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These exercises are not assessed. There will be solutions much later, but better to solve them first and discuss
them with one another and/or the TAs before that. They relate to Chapter 1. Some may be new to you, but can
all be treated using elementary methods you know, often ”division with remainder”.

Recall: If 𝐿 ⊆ C is a subfield of C and 𝛼 ∈ C, then 𝐿(𝛼) denotes the smallest subfield of C that contains 𝐿 and 𝛼 :
equivalently

𝐿(𝛼) =
{
𝑝 (𝛼)
𝑞(𝛼)

���� 𝑝, 𝑞 ∈ 𝐿[𝑥] and 𝑞(𝛼) ≠ 0

}
Similarly 𝐿 (𝛼1, 𝛼2, . . . , 𝛼𝑠 ) is the field of all rational combinations of all of the 𝛼𝑖 and elements of 𝐿. (You can say
𝐿 (𝛼1, 𝛼2) = (𝐿 (𝛼1)) (𝛼2) or 𝐿 (𝛼1, 𝛼2) = (𝐿 (𝛼2)) (𝛼1) if you prefer adjoining elements one at a time.)

If you already took Algebraic NumberTheory, then that’s cheating and youmust explain the solutions to anybody
who asks who did not.

Exercise 1.1

Let 𝛼 =
√
7 (the positive root, by convention) and 𝐾 = Q(𝛼) ⊆ R.

(a) Recall that 𝛼 ∉ Q. (This was in Foundations. We don’t need the proof of this every time, but good to
be able to say correctly that this is true.)

(b) Show that if 𝑝 ∈ Q[𝑥] is a polynomial (with rational coefficients), then 𝑝 (𝛼) ∈ 𝐾 is the same as 𝑎+𝑏𝛼
for some 𝑎,𝑏 ∈ Q.

(c) If 𝑎, 𝑏 ∈ Q are not both zero, show that 1/(𝑎 + 𝑏𝛼) = 𝑐 + 𝑑𝛼 for some 𝑐, 𝑑 ∈ Q.

(d) Show that

𝐾 = {𝑎 + 𝑏𝛼 | 𝑎, 𝑏 ∈ Q}

(e) Find a Q-basis of 𝐾 and deduce that dimQ 𝐾 = 2.

1. Suppose that 𝛼 ∈ Q. Then there exists 𝑝, 𝑞 ∈ Z such that gcd(𝑝, 𝑞) = 1 and 𝛼 = 𝑝/𝑞. Squaring both sides
gives 7𝑞2 = 𝑝2. Hence 7 | 𝑝2. Since 7 is square-free, 7 | 𝑝 . So 72 | 𝑝2. It follows that 7 | 𝑞2 and hence 7 | 𝑞,
contradicting that 𝑝 and 𝑞 are coprime. Hence 𝛼 ∉ Q.

2. Write 𝑝 (𝑥) = ∑𝑛
𝑖=0 𝑐𝑖𝑥

𝑖 for 𝑐𝑖 ∈ Q. For 𝑖 = 2𝑘 , 𝛼𝑖 = (𝛼2)𝑘 = 7𝑘 ∈ Q; for 𝑖 = 2𝑘 + 1, 𝛼𝑖 = (𝛼2)𝑘 · 𝛼 = 7𝑘𝛼 . It
follows that 𝑝 (𝛼) = ∑⌊𝑛/2⌋

𝑘=0 𝑐2𝑘7𝑘 +
(∑⌊ (𝑛−1)/2⌋

𝑘=0 𝑐2𝑘+17𝑘
)
𝛼 = 𝑎 + 𝑏𝛼 for some 𝑎,𝑏 ∈ Q.

3. 1
𝑎 + 𝑏𝛼 =

𝑎 − 𝑏𝛼
(𝑎 + 𝑏𝛼)(𝑎 − 𝑏𝛼) =

𝑎 − 𝑏𝛼
𝑎2 − 𝑏2𝛼2 =

𝑎

𝑎2 − 7𝑏2
+ −𝑏
𝑎2 − 7𝑏2

𝛼 .

4. For any 𝑝 (𝛼)
𝑞(𝛼) ∈ 𝐾 , by (c) we have 1/𝑞(𝛼) = 𝑐 + 𝑑𝛼 for some 𝑐, 𝑑 ∈ Q. Now by (b) we have

𝑝 (𝛼)
𝑞(𝛼) = 𝑝 (𝛼) (𝑐 + 𝑑𝛼) = 𝑎 + 𝑏𝛼
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for some 𝑎,𝑏 ∈ Q.

