Partial regularity theory for the incompressible Navier-Stokes equations and counterexamples

Wojciech S. Ożański

1st March 2018
The Navier–Stokes equations

\[u_t + (u \cdot \nabla)u - \nu \Delta u + \nabla p = 0 \quad \text{in } \mathbb{R}^3 \times (0, \infty), \]
\[\text{div } u = 0, \]
\[u(0) = u_0, \]

where:
\[u : \mathbb{R}^3 \times (0, \infty) \to \mathbb{R}^3 \text{ - velocity field,} \]
\[p : \mathbb{R}^3 \times (0, \infty) \to \mathbb{R} \text{ - pressure function,} \]
\[\nu > 0 \text{ - kinematic viscosity.} \]
Existence and uniqueness of solutions

$$\|\nabla u_0\|_{L^2}$$
Existence and uniqueness of solutions
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \quad \| \nabla u(t) \|_{L^2} \]
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \quad \| \nabla u(t) \|_{L^2} \]
Existence and uniqueness of solutions

Leray weak solution

\[\|\nabla u_0\|_{L^2} \|\nabla u(t)\|_{L^2} \]

\[\|u_0\|_{L^2} \|u(t)\|_{L^2} \]

Leray (1934) [O. & Pooley (2017)]
Existence and uniqueness of solutions
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \]

\[\| u(t) \|_{L^2} \]

\[\| u(t) \|_{L^2} \]

Leray weak solution

\[\| \nabla u \|_{L^2} \]

\[\| u(t) \|_{L^2} \]

\[\| u_0 \|_{L^2} \]

\[\| u(t) \|_{L^2} \]
Existence and uniqueness of solutions

Leray weak solution

\[\|\nabla u_0\|_{L^2} \]
\[\|\nabla u(t)\|_{L^2} \]
\[\|u_0\|_{L^2} \]
\[\|u(t)\|_{L^2} \]

\[t_0 \quad t_1 \quad t_2 \]
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \quad \| \nabla u(t) \|_{L^2} \]

\[\| u_0 \|_{L^2} \quad \| u(t) \|_{L^2} \]

Leray weak solution

\[t_0 \quad t_1 \quad t_2 \quad T \]
Existence and uniqueness of solutions

\[\| \nabla u_0 \|_{L^2} \quad \| \nabla u(t) \|_{L^2} \]

\[\| u_0 \|_{L^2} \quad \| u(t) \|_{L^2} \]

Leray weak solution

\[\| \nabla u_0 \|_{L^2} \quad \| u(t) \|_{L^2} \]

\[t_0 \quad t_1 \quad t_2 \quad T \]
Existence and uniqueness of solutions

\[\dim(\mathcal{T}) \leq 1/2, \quad \text{where} \quad \mathcal{T} := \{ t > 0 : \| \nabla u(t) \|_{L^2} = \infty \} \]
Partial regularity theory

Let

\[S := \{ (x, t) : u \text{ is unbounded in any neighbourhood of } (x, t) \}. \]
Partial regularity theory

Let

\[S := \{(x, t): u \text{ is unbounded in any neighbourhood of } (x, t)\}. \]

Caffarelli, Kohn & Nirenberg (1982): \(\dim(S) \leq 1. \)
Partial regularity theory

Let

\[S := \{(x, t): u \text{ is unbounded in any neighbourhood of } (x, t)\}. \]

Caffarelli, Kohn & Nirenberg (1982): \(\dim(S) \leq 1. \)

Scheffer (1985 & 1987): constructions of weak solutions to the Navier–Stokes inequality,

\[
u \cdot (u_t - \nu \Delta u + (u \cdot \nabla) u + \nabla p) \leq 0,
\]

which show that the bound \(\dim(S) \leq 1 \) is sharp for such solutions.
Partial regularity theory

Let

\[S := \{(x, t) : u \text{ is unbounded in any neighbourhood of } (x, t)\}. \]

Caffarelli, Kohn & Nirenberg (1982): \(\dim(S) \leq 1. \)

Scheffer (1985 & 1987): constructions of weak solutions to the Navier–Stokes inequality,

\[u \cdot (u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p) \leq 0, \]

which show that the bound \(\dim(S) \leq 1 \) is sharp for such solutions.

O. (2017): constructions satisfying the “approximate equality”

\[-\vartheta \leq u \cdot (u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p) \leq 0 \]

for any preassigned \(\vartheta > 0. \)
The counterexample
by Scheffer (1987), see also Theorem 2 in O. (2017)

Theorem (Weak solutions of NSI with singularities)
There exist $\nu_0 > 0$ and a function $u : \mathbb{R}^3 \times [0, \infty) \to \mathbb{R}^3$ such that

(i) $u(t) \in C^\infty$, $\text{div } u(t) = 0$ and $\text{supp } u(t) \subset G$ for all t, where $G \subset \mathbb{R}^3$ is compact,

(ii) $u \in L^\infty(L^2) \cap L^2(H^1) \cap L^3(L^3)$, and $u p \in L^1(L^1)$, where

$$p(x, t) := \int_{\mathbb{R}^3} \sum_{i,j=1}^3 \frac{\partial_i u_j(y, t) \partial_j u_i(y, t)}{4\pi|x-y|} \, dy.$$

(iii) u satisfies the Navier–Stokes inequality for all $\nu \in [0, \nu_0]$,

(iv) u is unbounded in every neighbourhood of $S \times \{T_0\}$, where $S \subset \mathbb{R}^3$ is a uniform Cantor set with $\dim(S) \geq \xi$ for any preassigned $\xi \in (0, 1)$.

The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)

\[\text{supp } u(0)(\cdot, t) \]
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)

\[\text{supp } u^{(0)}(\cdot, t) \]
The counterexample by Scheffer (1987), see also Theorem 2 in O. (2017)