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LLN and CLT

Simple symmetric exclusion process

On the d-dim discrete torus

Td
n :=

{k
n : k ∈ Zd

n := {−m, . . . ,m}d
}

⊂ Td = (R/{Z − 1/2})d

for n = 2m + 1 we consider a Simple Symmetric Exclusion Process (SSEP)
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LLN and CLT

State space and generator
Particle configuration η ∈ {0, 1}Td

n :

η(x) = 0 ⇔ side x is empty
η(x) = 1 ⇔ side x is occupied

ηx↔y (z) =


η(z), z ̸= x , y ,
η(y), z = x ,
η(x), z = y ,

GEP
n F (η) := n2

2

d∑
j=1

∑
x∈Tn

[
F (ηx↔x+ej ) − F (η)

]
[Kipnis, Landim ’99]

SSEP is already parabolically rescaled: space ∼ 1
n time ∼ n2!
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LLN and CLT

Non-equilibrium SSEP

Let ηn
t , t ≥ 0, be a SSEP.

Equilibrium SSEP:

For fixed ρ0 ∈ [0, 1], the measure B(ρ0)⊗Td
n is invariant for SSEP ηn

t :

If ηn
0(x) ∼ B(ρ0), x ∈ Td

n , are independent then ηn
t (x) ∼ B(ρ0), x ∈ Td

n , are independent.

⇝ Eηn
t (x) = ρ0, Var ηn

t = ρ0(1 − ρ0).

Non-Equilibrium SSEP:

We consider ρ0 : Td → [0, 1] and let ηn
0(x) ∼ B(ρ0(x)), x ∈ Td

n , are independent.

What is Eηn
t (x)?
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LLN and CLT

Mean behavior

Set ρn
t (x) := Eηn

t (x).

Then

dρn
t (x) = EGEP

n ηn
t (x)dt = En2

2

d∑
j=1

∑
y∈Tn

[
ηy↔y+ej (x) − η(x)

]
dt

In particular, the empirical distribution

ρ̃n
t := 1

nd

∑
x∈Td

n

ρt(x)δx ,

solves
d⟨φ, ρ̃n

t ⟩ = 1
2 ⟨∆nφ, ρ̃

n
t ⟩dt
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LLN and CLT

Law of large numbers

Theorem [see e.g. in Kipnis, Landim ’99]

Let ρ0 : Td → [0, 1] be an initial density profile and ηn
0(x) ∼ B(ρ0(x)) be inde-

pendent. Then
η̃n

t := 1
nd

∑
x∈Td

n

ηt(x)δx

converges in probability to ρ∞
t (x)dx , where ρ∞

t := PHE
t ρ0 solves

dρ∞
t = 1

2∆ρ∞
t dt, ρ∞

0 = ρ0.

GEP
n f (⟨φ, η̃⟩) :=

n2

2

d∑
j=1

∑
x∈Tn

[
f
(

⟨φ, η̃
x↔x+ej ⟩

)
− f (⟨φ, η̃⟩)

]
=

1
2

f ′ (⟨φ, η̃⟩) ⟨∆nφ, η̃⟩ +
1

4n2 f ′′ (⟨φ, η̃⟩)
〈∣∣∂n,j φ

∣∣2
, τj η̃ + η̃ − 2η̃τj η

〉
+ . . . ,

where τj η(x) := η(x + ej ).
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LLN and CLT

Density fluctuation field and CLT
We now consider the fluctuations of the SSEP around its mean:

ζn
t (x) := n

d
2 (ηn

t (x) − ρn
t (x)) .

The generator of
ζ̃n

t := 1
nd

∑
x∈Td

n

ζt(x)δx

can be expanded as follows

GFF
n f

(
⟨φ, ζ̃⟩

)
= 1

2 f ′ (
⟨φ, ζ̃⟩

)
⟨∆nφ, ζ̃⟩ + nd

4nd f ′′ (
⟨φ, ζ̃⟩

) 〈
|∂n,jφ|2 , τj η̃ + η̃ − 2η̃τjη

〉
+ O

(
1/n

d
2 +1

)
Again

d⟨φ, ζ̃n
t ⟩ = 1

2 ⟨∆nφ, ζ̃
n
t ⟩dt + mart.

