Introduction

We consider a surface growth model,

\[u_t = -u_{xxx} - \varepsilon^2 |u_x|^2 \quad (1) \]

on the one-dimensional torus \(T = (-\pi, \pi) \). We prove two partial regularity results for this model. As with so many results for this equation, these parallel those available for the three-dimensional Navier-Stokes equations.

We show that the set of space-time singularities \(S \) has 1-dimensional (pseudo-)Hausdorff measure zero. We use the rescaling approach of Ladyzhenskaya & Seregin (1999). See Oziński & Robinson (2017) for a detailed presentation of the following results.

Notation

A weak solution to the surface growth model (1) on the time interval \((0, T)\) is any \(u \in L^\infty(0, T), L^2(0, T, B^2) \) satisfying (1) in the sense of distributions.

A suitable weak solution is a weak solution satisfying the local energy inequality

\[\int_0^t \int_Q u^2 \, dt \leq \int_0^t \int_Q \left(\frac{1}{2} u_{xx}^2 + 2u_x u_{xx} \right) + 2u_x u_{xxx} \, dt \]

\(\phi \leq \frac{1}{2} u^2 - \frac{1}{2} u_x^2 \) for all nonnegative \(\phi \in C_0^\infty(T \times (0, T)) \). Fix a suitable weak solution \(u \) and let \(S \) denote its singular set.

We write \(z = (x, t) \) and denote the \(r \)-cylinder by \(Q_r(z) = \{ (x, t) \mid |x - x_0| < r, |t - t_0| < r \} \); see Fig. 1.

\[Q_r(z) \]

\[2r \]

\[2r \]

\[z = (x, t) \]

\[2r^4 \]

\[2r \]

\[2r \]

We write the mean of \(u \) over a cylinder \(Q_r(z) \) as

\[\bar{u}_r = \frac{1}{|Q_r(z)|} \int_{Q_r(z)} u \, dx \]

and we also write

\[Y(x, r) = \frac{1}{|Q_r(z)|} \int_{Q_r(z)} |u|^2 \]

Preliminary results

Lemma 1 (Parabolic Poincaré inequality (PPI))

Suppose that \(u \) satisfies the surface growth equation

\[u_t = -u_{xxx} - \varepsilon^2 |u_x|^2 \quad (u \leq 1) \]

in the sense of distributions then

\[\frac{1}{\varepsilon} \int_{Q_r(z)} \left| u - u_0 \right|^2 \leq C \left(\varepsilon(Y(x, r) + \varepsilon Y(x, r)^2) \right) \]

Note there is no time derivative on the right-hand side.

Lemma 2 (Inner boundedness of the biharmonic flow)

Suppose that \(v \) is a solution to the biharmonic equation

\[\nabla^2 v = \nabla^2 \phi \quad (v \leq 1) \]

in the sense of distributions, and such that \(v \in L^2(Q_r(z)) \). Then

\[\int_{Q_r(z)} \left(|v|^2 \leq C \left(\int_{Q_r(z)} v^2 + 1 \right) \right) \]

\[\text{Corollary 5. There exist } \varepsilon > 0 \text{ and } R \text{ such that if } r < R \text{ and } \]

\[\varepsilon \left(\int_{Q_r(z)} |u|^2 \right) \leq \frac{1}{\varepsilon} \left(\int_{Q_r(z)} |u_x|^2 \right) \]

then

\[\frac{1}{\varepsilon} \int_{Q_r(z)} |u_x|^2 \leq C \varepsilon \frac{1}{\varepsilon} \left(\int_{Q_r(z)} |u_x|^2 \right) \]

for all \(\varepsilon \leq 1 \) and \(x \in Q_r(z) \).

The 1st regularity result

Lemma 3 (Campanato lemma)

If \(p \geq 1, r > 0, \alpha \in [0, 1] \) and \(u \) satisfies

\[\left(\frac{1}{2} \right) \int_{Q_r(z)} \left(|u - u_0|^2 \right)^{1/2} \leq C \varepsilon p \]

for all \(\varepsilon \leq 1 \) and \(x \in Q_r(z) \), then \(u \) is Hölder continuous in \(Q_r(z) \) with

\[|u(x, t) - u(y, s)| \leq C \left(|x - y| + |t - s|^{1/4} \right) \]

for all \((x, t), (y, s) \in Q_r(z) \).

The main iteration

Proposition 4. Given \(\theta \in (0, 1/4) \) there exist \(\varepsilon > 0 \) such that if \(r < R \) and

\[Y(x, r) \leq \theta Y(x, r) \]

then

\[Y(x, r) \leq \theta Y(x, r) \]

where \(\varepsilon \) is a universal constant.

Proof. Choose a particular value of \(\varepsilon \) (see Step 1 below) and suppose the claim is false, that is, for some \(\varepsilon > 0 \) there exist \(x \in Q_r(z) \) and \(\varepsilon_0 > 0 \) such that

\[Y(x, r) > \varepsilon_0 \]

and \(Y(x, r) \) is not singular.

The 2nd local regularity result

Theorem 2. (2nd local regularity of the surface growth model)

There exists \(\varepsilon > 0 \) such that if

\[\lim_{r \to 0} \int_{Q_r(z)} u^2 \leq \varepsilon \]

then \(u \) is regular at \(z \).

Proof. Set

\[A(r) = \sup_{r < s < T} \frac{1}{T-s} \int_s^T |u^2| ds \]

This work is supported by EPSRC as part of the MASDOC CDT.

References

Acknowledgement

This work is supported by EPSRC as part of the MASDOC CDT at the University of Warwick. Grant No. EP/H023884/1.