On approximations of finite-dimensional point densities for Arratia flows with $$\operatorname{drift}$

M. Vovchanskyi

Institute of Mathematics, NAS of Ukraine

Joint Kyiv-Warwick Stochastic Analysis Seminar, 2024

Definition

A Brownian web is a collection of random processes

 $\{X_{t,\cdot}(u) \in C([t; +\infty)) \mid u \in \mathbb{R}, t \in \mathbb{R}_+\}$

such that for any $(u_1, t_1), \ldots, (u_N, t_N) \in \mathbb{R} \times \mathbb{R}_+$ the processes

$$X_{t_1,\cdot}(u_1),\ldots,X_{t_N,\cdot}(u_N)$$

are coalescing Brownian motions w.r.t. the joint filtration.

Definition

The Brownian web X with drift a is a family of $D(\mathbb{R}, \mathbb{R})$ -valued random elements $\{X_{s,t}(\cdot) \mid s \leq t\}$ such that

() for any
$$s \le t \le r \mathsf{P} \{ X_{s,r} = X_{t,r} \circ X_{s,t} \} = 1; X_{s,s} = \mathrm{Id} \text{ a.s.};$$

2) for any
$$t_1 \leq t_2 \leq \ldots \leq t_n X_{t_1,t_2}, \ldots, X_{t_{n-1},t_n}$$
 are independent;

- 3 for any $s, t \in \mathbb{R}, h > 0$ Law $(X_{s,t}) = Law(X_{s+h,t+h});$
- (4) as $h \to 0+$, $X_{0,h} \to Id$ in probability in $D(\mathbb{R}, \mathbb{R})$;
- (5) for any $x \in \mathbb{R}, s \ge 0$

$$X_{s,t}(x) = x + \int_{s}^{t} a(X_{s,r}(x))dr + w_{x,s}(t), \quad t \ge s,$$

where $w_{x,s}$ is a Brownian motion started at 0; (a) for any $x, y \in \mathbb{R}, s > 0$

$$\left\langle w_{x,s}, w_{y,s} \right\rangle(t) = \int_{s}^{t} \mathrm{I\!I}\left[X_{s,r}(x) = X_{s,r}(y) \right] dr, \quad t \ge s.$$

Brownian web (Arratia flows) (with drift)

Arratia flow: $\{X_{0,s}(x) \mid s \ge 0, x \in \mathbb{R}\}$

Particles move independently before they meet and merge afterwards.

- a limit of random walks: Arratia;
- reflecting Wiener processes: Soucaliuc, Tóth, Werner;
- a limit of homeomorphic stochastic flows: Dorogovtsev;

• adding drift: Dorogovtsev;

- a flow of kernels: Le Jan, Raimond;
- a random element in a specific space of compact sets of the space of trajectories: Fontes, Isopi, Newman, Ravishankar...;
- physical coalescing and annihilating systems of particles: Masser, ben-Avraham, Tribe, Zaboronski ... ;
- a universal limit object: Roy, Saha, Sarkar, Birkner, Gantert, Steiber, Norris, Turner...;
- related models: Konarovskyi, von Renesse

Contents:

- **1** What point densities are
- ② Cornerstones
- ③ Representations
- **④** Some multidimensional results
- Approximations

References:

- A. A. Dorogovtsev and N. B. Vovchanskii, "Representations of the finite-dimensional point densities in Arratia flows with drift", *Theory Stoch. Process.*, vol. 25, no. 1, pp. 25–36, 2020
- A. A. Dorogovtsev and M. B. Vovchanskii, "On the approximations of point measures associated with the Brownian web by means of the fractional step method and discretization of the initial interval", *Ukrain. Math. J.*, vol. 72, pp. 1358–1376, 2021
- A. A. Dorogovtsev ta M. B. Vovchanskyi, "On 1-point densities for Arratia flows with drift," *Stochastics*, T. 95, № 8, c. 1429–1445, 2023
- preprint

Correlation functions (n-point densities)

- The Arratia flow $X^a = \{X_t^a(u) | u \in \mathbb{R}, t \in [0; T]\}$ with drift $a \in L_{\infty}(\mathbb{R}) \cap \operatorname{Lip}(\mathbb{R})$
- A random locally finite measure

$$\mu_t^a(\Delta) = \left| X_t(\mathbb{R}) \cap \Delta \right|, \ \Delta \in \mathcal{B}(\mathbb{R}),$$

- Different approaches
 - (physical) diffusion particles with instant interaction
 - theory of random matrices
 - as a stochastic dynamic system (cocycle)

$$X_t^a = \{X_t^a(v) \mid v \in [0;1]\};$$

Definition (correlation functions: F.J.Dyson 1962) The k-point density p_t^k is a function on \mathbb{R}^k such that for any bounded $f \colon \mathbb{R}^k \to \mathbb{R}$

$$\mathbb{E} \operatorname{II} \left(|X_t^a| \ge k \right) \sum_{\substack{v_1, \dots, v_k \in X_t^a, \\ v_1, \dots, v_k \text{ all distinct}}} f(v_1, \dots, v_k) = \int_{\mathbb{R}^k} p_t^{a,k}(y) f(y) dy.$$

