((¢,C7)) — Ef ((,67))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)

@ [Cornalba, Fischer '23, Djurdjevac, Kremp, Perkowski '24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)

@ [Chassagneux, Szpruch, Tse '22]: Weak quantitative propagation of chaos
(mean field limit)
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Checesy
Our goal

Our goal: Obtain the rate of convergence of

sup_[EF ((¢,C7)) — Ef ((,67))] = 0
te[0,T]

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

@ [Gess, Wu, Zhang '24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)

@ [Cornalba, Fischer '23, Djurdjevac, Kremp, Perkowski '24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)

@ [Chassagneux, Szpruch, Tse '22]: Weak quantitative propagation of chaos
(mean field limit)

@ [Kolokoltsov '10] Central limit theorem for the Smoluchovski coagulation model
(mean field limit, non-local Smoluchowski’s coagulation equation)
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LLN and CLT

Main result
Theorem 3 [Gess, K. '24]
Let

@ the initial density profile po : T¢ — [0, 1] be smooth enough,
@ 7 be SSEP with 7g(x) ~ B(po(x)) and independent,
® p! =Eni, ¢f = n"?(nf — pf)
@ (i solves d({° = $A(dt+ V- ( o (1 — p?o)th) with the centered
Gaussian initial condition with E [(gg°,<p>2] = (po(1 — po)e, ¥)
Then for large enough | € N

sup |Ef ((, ¢ f
te[OPT]’ (B &N < m 1fllcs @l
for all n > 1, f € C3(R™) and ¢ € (C'(T9))"
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LLN and CLT

Main result
Theorem 3 [Gess, K. '24]
Let

@ the initial density profile po : T¢ — [0, 1] be smooth enough,
@ 7 be SSEP with 7g(x) ~ B(po(x)) and independent,
® p! =Eni, ¢f = n"?(nf — pf)
@ (i solves d({° = $A(dt+ V- ( o (1 — p?o)th) with the centered
Gaussian initial condition with E [(gg°,<p>2] = (po(1 — po)e, ¥)
Then for large enough | € N

sup |Ef ({&,¢F [fllesllPller
3 [EF ((5.6) - )| < — = Il Bl
for all n > 1, f € C3(R™) and ¢ € (C'(T9))"
The rate ﬁ is optimal: = — lattice discretization error, % — particle approximation
2 n2

error
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LN and LT |
Main tool

Idea of proof: Compare two (time-homogeneous) Markov processes X;, Y; taking values
in the same state space and Xy = Yy = x using

EF(X:) —EF(Y:) = /t PX (%X —G") PLF(x)ds,

= /t E[(6X - G") PL.F(XS)] ds,

[see e.g. Ethier, Kurtz '86]
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@e@er | o
Splitting of the problem

Recall
EF(X:) — EF(Y:) = /tIE (6% —G") PL.F(X5)] ds,

where Xo = Yy = x.
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@e@er | o
Splitting of the problem

Recall
EF(X:) — EF(Y:) = /tIE (6% —G") PL.F(X5)] ds,

where Xo = Yy = x.

We consider the Markov processes:

@ particle means and fluctuation field: (57, f{’)

@ solution to heat equation and generalized OU process (pg°, (7).
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@e@er | o
Splitting of the problem

Recall

t
EF(X:) —EF(Y;) = / E [(6X = G") PLF(X)] ds,
0
where Xo = Yy = x.

We consider the Markov processes:

@ particle means and fluctuation field: (57, ft")

@ solution to heat equation and generalized OU process (pg°, (7).

The processes starts from different initial conditions!
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@e@er | o
Splitting of the problem

Recall

t
EF(X:) — EF(Y:) = / E[(G%—6") PL.F(X)] ds,
0
where Xo = Yp = x.
We consider the Markov processes:

@ particle means and fluctuation field: (57, ft")

@ solution to heat equation and generalized OU process (pg°, (7).

The processes starts from different initial conditions!

We will compare:

@ (57,Cr) an [comparison of dynamics] R
where the generalized OU process started from (jg, (¢);
° and (p°, ¢°) [comparison of initial conditions]

(both are defined by the same equation).
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Generators

We start from the formal computation for cylindrical functions:

F(p,0) == f (v, ), (#,0))
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Comparison of dynamics - |
Generators

We start from the formal computation for cylindrical functions:

F(p,0) == f (v, ), (#,0))
Using Taylor's formula, we get:
G F(5.0) = 301 (Boip, ) + 5001 (Do, O
+ %ng {|0njel? 731 + 7 — 207m) + O (1/n%+1) ,

where ¢ = n?/?(7 — p).
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Comparison of dynamics - |
Generators