d⟨mart.⟩t = 1
2

〈
|∂n,jφ|2 , τj η̃

n
t + η̃n

t − 2η̃n
t τjηn

t

〉
dt
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2 ⟨∆nφ, ζ̃
n
t ⟩dt + mart. → d⟨φ, ζ∞

t ⟩ = 1
2 ⟨∆φ, ζ∞

t ⟩dt + mart.

d⟨mart.⟩t = 1
2

〈
|∂n,jφ|2 , τj η̃

n
t + η̃n

t − 2η̃n
t τjηn

t

〉
dt → d⟨mart.⟩ = ⟨∆φ, ρ∞

t − ρ∞
t ρ

∞
t ⟩dt
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LLN and CLT

Central limit theorem

Theorem 2 [Galves, Kipnis, Spohn; Ravishankar ’90]

Let the initial density profile ρ0 be smooth. Then the density fluctuation field

ζ̃n
t := 1

nd

∑
x∈Td

n

ζt(x)δx

converges in D ([0,T ],D′) to the generalized Ornstein-Uhlenbeck process that
solves the linear SPDE

dζ∞
t = 1

2∆ζ∞
t dt + ∇·

(√
ρ∞

t (1 − ρ∞
t )dWt

)
with the centered Gaussian initial condition such that

E
[
⟨ζ∞

0 , φ⟩2] = ⟨ρ0(1 − ρ0)φ,φ⟩
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LLN and CLT

Idea of proof

Consider the semimartingale ⟨φ, ζ̃t⟩ and its quadratic variation.

d⟨φ, ζ̃n
t ⟩ = 1

2 ⟨∆nφ, ζ̃
n
t ⟩dt + mart.

d⟨mart.⟩t = 1
2

〈
|∂n,jφ|2 , τj η̃

n
t + η̃n

t − 2η̃n
t τjηn

t

〉
dt

Convergence of ⟨mart.⟩t :

ηn
t τjη

n
t = ρn

t τjρ
n
t + 1

nd/2 (ρn
t τjζ

n
t + ζn

t τjρ
n
t ) + 1

nd ζ
n
t τjζ

n
t ,

where ηn
t = ρn

t + 1
(2n+1)d/2 ζ

n
t

Control of E
[ 1

nd ζ
n
t (x)τjζ

n
t (x)

]
= E [(ηn

t (x) − ρn
t (x)) (ηn

t (x + ej) − ρn
t (x + ej))] → 0

[Ferrari et al. ’91]
Use of tightness argument and the Holley-Stroock theory
[Holley, Stroock ’79]
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Use of tightness argument and the Holley-Stroock theory
[Holley, Stroock ’79]
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LLN and CLT

Our goal
Our goal: Obtain the rate of convergence of

ζ̃n
t − ζ∞

t = O(?)

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate
of convergence.

Quantitative results:

[Gess, Wu, Zhang ’24]: Higher order fluctuation expansions for nonlinear
SPDEs. (SPDEs defined on the same probability space)
[Cornalba, Fischer ’23, Djurdjevac, Kremp, Perkowski ’24]: Higher order
approximation of Dean-Kawasaki equation
(duality of approach, structure of noise is important)
[Chassagneux, Szpruch, Tse ’22]: Weak quantitative propagation of chaos
(mean field limit)
[Kolokoltsov ’10] Central limit theorem for the Smoluchovski coagulation model
(mean field limit, non-local Smoluchowski’s coagulation equation)
...
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LLN and CLT

Main result
Theorem 3 [Gess, K. ’24]

Let
the initial density profile ρ0 : Td → [0, 1] be smooth enough,
ηn

t be SSEP with ηn
0(x) ∼ B(ρ0(x)) and independent,

ρn
t = Eηn

t , ζn
t = nd/2(ηn

t − ρn
t )

ζ∞
t solves dζ∞

t = 1
2 ∆ζ∞

t dt + ∇ ·
(√

ρ∞
t (1 − ρ∞

t )dWt

)
with the centered

Gaussian initial condition with E
[
⟨ζ∞

0 , φ⟩2] = ⟨ρ0(1 − ρ0)φ,φ⟩
Then for large enough I ∈ N

sup
t∈[0,T ]

∣∣Ef
(
⟨φ⃗, ζ̃n

t ⟩
)

− Ef (⟨φ⃗, ζ∞
t ⟩)

∣∣ ≤ C
n d

2 ∧1
∥f ∥C3

l
∥φ⃗∥CI

for all n ≥ 1, f ∈ C3
b(Rm) and φ⃗ ∈

(
CI(Td)

)m.