An alternative definition

$$\begin{split} p_t^n &= \lim_{\delta \to 0+} \delta^{-k} \prod_{k=\overline{1,n}} N_t([x_k; x_k + \delta)) \\ &= \lim_{\delta \to 0+} \delta^{-k} \mathsf{P}\left(N_t([x_k; x_k + \delta)) > 0, k = \overline{1,n}\right), \end{split}$$

where $N_t(A)$ is the number of particles in the set A

The original proof utilizes the idea from (Munasinghe, Rajesh, Tribe Ta O. Zaboronski 2006) and the Girsanov theorem for the Arratia flow. A different constructive proof can be given. In: R. Tribe and O. V. Zaboronski, "Pfaffian formulae for one dimensional coalescing and annihilating systems", *Electron. J. Probab.*, vol. 16, no. 76, pp. 2080–2103, 2011

Theorem

The point process for X^0 at time t is the Pfaffian point process M with kernel $t^{-1/2}K(t^{-1/2}u, t^{-1/2}v)$, that is, for all $A_1, \ldots, A_m \in \mathcal{B}(\mathbb{R}), A_i \cap A_j = \emptyset, i \neq j$, and numbers $k_1, \ldots, k_m \in \mathbb{N} \cup \{0\}$: $\sum k_i = k$ we have

$$\operatorname{E}\prod_{j=1}^{m} M_t(A_j) \cdot \ldots \cdot (M_t(A_j) + 1 - k_j) = \int_{A_1^{k_1} \times \ldots \times A_m^{k_m}} p_t^k(x_1, \ldots, x_k) dx_1 \ldots dx_k,$$

where the k-point density $p_t^k(x_1, \ldots, x_k)$ is the Pfaffian of the $2k \times 2k$ matrix built of k^2 blocks, each block being given in the terms of Gaussian density and its first 2 derivatives.

The Karlin-McGregor determinant:

$$g_t^{KM}(y,x) = \det \|g_t(y_j - x_k)\|_{j,k},$$

In: R. Munasinghe, R. Rajesh, R. Tribe, and O. Zaboronski, "Multi-scaling of the *n*-point density function for coalescing Brownian motions", *Comm. Math. Phys.*, vol. 268, no. 3, pp. 717–725, 2006

Theorem Since $c_n \prod_{k=1}^{K} g_t(x_k, y_{n+1-k}) \le \frac{g_t^{KM}(y, x)}{h_n(t^{-1/2}x)h_n(t^{-1/2}y)} \le \prod_{k=1}^{K} g_t(x_k, y_k),$ where $h_n(u) = \prod (u_j - u_k),$ k < iwe have $p_t^n(x) \le \frac{1}{(\pi t)^{n/2}}.$

• $\xi = (\xi_1, \dots, \xi_n)$ is a continuous process process with coalescence and no triple collisions

•
$$\varkappa = n - |\{\xi_j(T) \mid j = \overline{1, n}\}|$$

• Hitting times: $\tau_1 < \tau_2 < \ldots < \tau_{\varkappa}$

- A coalescence scheme $S(\xi) = (j_1, \dots, j_{\varkappa})$ $(S(\xi) = \emptyset$ if $\varkappa = 0)$
- $\xi^{(n-1)}$ is obtained by removing the j_1 -th coordinate and so on

$$j_1 = \min\{i \mid \exists j \neq i \; \xi_j(\tau_1) = \xi_i(\tau_1)\},$$

$$j_2 = \min\{i \mid \exists \; j \neq i \; \xi_j^{(n-1)}(\tau_2) = \xi_i^{(n-1)}(\tau_2)\}, \dots$$

$$X_t^a(u) = \{X_t^a(u_k) \mid k = \overline{1, n}\},\$$
$$\Delta_n = \{u \in \mathbb{R}^n \mid u_1 < \ldots < u_n\}$$

Definition

The (n, k)-point density corresponding to $u \in \Delta_n$ and $k \in \{1, \ldots, n\}$, is a function $p_t^{a,n,k}(u; \cdot)$ on \mathbb{R}^k such that for any bounded $f \colon \mathbb{R}^n \to \mathbb{R}$

$$\mathbb{E} \, \mathrm{I\!I}\left(|X_t^a(u)| \ge k\right) \sum_{\substack{v_1, \dots, v_k \in X_t^a(u), \\ v_1, \dots, v_k \text{ all distinct}}} f(v_1, \dots, v_k) = \int_{\mathbb{R}^k} p_t^{a, n, k}(u; y) f(y) dy.$$

Definition

The (n, k)-point density corresponding to $u \in \Delta_n$, a coalescence scheme s with $\varkappa = j$ and $k \leq n - j$, is a function $p_t^{a,n,s,k}(u; \cdot)$ on \mathbb{R}^k such that for any non-negative $f: \mathbb{R}^k \to \mathbb{R}$

$$\mathbb{E} \operatorname{II}(S(X^{a}(u)) = s) \sum_{\substack{v_1, \dots, v_k \in X^{a}_t(u), \\ v_1, \dots, v_k \text{ all distinct}}} f(v_1, \dots, v_k) = \int_{\mathbb{R}^k} p_t^{a, n, s, k}(u; y) f(y) dy.$$

Lemma

- **(**) For any s with $\varkappa = k$, $u \in \Delta_n$ and $j \leq n-k$ the density $p_t^{a,n,s,j}(u;\cdot)$ exists.
- ② For any $n \in \mathbb{N}$, $u \in \Delta_n$ i k ∈ {1,...,n} the density $p_t^{a,n,k}(u; \cdot)$ exists, and a.e.

$$p_t^{a,n,k}(u;\cdot) = \sum_{l=0}^{n-k} \sum_{s \in \mathcal{S}_{n,l}} p_t^{a,n,s,k}(u;\cdot),$$

where $S_{n,l}$ is a set of all coalescence schemes for n particles with l collisions.