We start from the formal computation for cylindrical functions:
F(p,0) == f (v, ), (#,0))

Using Taylor's formula, we get:

GI F(.0) = 300 (g, ) + 5001 (8o, )

+ 203F (0wl i+ 71— 2im) + 0 (1/n#41),
where { = nd/2(ﬁ — p). Moreover,
GOUF (5™, ¢) = S0 (B, ) + 50uf (Do, C)
+ 303 (|0l 0™ = (1))

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP
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Comparison of dynamics - |
The difficulties

@ Generators have to be compared on U := P2Uf ((1),-), (¢p,-)), that is not
cylindrical function.
~ We need to work with Frechet derivatives: e.g. D>U instead of O-f - ¢
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Comparison of dynamics - |
The difficulties

@ Generators have to be compared on U := P2Uf ((1),-), (¢p,-)), that is not
cylindrical function.
~» We need to work with Frechet derivatives: e.g. DU instead of Ox>f - ¢

@ We compare the generators on particle configurations py, P, that are empirical
distributions. But U is not differentiable at jf because of the term 4/p(1 — p) in

the SPDE
~+ Probably, we have to use e.g. linear interpolation of pf.
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Comparison of dynamics - |
The difficulties

@ Generators have to be compared on U := P2Uf ((1),-), (¢p,-)), that is not
cylindrical function.
~» We need to work with Frechet derivatives: e.g. DU instead of Ox>f - ¢

@ We compare the generators on particle configurations py, P, that are empirical
distributions. But U is not differentiable at jf because of the term 4/p(1 — p) in
the SPDE
~+ Probably, we have to use e.g. linear interpolation of pf.

@ The term n7;n has a part (7jp. But we do not have enough regularity in linear
interpolation of p to control <§f;p, ‘8n7j30|2> = <ij |0nj0|? ,5>

~ Interpolation has to be smooth enough
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Comparison of dynamics - |
The difficulties

@ Generators have to be compared on U := P2Uf ((1),-), (¢p,-)), that is not
cylindrical function.
~» We need to work with Frechet derivatives: e.g. DU instead of Ox>f - ¢

@ We compare the generators on particle configurations 57, f{’, that are empirical
distributions. But U is not differentiable at jf because of the term 4/p(1 — p) in
the SPDE
~+ Probably, we have to use e.g. linear interpolation of pf.

@ The term n7;n has a part (7jp. But we do not have enough regularity in linear
interpolation of p to control <§f;p, \8,,,j<p|2> = <ij |0nj0|? ,5>
~ Interpolation has to be smooth enough

o Control of E [f(@,&:)) <§?{t \an,,-go|2>} via ET]™, (n(x:) — pt(x:)) does not
give the optimal rate.
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Discrete and continuous Fourier transform

Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.
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Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(1. p2)n = 5 3 pr()pa(x)

x€Td

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP December 10, 2024




Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(1. p2)n = 5 3 pr()pa(x)

x€Td

@ L[»(T?) be the usual Lo-space of function on T% with

(g1,82) = /d g1(x)g2(x)dx.
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Comparison of dynamics - |
Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(p1,p2)n = — Z p1(x)p2(x)

XGTd

@ L[»(T?) be the usual Lo-space of function on T% with
o) = [ (e
Td

@ o (x) = ?mikx | ezd xeT! > T
— basis vectors on L»(T¢) and L»(T¢), and
— eigenvectors for discrete and continuous diff. operators

December 10, 2024
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Comparison of dynamics - |
Discrete and continuous Fourier transform
Replace j = & > erd P(X)0x and = 4 > erd C(x)dx by a smooth interpolation.

@ Let L»(T9) be the Hilbert space of all functions on T¢ with inner product

(p1,p2)n = — Z p1(x)p2(x)

XGTd

@ L[»(T?) be the usual Lo-space of function on T% with
o) = [ (e

Td

@ o (x) = ?mikx | ezd xeT! > T
— basis vectors on L»(T¢) and L»(T¢), and
— eigenvectors for discrete and continuous diff. operators

Lo(T5) 5 p = Z(p, Skhnsk on T, Ly(T9) > g = Z(& sk)sk on T¢

kezd kezd
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Comparison of ¢ynamic= . |
New (smooth) lifting of discrete space

For functions p € Lo(T¢) and ¢ € Lo(T?) define

expp = Z(m nsk on TY, pr,p = Z(% Gkysk on T¢

kezg kezd
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Comparison of ¢ynamic= . |
New (smooth) lifting of discrete space