The rate 1

n
d
2 ∧1

is optimal: 1
n – lattice discretization error, 1

n
d
2

– particle approximation
error
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LLN and CLT

Main tool

Idea of proof: Compare two (time-homogeneous) Markov processes Xt ,Yt taking values
in the same state space and X0 = Y0 = x using

EF (Xt) − EF (Yt) =
∫ t

0
PX

s
(
GX − GY )

PY
t−sF (x)ds,

=
∫ t

0
E

[(
GX − GY )

PY
t−sF (Xs)

]
ds,

[see e.g. Ethier, Kurtz ’86]
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LLN and CLT

Splitting of the problem
Recall

EF (Xt) − EF (Yt) =
∫ t

0
E

[(
GX − GY )

PY
t−sF (Xs)

]
ds,

where X0 = Y0 = x .

We consider the Markov processes:

particle means and fluctuation field: (ρ̃n
t , ζ̃

n
t )

solution to heat equation and generalized OU process (ρ∞
t , ζ

∞
t ).

The processes starts from different initial conditions!

We will compare:

(ρ̃n
t , ζ̃

n
t ) an (ρ∞,n

t , ζ∞,n
t ) [comparison of dynamics]

where the generalized OU process (ρ∞,n
t , ζ∞,n

t ) started from (ρ̃n
0, ζ̃

n
0 );

(ρ∞,n
t , ζ∞,n

t ) and (ρ∞
t , ζ

∞
t ) [comparison of initial conditions]

(both are defined by the same equation).
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Comparison of dynamics

Generators

We start from the formal computation for cylindrical functions:

F (ρ̃, ζ̃) := f
(
⟨ψ, ρ̃⟩, ⟨φ, ζ̃⟩

)

Using Taylor’s formula, we get:

GFF
n F (ρ̃, ζ̃) = 1

2∂1f ⟨∆nφ, ρ̃⟩ + 1
2∂2f ⟨∆nφ, ζ̃⟩

+ 1
4∂

2
2 f

〈
|∂n,jφ|2 , τj η̃ + η̃ − 2η̃τjη

〉
+ O

(
1/n

d
2 +1

)
,

where ζ̃ = nd/2(η̃ − ρ̃). Moreover,

GOUF (ρ∞, ζ∞) = 1
2∂1f ⟨∆φ, ρ∞⟩ + 1

2∂2f ⟨∆φ, ζ∞⟩

+ 1
2∂

2
2 f

〈
|∂jφ|2 , ρ∞ − (ρ∞)2〉 .
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Comparison of dynamics

The difficulties

Generators have to be compared on U := POU
t−s f (⟨ψ, ·⟩, ⟨φ, ·⟩), that is not

cylindrical function.
⇝ We need to work with Frechet derivatives: e.g. D2U instead of ∂2f · φ

We compare the generators on particle configurations ρ̃n
t , ζ̃n

t , that are empirical
distributions. But U is not differentiable at ρ̃n

t because of the term
√
ρ(1 − ρ) in

the SPDE
⇝ Probably, we have to use e.g. linear interpolation of ρn

t .
The term ητjη has a part ζτjρ. But we do not have enough regularity in linear
interpolation of ρ to control

〈
ζ̃τjρ, |∂n,jφ|2

〉
=

〈
τjρ |∂n,jφ|2 , ζ̃

〉
⇝ Interpolation has to be smooth enough

Control of E
[
f (⟨φ, ζ̃n

t ⟩)
〈
ζ̃n

t τζ
n
t , |∂n,jφ|2

〉]
via E

∏m
i=1 (ηn

t (xi ) − ρn
t (xi )) does not

give the optimal rate.
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Comparison of dynamics

Discrete and continuous Fourier transform
Replace ρ̃ = 1

nd

∑
x∈Td

n
ρ(x)δx and ζ̃ = 1

nd

∑
x∈Td

n
ζ(x)δx by a smooth interpolation.