The Girsanov theorem for the Arratia flow

A set U = {u_k | k ∈ N} is dense in [0; 1]; u⁽ⁿ⁾ = (u₁,...,u_n), n ∈ N
Define collision times

$$\tau_1 = T,$$

$$\tau_k = \inf \left\{ T; s \mid \prod_{j=1}^{k-1} \left(X_s(u_k) - X_s(u_j) \right) = 0 \right\}, \quad k \ge 2$$

• Define

$$I_n\left(u^{(n)}\right) = \sum_{k=1}^n \int_0^{\tau_k} a(X_t(u_k)) dX_t(u_k),$$
$$J_n\left(u^{(n)}\right) = \sum_{k=1}^n \int_0^{\tau_k} a^2(X_t(u_k)) dt, \quad n \in \mathbb{N}$$

Theorem (Dorogovtsev 2007)

There exist

$$I = L_2 \cdot \lim_{n \to \infty} I_n \left(u^{(u)} \right),$$
$$J = L_2 \cdot \lim_{n \to \infty} J_n \left(u^{(u)} \right)$$

Theorem (Dorogovtsev 2007)

■ Let $n \in \mathbb{N}$. For all $u \in \mathbb{R}^n$ the distribution of $X^a(u, \cdot)$ is absolutely continuous w.r.t the distribution of $X(u, \cdot)$ in $C([0; T], \mathbb{R}^n)$ with density

$$\widetilde{\mathcal{E}}^{a}_{T,n}(u) = \exp\left\{I_n(u) - \frac{1}{2}J_n(u)\right\}.$$

The distribution of X^a as a random element in D([0;1], C([0;T])) is absolutely continuous w.r.t the distribution of X with density

$$\widetilde{\mathcal{E}}_T^a = \exp\left\{I - \frac{1}{2}J\right\}$$

w is a standard BM in ℝⁿ, θ = inf{r | w(r) ∉ Δ_n}
The Cauchy problem

$$\frac{\partial}{\partial r}F(z,r) = -\frac{1}{2}\Delta_z F(z,r) \text{ in } \Delta_n \times (s;t),$$

$$F(z,t) = 0, \ z \in \overline{\Delta}_n,$$

$$F(z,r) = \varphi(z), \ z \in \partial \Delta_n, \ r \in (s;t),$$

has a solution

$$F(z,r) = \mathcal{E}_{r,z} \,\varphi(w(\theta)) \,\mathbb{I}(\theta > t)$$

∂Δ_{n,j} = {(u₁,..., u_n) | u₁ < ... < u_j = u_{j+1} < ... < u_n}, j = 1, n-1
m is a surface measure on Uⁿ⁻¹_{j=1} ∂Δ_{n,j}
∂/∂ν_y is an outward normal derivative
ρ^{a,m}_t(u; ·) is the density of the BM with drift (a,..., a) killed on ∂Δ_m

Theorem (Dorogovtsev, V., 2020)

For all $n \in \mathbb{N}, x \in \Delta_n, t \in [0; T], k \in \{1, \dots, n\}$, any coalescence scheme s with $\varkappa = n - k$, and any $j \in \{1, \dots, k\}$

$$p_{t}^{a,n,s,j}(x;y) = (-1)^{k} 2^{-k} \int_{0 \le t_{1} \le \dots \le t_{n-k} \le t} dt_{1} \dots dt_{n-k}$$

$$\int_{\partial \Delta_{n,j_{1}}} m(dz_{1}) \int_{\partial \Delta_{n,j_{2}}} m(dz_{2}) \dots \int_{\partial \Delta_{k+1,j_{n-k}}} m(dz_{n-k})$$

$$\times \frac{\partial}{\partial \nu_{z_{1}}} \rho_{t_{1}}^{a,n}(x,z_{1}) \times \frac{\partial}{\partial \nu_{z_{2}}} \rho_{t_{2}-t_{1}}^{a,n-1} \left(R_{j_{1}}^{n} z_{1}, z_{2}\right) \times \dots \times$$

$$\times \frac{\partial}{\partial \nu_{z_{n-k}}} \rho_{t_{n-k}-t_{n-k-1}}^{a,k+1} \left(R_{j_{n-k-1}}^{k+2} z_{n-k}, z_{n-k}\right) \times$$

$$\times \sum_{\substack{L = \{l_{1},\dots,l_{j}\} \subset \\ \{1,\dots,k\}}} \int_{\mathbb{R}^{k-j}} dv^{-L} \rho_{t-t_{n-k}}^{a,k} \left(R_{j_{n-k}}^{k+1} z_{n-k}, v\right) \Big|_{\substack{v \in \mathbb{R}^{k}, \\ v^{L} = y}},$$

where $R_j^m: \partial \Delta_{m,j} \to \Delta_{m-1}$ removes the j + 1-th coordinate, and $x^L = (x_i), i \in L, x^{-L} = (x_i), i \notin L$