For functions p € Lo(T¢) and ¢ € Lo(T?) define

exapi= Y (psdase on T prop:= > (p,c)sk on T
kezd kezd

Basic properties of ex,f and pr,g

@ ex,p = pon T? and ex,p € C=(T9)
@ pr,y is well defined on T¢ for each ¢ € H, for
Hy={¢: llell, = Yiena L+ &P (o)}, J €R.
@ (p1,p2)n = (eXnp1,€xnp2) and (p,pr,g)n = (€Xnp, &)
® lpr,g — gl < 7lglH,u.

lexnp — ‘PHHJ < %HSDHCJ+2+5 poos

Vitalii Konarovskyi (University of Hamburg a

Quantitative CLT for SSEP
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Comparison of ¢ynamic= . |
New (smooth) lifting of discrete space

For functions p € Lo(T¢) and ¢ € Lo(T?) define

expp = Z(m nsk on TY, pr,p = Z(% Gkysk on T¢

kezg kezd

Basic properties of ex,f and pr,g

@ ex,p = pon T? and ex,p € C=(T9)
@ pr,y is well defined on T¢ for each ¢ € H, for
Hy={¢: llell, = Yiena L+ &P (o)}, J €R.
@ (p1,p2)n = (eXnp1,€xnp2) and (p,pr,g)n = (€Xnp, &)
® |pr.g—gln, < %”gHHJJrl’ lexnp — ¢lln, < %H‘PHCHH? pooo

(0.5) = Gy D #0000) = (v

x€TY

= (pr,p, p)n + O(1/n) = (g, exnp) + O(1/n)
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Comparison of generators for smooth interpolation

Now for F(exnp,exn() := f ({1, exnp), (p,exnC)) = f ({pr, ¥, p)n, (DT, )n),
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Comparison of generators for smooth interpolation

Now for F(exnp, exn() = f ((), exnp), (¢, exn()) = f ({Pr, ¥, p)n, (Pr, . ()n), we get

1 1
gr."-'FF(eX,,p7 exn() = 581 f{(Anpr, i, p)n + iagf(Anprnap, Chn

d
1 1
+ Eagfz ((Ongpr,e)® s 7im +n — 2n7m)0 + O (W)
j=1

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP
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Crztpednsts,
Comparison of generators for smooth interpolation
Now for F(exnp, exn() := f ((, exnp), (¢, exn()) = f ((Pr,¥, p)n, (PT, ¥, ()n), We get
g,’,:FF(eX,,p7 exn() = %Blﬂeannprnu, exnp) + %02f<ex,7A,,prng;,exng>

1 1

d
+ 2OBF D (€0 (Dnspr,0)” s exa (1 + 1 = 2070) + O (77 )

j=1
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Comparison of generators for smooth interpolation

Now for F(exnp, exn() := f ((), exap), (¢, exnC)) = £ ({Pr,, p)n, (P, C)n), We get

1
g,’,:FF(eX,,p7 exn() = 761 (exnAppr, ¥, exnp) + 582 f{exnAppr, e, exn()

d
1 . 1
+ 5351‘2 (exn (njpr,p)’ , exn (i1 + 1 — 2077m)) + O (W)

j=1

FE— G| S s [(exaC,exo (10 10ns0) ) |+ {ex0 (C710)  exndBF (Bnspr, o))+

We now need only to control:
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Comparison of generators for smooth interpolation

Now for F(exnp, exn() := f ((), exap), (¢, exnC)) = £ ({Pr,, p)n, (P, C)n), We get

1
g,’,:FF(eX,,p7 exn() = 761 (exnAppr, ¥, exnp) + 582 f{exnAppr, e, exn()

d
1 . 1
+ 5351‘2 (exn (njpr,p)’ , exn (i1 + 1 — 2077m)) + O (W)

j=1

FE— G| S s [(exaC,exo (10 10ns0) ) |+ {ex0 (C710)  exndBF (Bnspr, o))+

We now need only to control:

@ The expectations:

E | (exnC? exa (107 9n0) Y] S llexopfll o Ellexac? 1,
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Comparison of generators for smooth interpolation

Now for F(exnp, exn() := f ((), exap), (¢, exnC)) = £ ({Pr,, p)n, (P, C)n), We get

1
g,’,:FF(eX,,p7 exn() = 761 (exnAnpr, i), exnp) + 582 f{exnAppr, e, exn()

d
1 . 1
+ 5331‘2 (exn (njpr,p)’ , exn (i1 + 1 — 2077m)) + O (W)

j=1

FE— G| S s [(exaC,exo (10 10ns0) ) |+ {ex0 (C710)  exndBF (Bnspr, o))+

We now need only to control:
@ The expectations:
E|(exnC?s exn (160 10ns01?) )] S llexaptllcrEllexacy I