5. We claim that {1, 𝛼} is aQ-basis of𝐾 . Suppose that 𝑎+𝑏𝛼 = 0 for some 𝑎, 𝑏 ∈ Q. If𝑏 ≠ 0 then 𝛼 = −𝑎/𝑏 ∈ Q
which contradicts (a). Hence 𝑎 = 𝑏 = 0. So 1, 𝛼 are linearly independent over Q. Moreover, (d) shows that
{1, 𝛼} spans 𝐾 . Hence it is a Q-basis. We have dimQ 𝐾 = 2.

Exercise 1.2

Show that if 𝛼 =
√
𝑑 for some nonzero 𝑑 ∈ Q, then Q(𝛼) = {𝑎 + 𝑏𝛼 | 𝑎,𝑏 ∈ Q} and compute dimQ. (You

might consider the case where 𝑑 = 𝑒2 is a square, 𝑒 ∈ Q, separately.) For which such 𝑑 is Q(
√
𝑑) ⊆ R?

Write 𝑑 = 𝑒2𝑎 for some 𝑒 ∈ Q⩾0 and 𝑎 ∈ Z square-free (not having any square divisor). If 𝑎 = 1, then 𝛼 = 𝑒 , and
Q(𝛼) = Q. So dimQ Q(𝛼) = 1. If 𝑎 ≠ 1, then Q(𝛼) = Q(

√
𝑒2𝑎) = Q(

√
𝑎). There are two cases:

1. 𝑎 > 0. Then𝛼 ∈ R and henceQ(𝛼) ⊆ R. The same proof asQuestion 1 shows thatQ(𝛼) = {𝑎 + 𝑏𝛼 | 𝑎,𝑏 ∈ Q}
and hence dimQ Q(𝛼) = 2.

2. 𝑎 < 0. Then 𝛼 ∉ R and hence Q(𝛼) ̸⊊ R. Note that for 1.(a) we immediately obtain that 𝛼 ∉ Q as Q ⊆ R.
For 1.(b)–(e), the same proof still works. dimQ Q(𝛼) = 2.

Exercise 1.3

Let 𝛼 =
√
2, 𝛽 =

√
3. Recall that 𝛼 ∉ Q and 𝛽 ∉ Q.

Show that 𝛼 ∉ Q(𝛽). (In other words, by the question above, show that there must be something wrong if
you try to write 𝛼 = 𝑎 + 𝑏𝛽 with 𝑎,𝑏 ∈ Q.)

Is 𝛽 ∈ Q(𝛼)? Considering the sequence of Q-vector spaces

Q ⊆ Q(𝛼) ⊆ Q(𝛼, 𝛽)

prove that dimQ Q(𝛼, 𝛽) > 2. Let 𝛾 =
√
6. Is 𝛾 ∈ Q(𝛼) ? Is 𝛾 ∈ Q(𝛽) ? Is 𝛼 ∈ Q(𝛾) ? Is 𝛽 ∈ Q(𝛾) ? (No, no,

no, no, no, no, no . . . just as the first one above.)

Why is Q(𝛾) ⊆ Q(𝛼, 𝛽) ? Use the dimension considerations above to show that these fields are not equal.

Find a quadratic polynomial 𝑓 = 𝑥2 + 𝑎𝑥 + 𝑏 ∈ Q[𝑥] (i.e. 𝑎, 𝑏 ∈ Q ) so that 𝑓 (𝛼𝛽) = 0. Find another
polynomial 𝑔 ∈ Q[𝑥] so that 𝑔(𝛼 + 𝛽) = 0(𝑔 is not necessarily quadratic). [Hint: in principle, when looking
for a polynomial 𝑔 ∈ Q[𝑥] with 𝛾 as a root, you can start computing a few of 𝛾,𝛾2, 𝛾3, . . . and look for linear
Q-linear relations among them. Later you’ll know you may need to go up to deg = 4 here.]

Suppose that 𝛼 ∈ Q(𝛽). Then
√
2 = 𝑎 +𝑏

√
3 for some 𝑎,𝑏 ∈ Q. Squaring both sides gives 2 = 𝑎2 + 3𝑏2 + 2𝑎𝑏

√
3, or

√
3 =

2 − 𝑎2 − 3𝑏2

2𝑎𝑏
∈ Q, which is a contradiction. Hence 𝛼 ∉ Q(𝛽).