Construction of finite systems in Arratia flows

- $W = (w_1, \ldots, w_n)$ is a standard BM in \mathbb{R}^n , W(0) = u.
- \widetilde{W} is obtained from W by merging coordinates after a collision
- $\{\widetilde{\theta}_k\}$ are the corresponding meeting times
- Define

$$\mathcal{E}_{T,n}^{a}(W,u) = \exp\Big\{\sum_{k=1}^{n}\int_{0}^{\widetilde{\theta}_{k}}a(w_{k}(t))dw_{k}(t) - \frac{1}{2}\sum_{k=1}^{n}\int_{0}^{\widetilde{\theta}_{k}}a^{2}(w_{k}(t))dt\Big\}.$$

Lemma

In $C([0;T],\mathbb{R}^n)$

$$(X_{0,\cdot}(u_1),\ldots,X_{0,\cdot}(u_n)) \stackrel{d}{=} \widetilde{W}$$

and

$$\widetilde{\mathcal{E}}^{a}_{T,n}(u) \stackrel{d}{=} \mathcal{E}^{a}_{T,n}(W, u).$$

• Brownian bridges $\eta = (\eta_1, \ldots, \eta_n)$:

$$w_k(t) = \frac{t}{T}w_k(T) + \eta_k(t), \ t \in [0;T], k = \overline{1,n}$$

 ${\scriptstyle \bullet }$ For any k define

$$d\eta_k(t) = d\beta_k(t) - \frac{\eta_k(t)}{T-t} dt, \ t \in [0;T),$$

$$\eta_k(0) = \eta_k(T) = 0,$$

• For any $y \in \mathbb{R}^n$ define

$$\eta^{u,y}(t) = \eta(t) + \left(1 - \frac{t}{T}\right)u + \frac{t}{T}y, \ t \in [0;T].$$

- $\{\theta_{ij}(u)\}$ are meeting time for the process W
- $\{\tau_{ij}(u, y)\}$ are meeting times for the process $\eta^{u, y}$
- $\theta_{ij}(u) = \tau_{ij}(u, w(T)), \ j = \overline{1, i 1}, i = \overline{2, n}$
- Non-random numbers $\{\lambda_{ij}(s) \mid i = 1, 2, j = \overline{1, n}\}$:

$$\widetilde{\theta}_k(u) = \tau_{\lambda_{1k}(s)\lambda_{2k}(s)}(u,W(T))$$

on $\{S(W) = s\}$ for a coalescence scheme s

Define on $\{S(W) = s\}$

$$a_{k}(t, u, y, s) = \mathfrak{I}(t \leq \tau_{\lambda_{1k}(s)\lambda_{2k}(s)}(u, y)) \cdot a\left(\eta_{k}^{u, y}(t)\right),$$

$$\mathfrak{e}_{T, n}^{a}(u, y, s) = \exp\Big\{\sum_{k=1}^{n} \int_{0}^{T} a_{k}(t, y, s)d\eta_{k}(t) +$$

$$+\sum_{k=1}^{n} \int_{0}^{T} a_{k}(t, u, y, s)\Big(\frac{y_{k} - u_{k}}{T} - \frac{1}{2}a_{k}(t, u, y, s)\Big)ds\Big\}.$$

Lemma

We have:

• for any s, y and starting point u $E_u \left(\mathfrak{II}(S(W) = s) \mathcal{E}^a_{T,n}(W) / W(T) = y \right) =$ $= E \mathfrak{II}(S(\eta_{u,y}) = s) \mathfrak{e}^a_{T,n}(u, y, s);$

• for any y, s, u and p > 0

$$\mathbf{E}\left(\mathfrak{e}_{T,n}^{a}(u,y,s)\right)^{p} \leq C_{1}e^{C_{2}\|y\|};$$

• for any s the mapping $y \mapsto E \amalg(S(\eta_{u,y}) = s) \mathfrak{e}^{\mathfrak{a}}_{T,n}(u, y, s)$ is continuous.