@ Using the Fourier analysis, the term E<ex,, (CPTiCh)  exndaf(...) > can be
controlled via

4

BT 000 — o)

i=1
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Comparison of generators for smooth interpolation

Now for F(exnp, exn() := f ((), exap), (¢, exnC)) = £ ({Pr,, p)n, (P, C)n), We get

1
g,’,:FF(eX,,p7 exn() = 761 (exnAnpr, i), exnp) + 582 f{exnAppr, e, exn()

d
1 . 1
+ 5331‘2 (exn (njpr,p)’ , exn (i1 + 1 — 2077m)) + O (W)

j=1

FE— G| S s [(exaC,exo (10 10ns0) ) |+ {ex0 (C710)  exndBF (Bnspr, o))+

We now need only to control:
@ The expectations:
E|(exnC?s exn (160 10ns01?) )] S llexaptllcrEllexacy I

@ Using the Fourier analysis, the term E<ex,, (CPTiCh)  exndaf(...) > can be
controlled via

EH 771: Xr —pf Xf))rg

@ We can compare generators on Frechet diff. functions on H; x H_,
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Comparison of ¢ynamic= . |
Differentiability of POYF(ex,p, ex,()

A solution to

1
dpe® = iAPtocdt

o0 1 o0
de = 3¢+ V- (VoE(L— p)avk )

exists for all p§° € L»(T%;[0,1]) and (§° € H—; for | > g +1
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Differentiability of POYF(ex,p, ex,()
A solution to

1
dpe® = iAPtocdt

o) 1 oo
aG = Lacrar+ v (Vor - prawe)
exists for all p§° € L»(T%;[0,1]) and (§° € H—; for | > g +1
For F (S C(HJ X H,/) (eg F= f(<¢»>7 <¢7 >)) define Ut(pgc~<éx)) =EF (p?Q'C?Q)
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Comparison of cynamics |
Differentiability of POYF(ex,p, ex,()
A solution to

1
dpe® = EAP?Cdt

oo 1 oo
aG = Lacrar+ v (Vor - prawe)
exists for all p§° € L2(T%;[0,1]) and (5° € H- for | > g +1.
For F € C(Hy x H-y) (e.g. F=f({th,),{p,"))) define U:(p5°, (5”) := EF (p°, ()

Proposition 1 [Gess, K. '24]

Let /> 2+1and F € C7*(H-/). Then Ue(ps°,(5°) = EF (¢°) € Cp3(Hyx H-))
for J > g. Moreover,

DyUL(", G571 = SE [D*F(GF) - DVi(s®) [4]

with
Ve(p5° ), ¥) = Cov ({9, %), (¥, ¢))
1 [ - =
5 / (VPE o VPEY, p° (1 - p°)) ds
0
Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP

December 10, 2024



Comparison of dynamics

Recall that (pf, ¢{') is the mean process together with the fluctuation field of SSEP.
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Comparison of dynamics

Recall that (pf, ¢{') is the mean process together with the fluctuation field of SSEP.
(p=", ¢ is a solution to

dpi* = 3 BpFdt

oo 1 o0
46 = SAGTde+ V- (/e (L= p)dWs )

started from (exnpg, exn(().
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Comparison of dynamics

Recall that (pf, (/') is the mean process together with the fluctuation field of SSEP
(p=", ¢ is a solution to

dpi* = 3 BpFdt

oo 1 o0
46 = SAGTde+ V- (/e (L= p)dWs )

started from (exnpg, exn(().

Then for each I, J large enough and F € Cp(H; x H_)

|EF (exnpt,exnlt) — EF (p7", ¢ < / ’E G — OU) P2V F(expf, exnCl H ds

t
1 1 n n n_ n
SlFlons [ (G o+ marlessillsBlexscln + B fexa () ) + ) s
0

Vitalii Konarovskyi (University of Hamburg a Quantitative CLT for SSEP
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Berry-Esseen bound for the initial fluctuations

@ It remains only to compare
EF (o7, 6") = EF (077, ¢7°) = PPV F(exapt, exa(5) — PV F (po, Go)

where pf°started from the initial profile po and (; started from the centered
Gaussian distribution with

E(¢o, )* = (po(1 = po)ep, o).
@ It is enough to compare only
EF(exas) — EF(pr,o),
for F € Ca(H,,), where

exnlg = Z(Cé’,w)m, pr,Co = Z<<O,<k>§k

kezd kezd
d
@ Is enough to compare for f € C3 (]RZ">

B (0 Y7206 50n) ) = B (4 ) 2(0060) ) -

@ Apply multidimensional Berry-Essen theorem [Meckes '09]
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