Let L2(Td
n) be the Hilbert space of all functions on Td

n with inner product

⟨ρ1, ρ2⟩n := 1
nd

∑
x∈Td

n

ρ1(x)ρ2(x)

L2(Td) be the usual L2-space of function on Td with

⟨g1, g2⟩ :=
∫
Td

g1(x)g2(x)dx .

ςk(x) = e2πik·x , k ∈ Zd , x ∈ Td ⊃ Td
n

– basis vectors on L2(Td
n) and L2(Td), and

– eigenvectors for discrete and continuous diff. operators

L2(Td
n) ∋ ρ =

∑
k∈Zd

n

⟨ρ, ςk⟩nςk on Td
n , L2(Td) ∋ g =

∑
k∈Zd

⟨g , ςk⟩ςk on Td
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Comparison of dynamics

New (smooth) lifting of discrete space
For functions ρ ∈ L2(Td

n) and φ ∈ L2(Td) define

exnρ :=
∑
k∈Zd

n

⟨ρ, ςk⟩nςk on Td , prnφ :=
∑
k∈Zd

n

⟨φ, ςk⟩ςk on Td

Basic properties of exnf and prng

exnρ = ρ on Td
n and exnρ ∈ C∞(Td)

prnφ is well defined on Td
n for each φ ∈ HJ for

HJ :=
{
φ : ∥φ∥2

HJ :=
∑

k∈Zd (1 + |k|2)J |⟨φ, ςk⟩|2
}

, J ∈ R.
⟨ρ1, ρ2⟩n = ⟨exnρ1, exnρ2⟩ and ⟨ρ,prng⟩n = ⟨exnρ, g⟩
∥prng − g∥HJ ≤ 1

n ∥g∥HJ+1 , ∥exnφ− φ∥HJ ≤ C
n ∥φ∥

CJ+2+ d
2

,...

⟨φ, ρ̃⟩ = 1
(2n + 1)d

∑
x∈Td

n

φ(x)ρ(x) = ⟨φ, ρ⟩n

= ⟨prnφ, ρ⟩n + O(1/n) = ⟨φ, exnρ⟩ + O(1/n)
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Comparison of dynamics

Comparison of generators for smooth interpolation
Now for F (exnρ, exnζ) := f (⟨ψ, exnρ⟩, ⟨φ, exnζ⟩) = f (⟨prnψ, ρ⟩n, ⟨prnφ, ζ⟩n),

we get

GFF
n F (exnρ, exnζ) = 1

2∂1f + 1
2∂2f

+ 1
2∂

2
2 f

d∑
j=1

+ O
( 1

nd/2+1

)
∣∣GFF

n F − GOU
n F

∣∣ ≲ 1
nd/2

∣∣〈exnζ, exn
(
τjρ |∂n,jφ|2

)〉∣∣+〈
exn (ζτjζ) , exn∂

2
2 f (∂n,jprnφ)2〉2+...

We now need only to control:

The expectations:

E
∣∣〈exnζ

n
t , exn

(
τjρ

n
t |∂n,jφ|2

)〉∣∣ ≲ ∥exnρ
n
t ∥CJE∥exnζ

n
t ∥H−I

Using the Fourier analysis, the term E
〈
exn (ζn

t τjζ
n
t ) , exn∂

2
2 f (. . .)2〉 can be

controlled via

E
4∏

i=1

(ηn
t (xi ) − ρn

t (xi )) ≲
1
n

We can compare generators on Frechet diff. functions on HJ × H−I
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Comparison of dynamics

Differentiability of POU
t F (exnρ, exnζ)

A solution to

dρ∞
t = 1

2∆ρ∞
t dt

dζ∞
t = 1

2∆ζ∞
t dt + ∇ ·

(√
ρ∞

t (1 − ρ∞
t )dWt

)
exists for all ρ∞

0 ∈ L2(Td ; [0, 1]) and ζ∞
0 ∈ H−I for I > d

2 + 1.