- Every coalescence scheme generates a partition of $\{1, \ldots, n\}$ of blocks of merged particles. Set I(s) to be the set of smallest elements in all blocks.
- For a set K of indexes in $\{1, \ldots, n\}$

•
$$z^{K} = (z_{i}), i \in K$$

• $z^{-K} = (z_{i}), i \notin K$

• $g_t^{(n)}$ is *n*-dimensional Gaussian density for $\mathcal{N}(x, t \mathrm{Id})$

Theorem (Dorogovtsev, V. 2020)
Consider
$$n \in \mathbb{N}$$
, $u \in \Delta_n$ and a coalescence scheme s with $\varkappa = k$. Then for all $j \in \{1, \ldots, k\}$ and $y \in \Delta_k$
 $p_t^{a,n,s,j}(u;y) = \sum_{L=\{l_1,\ldots,l_j\}\subset\{1,\ldots,k\}} g_t^{(j)}(u^{I(s),L} - z^{I(s),L}) \times$
 $\times \int_{\mathbb{R}^{k-j}} dz^{I(s),-L} g_t^{(k-j)}(u^{I(s),-L} - z^{I(s),-L}) \int_{\mathbb{R}^{n-k}} dz^{-I(s)} g_t^{(n-k)}(u^{-I(s)} - z^{-I(s)})$
 $(\mathbb{E} \operatorname{I\!I}(S(\eta^{u,z}) = s) \mathfrak{e}_{T,n}^a(u,z,s)) \Big|_{z \in \mathbb{R}^n, z^{I(s),L} = y}$

Alternative proof of existence

$$\begin{aligned} B_{\varepsilon}^{+}(y) &= [y; y + \varepsilon), \quad y \in \mathbb{R}, \varepsilon \in \mathbb{R}_{+}, \\ N_{t}(A) &= \left| \left\{ X_{t}^{a}(x) \mid X_{t}^{a}(x) \in A, x \in \mathbb{R} \right\} \right|, \quad A \in \mathcal{B}(\mathbb{R}), \\ N_{t}(B; A) &= \left| \left\{ X_{t}^{a}(x) \mid X_{t}^{a}(x) \in A, x \in B \right\} \right|, \quad A, B \in \mathcal{B}(\mathbb{R}) \end{aligned}$$

Lemma

For any u, y, s and some $k \leq \varkappa(s)$

$$p^{a,n,s,k}(u;y) = \lim_{\varepsilon \to 0+} \mathbb{E} \prod_{j=\overline{1,n}} \mathrm{I\!I} \left[N_t(u; B^+_{\varepsilon}(y_j)) > 0 \right] \mathrm{I\!I} \left[s(X^a(u)) = s \right].$$

Corollary

In particular,

$$p_t^{a,n}(u;y) = \lim_{\varepsilon \to 0+} \varepsilon^{-k} \mathsf{P}\left(N_t(u;B_\varepsilon(x_k)) > 0, k = \overline{1,n}\right).$$

Finite point approximations

$$u_{m,j} = \frac{j}{m}, \quad j = \overline{0, m}, m \in \mathbb{N},$$
$$u_m = (u_{m,0}, \dots, u_{m,m}),$$
$$U_m = \{u_{m,j} \mid j = \overline{0, m}\}$$

Theorem (V. 2024)

For any n and $x \in \Delta_n$

$$\lim_{m \to \infty} m^2 \left(p_t^{a,n}(x) - p_t^{a,m,n}(u_m;x) \right) = C_n > 0,$$

where

$$\begin{split} C_n &= \lim_{m \to \infty} \lim_{\varepsilon \to 0+} \varepsilon^{-n} \sum_{k = \overline{1, n}} \mathsf{P}\left(S(X^{-a}(x_{\varepsilon})) = \emptyset; \\ & (X_t^{-a}(x_k), X_t^{-a}(x_k + \varepsilon)) \cap U_m = \emptyset; \\ & \forall i \neq k \ (X_t^{-a}(x_i), X_t^{-a}(x_i + \varepsilon)) \cap U_m \neq \emptyset \right), \\ & x_{\varepsilon} = (x_1, x_1 + \varepsilon, x_2, x_2 + \varepsilon, \dots, x_n, x_n + \varepsilon) \end{split}$$

The proof relies on the following observations:

- using dual flows to estimate the probability of two particles getting close yet not merging
- ⁽²⁾ relations between point densities and PDEs
- ³ estimates for point densities with drift

Preliminary transformations

$$B_{\varepsilon}^{+}(y) = [y; y + \varepsilon), \quad y \in \mathbb{R}, \varepsilon \in \mathbb{R}_{+},$$

$$N_{t}(A) = |\{X_{t}^{a}(x) \mid X_{t}^{a}(x) \in A, x \in \mathbb{R}\}|, \quad A \in \mathcal{B}(\mathbb{R}),$$

$$N_{t}(B; A) = |\{X_{t}^{a}(x) \mid X_{t}^{a}(x) \in A, x \in B\}|, \quad A, B \in \mathcal{B}(\mathbb{R})$$

We need to study

r

$$\begin{split} &\limsup_{\varepsilon \to 0+} \varepsilon^{-n} \int_{B_{\varepsilon}^{+}(x_{1}) \times \dots B_{\varepsilon}^{+}(x_{n})} (p_{t}^{a,n}(y) - p_{t}^{a,n}(u_{m};y)) dy \\ &= \limsup_{\varepsilon \to 0+} \varepsilon^{-n} \Big[\prod_{k=1,n} N_{t}(B_{\varepsilon}^{+}(x_{j})) - \prod_{k=1,n} N_{t}(U_{m};B_{\varepsilon}^{+}(x_{j})) \Big] \\ &= \limsup_{\varepsilon \to 0+} \varepsilon^{-n} \Big[\mathsf{P}\left(N_{t}(B_{\varepsilon}^{+}(x_{j})) > 0, j = \overline{1,n}\right) - \mathsf{P}\left(N_{t}(U_{m};B_{\varepsilon}^{+}(x_{j})) > 0, j = \overline{1,n}\right) \Big] \end{split}$$

Indeed, it is well known that the error between two last lines can be estimated in the terms

$$\sum_{k=1,n} \int_{B_{\varepsilon}^+(x_1) \times \ldots \times B_{\varepsilon}^+(x_k) \times B_{\varepsilon}^+(x_k) \times \ldots} p_t^{a,n+1}(y) dy,$$

so basic estimates suffice.

We need to estimate

$$\mathsf{P}\left(N_t(B_{\varepsilon}^+(x_j)) > 0, j = \overline{1, n}\right) - \mathsf{P}\left(N_t(U_m; B_{\varepsilon}^+(x_j)) > 0, j = \overline{1, n}\right)$$

There exists a dual Brownian web $\{\widetilde{X}_{s,t}(u) \mid u \in \mathbb{R}, s \leq t\}$:

- lives in the reversed time
- coalescing Brownian motions, independent before the meeting
- the trajectories of X^a and \widetilde{X} do not intersect a.s.
- $X = X^{-a}$ actually:
 - Riabov 2020

Dual flows for coalescing flows (2)

We have: $B_{\varepsilon}^{+}(x)$ is non-empty but $X_{0,t}(u_m)$ misses $B_{\varepsilon}^{+}(x)$

$$\mathsf{P}(X_{0,t} \cap B_{\varepsilon}^{+}(x) \neq \varnothing) - \mathsf{P}(X_{0,t}(u_{m} \cap B_{\varepsilon}^{+}(x) \neq \varnothing) = \\ \leq \mathsf{P}\Big(\widetilde{X}_{0,t}(x+\varepsilon) \neq \widetilde{X}_{0,t}(x), \ \exists \ j \in \{1, \dots, n-1\}: \\ \left(\widetilde{X}_{0,t}(x); \widetilde{X}_{0,t}(x+\varepsilon)\right) \subset \left(u_{m,j}; u_{m,j+1}\right)\Big) \leq \\ \leq \int_{0 \leq y_{2}-y_{1} < \max_{j}(u_{n,j+1}-u_{n,j})} dy_{1} \ dy_{2} \ p_{t}^{0,2,\varnothing,2}\big((x,x+\varepsilon); (y_{1},y_{2})\big),$$

where (trivially)

$$p_t^{0,2,\varnothing,2}(a;b) = \frac{1}{2\pi t} e^{-\frac{\|a-b\|^2}{2t}} \left(1 - e^{-(b_2 - b_1)(a_2 - a_1)}\right).$$

Passing to the dual flow gives

$$\lim_{m \to \infty} \lim_{\varepsilon \to 0+} \varepsilon^{-n} \sum_{k=\overline{1,n}} \mathsf{P}\left(S(X^{-a}(x_{\varepsilon})) = \emptyset; \\ (X_t^{-a}(x_k), X_t^{-a}(x_k + \varepsilon)) \cap U_m = \emptyset; \\ \forall i \neq k \ (X_t^{-a}(x_i), X_t^{-a}(x_i + \varepsilon)) \cap U_m \neq \emptyset\right), \\ x_{\varepsilon} = (x_1, x_1 + \varepsilon, x_2, x_2 + \varepsilon, \dots, x_n, x_n + \varepsilon)$$

where we want to get rid of all collisions and do not allow multiple hits between points of the initial discretization, that is, to estimate properly expressions of the form

$$\mathsf{P}\left(A; X_{t}^{-a}(x_{j}), X_{t}^{-a}(x_{j}+\varepsilon), X_{t}^{-a}(x_{j+1}), X_{t}^{-a}(x_{j+1}+\varepsilon) \in (u_{m,k}; u_{m,k+1})\right)$$

$$\mathsf{P}\left(A; X_{t}^{-a}(x_{j}), X_{t}^{-a}(x_{j}+\varepsilon) \in (u_{m,k_{1}}; u_{m,k_{1}+1}), X_{t}^{-a}(x_{j+1}), X_{t}^{-a}(x_{j+1}+\varepsilon) \in (u_{m,k_{2}}; u_{m,k_{2}+1})\right)$$

where $k_1 \neq k_2$ and

$$A = \left\{ \omega \mid X_t(x_k + \varepsilon) > X_t(x_k), k = \overline{1, n} \right\}$$

Let Ξ_n be the set of all non-trivial coalescence scheme such that only collisions of the form (2j; 2j + 1) are possible. Then

$$\begin{split} \mathsf{P} \left(S(X(x_{\varepsilon})) \neq \emptyset; \\ X_t^{-a}(x_1), X_t^{-a}(x_1 + \varepsilon) \in (u_{m,k_1}; u_{m,k_1+1}), \\ X_t^{-a}(x_2), X_t^{-a}(x_2 + \varepsilon) \in (u_{m,k_2}; u_{m,k_2+1}); \\ &\leq \sum_{s \in \Xi_n} \int_{u_{m,k_1}}^{u_{m,k_1+1}} \int_{u_{m,k_2}}^{u_{m,k_2+1}} p^{a,2n,s,2}(x_{\varepsilon}, y) \, dy_1 dy_2. \end{split}$$