For F ∈ C(HJ × H−I) (e.g. F = f (⟨ψ, ·⟩, ⟨φ, ·⟩)) define Ut(ρ∞
0 , ζ

∞
0 ) := EF (ρ∞

t , ζ
∞
t )

Proposition 1 [Gess, K. ’24]

Let I > d
2 +1 and F ∈ C2,4

b (H−I). Then Ut(ρ∞
0 , ζ

∞
0 ) = EF (ζ∞

t ) ∈ C1,3
b (HJ ×H−I)

for J > d
2 . Moreover,

D1Ut(ρ∞
0 , ζ

∞
0 )[h] = 1

2E
[
D2F (ζ∞

t ) : DVt(ρ∞
0 ) [h]

]
with

Vt(ρ∞
0 )(φ,ψ) = Cov (⟨φ, ζ∞

t ⟩, ⟨ψ, ζ∞
t ⟩)

= 1
2

∫ t

0

〈
∇PHE

t−sφ · ∇PHE
t−sψ, ρ

∞
s (1 − ρ∞

s )
〉

ds
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for J > d
2 . Moreover,

D1Ut(ρ∞
0 , ζ

∞
0 )[h] = 1

2E
[
D2F (ζ∞

t ) : DVt(ρ∞
0 ) [h]

]
with

Vt(ρ∞
0 )(φ,ψ) = Cov (⟨φ, ζ∞

t ⟩, ⟨ψ, ζ∞
t ⟩)

= 1
2

∫ t

0

〈
∇PHE

t−sφ · ∇PHE
t−sψ, ρ

∞
s (1 − ρ∞

s )
〉

ds
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Differentiability of POU
t F (exnρ, exnζ)

A solution to

dρ∞
t = 1

2∆ρ∞
t dt

dζ∞
t = 1

2∆ζ∞
t dt + ∇ ·

(√
ρ∞

t (1 − ρ∞
t )dWt

)
exists for all ρ∞

0 ∈ L2(Td ; [0, 1]) and ζ∞
0 ∈ H−I for I > d

2 + 1.
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Comparison of dynamics

Recall that (ρn
t , ζ

n
t ) is the mean process together with the fluctuation field of SSEP.

(ρ∞,n
t , ζ∞,n

t ) is a solution to

dρ∞
t = 1

2∆ρ∞
t dt

dζ∞
t = 1

2∆ζ∞
t dt + ∇ ·

(√
ρ∞

t (1 − ρ∞
t )dWt

)
started from (exnρ

n
0, exnζ

n
0 ).

Then for each I, J large enough and F ∈ Cb(HJ × H−I)

|EF (exnρ
n
t , exnζ

n
t ) − EF (ρ∞,n

t , ζ∞,n
t )| ≤

∫ t

0

∣∣E [(
GFF − GOU)

POU
t−sF (exnρ

n
t , exnζ

n
t )

]∣∣ ds

≲ ∥F∥C1,3

∫ t

0

( 1
n + 1

nd/2 ∥exnρ
n
s ∥CJE∥exnζ

n
s ∥H−I + E ⟨exn (ζn

s τjζ
n
s ) , ...⟩2 + ...

)
ds
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Berry-Esseen bound for the initial fluctuations
It remains only to compare

EF (ρ∞,n
t , ζ∞,n

t ) − EF (ρ∞
t , ζ

∞
t ) = POU

t F (exnρ
n
0, exnζ

n
0 ) − POU

t F (ρ0, ζ0)

where ρ∞
t started from the initial profile ρ0 and ζt started from the centered

Gaussian distribution with

E⟨ζ0, φ⟩2 = ⟨ρ0(1 − ρ0)φ,φ⟩.

It is enough to compare only

EF (exnζ
n
0 ) − EF (prnζ0),

for F ∈ C3(H−I), where

exnζ
n
0 :=

∑
k∈Zd

n

⟨ζn
0 , ςk⟩nςk , prnζ0 :=

∑
k∈Zd

n

⟨ζ0, ςk⟩ςk

Is enough to compare for f ∈ C3
(
RZd

n

)
Ef

((
(1 + |k|2)−I/2⟨ζn

0 , ςk⟩n
)

k∈Zd
n

)
− Ef

((
(1 + |k|2)−I/2⟨ζ0, ςk⟩

)
k∈Zd

n

)
.

Apply multidimensional Berry-Essen theorem [Meckes ’09]
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