Estimates for the Karlin-McGregor determinant and its derivatives

$$g_t^{KM}(y,x) = \det ||g_t(y_j - x_k)||_{j,k}$$

In (Munasinghe, Rajesh, Tribe ta O. Zaboronski 2006):

$$c_n \prod_k g_t(x_k, y_{n+1-k}) \le \frac{p_t(x, t)}{h_n(t^{-1/2}x)h_n(t^{-1/2}y)} \le \prod_k g_t(x_k, y_k),$$

In (Katori ta Tanemura 2007):

$$g_t^{KM}(y,x) = \frac{1}{(2\pi t)^{n/2}} e^{-\frac{\|x\|^2 + \|y\|^2}{2t}} h_n(x) h_n(y) \sum_{\lambda: l(\lambda) \le n} \frac{s_\lambda(x) s_\lambda(y)}{\prod_{k=1,N} (\lambda_k + n - k)!}$$

where h is a Vandermonde determinant and the sum is over Schur polynomials (over variables x_1, \ldots, x_n).

A representation of n-point densities as a series

 \mathbf{Define}

$$\begin{aligned} \nabla_y^a &= \sum_{k=\overline{1,2n}} a(y_k) \partial_{y_k} \\ D_{2n} &= \left\{ x \in \mathbb{R}^{2n} \mid x_1 < \ldots < x_{2n} \right\} \\ \partial D_{2n,j} &= \left\{ y \in \partial D \mid y_j = y_{j+1} \right\}, \quad j = \overline{1,2n-1} \\ \partial_{\nu_y} &= \frac{1}{\sqrt{2}} (\partial_{y_{j+1}} - \partial_{y_j}) \end{aligned}$$

Every $\sigma \in \Xi_n$ defines some boundary condition f_σ as a sum of indicators of some hyperplanes.

Consider for some $f = f_{\sigma}$

$$\partial_t W_f = \frac{1}{2} \Delta W_f - \nabla^a W_f,$$

$$W_f(x,0) = 1, \quad x \in D_{2n},$$

$$W_f(x,t) = f, \quad x \in \partial D_{2n}, \ t > 0.$$

Theorem (V. 2024, 1d: Dorogovtsev, V. 2023) Assume $a \in L_{\infty}(\mathbb{R})$. We have

$$p_t^n(x) = \lim_{\varepsilon \to 0+} \varepsilon^{-n} \sum_{\sigma \in \Xi_n} W_{n, f_\sigma} \left((x_1, x_1 + \varepsilon, \dots, x_n, x_n + \varepsilon), t \right)$$
$$= \left[\frac{\partial^n}{\partial u_2 \cdots \partial u_{2n}} \sum_{f \in \Xi_n} W_{n, f_\sigma}(u, t) \right] \Big|_{u = (x_1, x_1, \dots, x_n, x_n)}$$

where each function

$$W_{n,f_{\sigma}} \in C(\overline{D}_{2n} \times (0;\infty)) \cap C(D_2 \times [0;\infty)) \cap C^{1,0}(D_2 \times [0;\infty))$$

is a distributional solution in $\mathcal{D}'(D_2 \times (0;t))$ to the original IBVP, satisfies IC and BC and admits the representation as a series.

$$p_t^{a,1}(u) = \lim_{\delta \to 0+} \delta^{-1} \mathsf{P}\left(X_t^a(\mathbb{R}) \cap [u; u+\delta) \neq \emptyset\right)$$

Let $\xi_x^a = (\xi_{x_1}^a, \xi_{x_2}^a)$ be the unique weak solution of

$$d(\xi_x^a)_k(t) = a((\xi_x^a)_k(t)) dt + dw_k(t), (\xi_x^a)_k(0) = x_k, \quad k = 1, 2$$

where w_1, w_2 are independent standard Wiener processes. Define

$$\theta_x^a = \inf\{s \mid \xi_x^a \in \partial D_2\},\$$

Then

$$p_t^{a,1}(u) = \lim_{\delta \to 0+} \delta^{-1} \mathsf{P}\left(\theta_{(u,u+\delta)}^{-a} > t\right).$$

Since $\partial_t W_f = \frac{1}{2} \Delta W_f - \nabla^a W_f$ we have formally

$$\begin{split} W(x,t) &= \int_{D_{2n}} dy \, g_t^{KM}(x,y) - \int_0^t ds \int_{D_{2n}} dy \, g_{t-s}^{KM}(x,y) \nabla_y^a W(y,s) \\ &- \int_0^t ds \int_{\partial D_{2n}} dS(y) \, \partial_{\nu_y} g_{t-s}^{KM}(x,y) f(y,s). \end{split}$$

Iterating:

$$W = \sum_{n \in \mathbb{N}} W_n$$

$$\begin{split} W_0^a(x,s) &= \int_{D_2} dy_0 \ g_s^{KM}(x,y_0), \\ W_n^a(x,s) &= (-1)^n \int_{\Delta_n(s)} dr_1 \dots dr_n \int_{D_2^{n+1}} dy_0 \dots dy_n \\ g_{s-r_n}^{KM}(x,y_n) \prod_{j=1}^n \nabla_{y_j}^a g_{r_j-r_{j-1}}^{KM}(y_j,y_{j-1}), \\ n \geq 1, \end{split}$$

Scheme of proof: step 1

Proposition

For all $n \ge 1$ in the sense of Schwartz distributions

$$\partial_s W_n^a = \frac{1}{2} \Delta W_n^a - \nabla_x^a W_{n-1}^a$$

in $\Delta_2 \times (0; \infty)$. Consequently,

$$\partial_s W^a = \frac{1}{2} \Delta W^a - \nabla^a_x W^a$$

in $\Delta_2 \times (0; \infty)$.

Proof.

$$W_n^a(x,s) = \int_0^s \int_{\Delta_2} dr dy \ g_{s-r}^{KM}(x,y) f_n(r,y),$$
$$f_n(r,y) = -D_y^a W_{n-1}^a(y,r), \quad n \ge 1,$$

where $\sup_{n \ge 1} \sup_{r \in (0;t), y \in \Delta_2} |f_n(r, y)| < Cr^{-1/2}$.

For h > 0

2

$$\begin{split} W_n^a(x,s+h) - W_n^a(x,s) &= \int_0^s \int_{D_2} dr dy \left(g_{s+h-r}^{KM}(x,y) - g_{s-r}^{KM}(x,y) \right) f_n(r,y) \\ &+ \int_s^{s+h} \int_{D_2} dr dy \; \rho_{s+h-r}(x,y) f_n(r,y) \\ &= H_1(h,x,s) + H_2(h,x,s). \end{split}$$

For every test function v

 $h^{-1} \int_{D_2} dx \ v(x) H_1(h, x, s)$ $\rightarrow -\frac{1}{2} \int_{D_2} \int_0^s \int_{D_2} dx dr dy \ \nabla_x v(x) \cdot f_n(r, y) \nabla_x g_{s-r}^{KM}(x, y)$ $= -\frac{1}{2} \int_{D_2} dx \ \nabla_x v(x) \cdot \nabla_x W_n^a(x, s), \quad h \to 0+$

$$h^{-1}H_2(h, x, s) \to f_n(x, s) = -\nabla^a_x W^a_{n-1}(x, s), \quad h \to 0 + .$$

• Recalling: ξ_x^a is the solution of

$$d(\xi_x^a)_k(t) = a((\xi_x^a)_k(t))dt + dw_k(t),$$

$$\theta_x^a = \inf\{s \mid \xi_x^a \in \partial \Delta_2\}$$

• Then

$$h^{-1}H_2(h,x,s) = h^{-1} \int_s^{s+h} dr \ k_{x,s}(h,r).$$

where

$$\begin{split} k_{x,s}(h,r) &= \mathrm{E}\,f_n\left(r,\xi^a_x(s+h-r)\right)\,\mathrm{I\!I}\left[\theta^a_x > s+h-r\right],\\ \forall s \quad k_{x,s}(h_0,s) \to f_n(s,x), \quad h_0 \to 0+, \end{split}$$

• By the Girsanov theorem

$$k_{x,s}(h,r) = \mathbb{E} f_n \left(r, \xi_x^0(s+h-r) \right) \operatorname{II} \left[\theta_x^0 > s+h-r \right] \mathcal{E}_t^a,$$

Proposition

For all s > 0 and $x \in \Delta_2$

 $W^a(x,s) = \mathsf{P}\left(\theta^a_x > s\right).$

Let $a \in C^{\infty}(\mathbb{R})$. Since the operator $\frac{1}{2}\Delta - \nabla_x^a$ is hypoelliptic,

 $W^a \in C^{\infty}((0;\infty) \times \Delta_2).$

The exhaustion method and the property

$$W^a \in C(\overline{\Delta}_2 \times (0; \infty)) \cap C(\Delta_2 \times [0; \infty))$$

yield

$$W^a(x,s) = \mathsf{P}\left(\theta^a_x > s\right)$$

for a mollified a.

Back to the main result

Theorem

Let $a \in L_{\infty}(\mathbb{R})$. Then for all $x \in D_2$ and t > 0

$$p_t^{a,1}(x) = \partial_{x_2} W^a(x,t) = \sum_{n \ge 0} \partial_{x_2} W^a_n(x,t).$$

Theorem

Assume $a_n \in L_{\infty}(\mathbb{R}), n \ge 0$; $\sup_{n \ge 0} ||a_n||_{L_{\infty}(\mathbb{R})} < \infty$. Let one of the following conditions hold:

a_n → a₀, n → ∞, in L_∞(ℝ);
 a_n ∈ L₁(ℝ), n ≥ 0, and a_n → a₀, n → ∞, in L₁(ℝ).

Then for all $x \in D_2$ and t > 0

$$p_t^{a_n,1}(x) \to p_t^{a_0,1}(x), \quad n \to \infty.$$

The multidimensional representation of the perturbed semigroup is also available.

In particular, it requires iterating double layer heat potentials.