The same proof shows that 𝛽 ∉ Q(𝛼). In particular, Q(𝛼) ⊊ Q(𝛼, 𝛽). Hence [Q(𝛼, 𝛽) : Q(𝛼)] > 1. By tower
law,

dimQ Q(𝛼, 𝛽) = [Q(𝛼, 𝛽) : Q] = [Q(𝛼, 𝛽) : Q(𝛼)] [Q(𝛼) : Q] > [Q(𝛼) : Q] = 2.

We have Q(𝛾) ⊆ Q(𝛼, 𝛽) because Q ⊆ Q(𝛼, 𝛽) and 𝛾 = 𝛼𝛽 ∈ Q(𝛼, 𝛽).

Note that dimQ Q(𝛾) = 2 < dimQ Q(𝛼, 𝛽). So these two fields are not equal.

𝛾 = 𝛼𝛽 =
√
6. Squaring both sides gives 𝛾2 = 6. Hence 𝛾 = 𝛼𝛽 is a root of the polynomial 𝑓 (𝑥) = 𝑥2 − 6. Let

𝛿 = 𝛼 + 𝛽 =
√
2 +

√
3. Squaring both sides gives 𝛿2 = 5 + 2

√
6. Hence 2

√
6 = 𝛿2 − 5. Again squaring both sides

gives 24 = 𝛿4 − 10𝛿2 + 25. Hence 𝛿 = 𝛼 + 𝛽 is a root of the polynomial 𝑔(𝑥) = 𝑥4 − 10𝑥2 + 1.
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Exercise 1.4

Show that Q
(
𝛼, 𝛼𝜔, 𝛼𝜔2) = Q(𝛼,𝜔), where 𝛼 = 3

√
2 ∈ R and 𝜔 is any primitive cube root of unity. [Hint:

to show Q (𝛼1, . . .) = Q (𝛽1, . . .), you just have to show that each 𝛼𝑖 ∈ Q (𝛽1, . . .) and each 𝛽 𝑗 ∈ Q (𝛼1, . . .)
- concretely, can you write 𝛼𝑖 as a combination of the 𝛽 𝑗 ’s, and conversely?]

Let 𝑓 = 𝑥3 − 2. Factorise 𝑓 in 𝑀 [𝑥] where 𝑀 = Q(𝛼𝜔). Compute an extension of 𝑀 over which the
irreducible quadratic factor splits (and so 𝑓 splits too).

It is clear that Q
(
𝛼, 𝛼𝜔, 𝛼𝜔2) ⊆ Q(𝛼,𝜔). For the reverse inclusion, we have 𝛼 ∈ Q

(
𝛼, 𝛼𝜔, 𝛼𝜔2) and 𝜔 =

𝛼𝜔

𝛼
∈

Q
(
𝛼, 𝛼𝜔, 𝛼𝜔2) . So the two fields are equal.

Write 𝛽 = 𝛼𝜔 . Note that 𝛽3 = 2. Then

𝑓 (𝑥) = 𝑥3 − 2 = 𝑥3 − 𝛽3 = (𝑥 − 𝛽) (𝑥2 + 𝛽𝑥 + 𝛽2) ∈ 𝑀 [𝑥] .

We claim that the quadratic factor 𝑥2 + 𝛽𝑥 + 𝛽2 is irreducible in𝑀 [𝑥]. Note that 𝑥2 + 𝛽𝑥 + 𝛽2 = (𝑥 − 𝛼)(𝑥 − 𝛼𝜔2)
in C[𝑥]. If it is reducible in 𝑀 [𝑥], then 𝛼, 𝛼𝜔2 ∈ 𝑀 . So 𝑀 = Q(𝛼, 𝛼𝜔, 𝛼𝜔2) = Q(𝛼,𝜔). Note that we have a
non-trivial tower of extensions:

Q ⊊ Q(𝛼) ⊊ Q(𝛼,𝜔).

By tower law, [𝑀 : Q] = [Q(𝛼,𝜔) : Q(𝛼)] [Q(𝛼) : Q] ⩾ 4. On the other hand, since 𝛽3 = 2, in Question 6 we
will check that

{
1, 𝛽, 𝛽2

}
is a Q-basis of𝑀 = Q(𝛽). Hence [𝑀 : Q] = 3. This is a contradiction.

It follows that we have a non-trivial extensionQ(𝛼,𝜔) | Q(𝛽), and we have shown that 𝑓 splits into linear factors
in Q(𝛼,𝜔) [𝑥].

Exercise 1.5

Compute the following divisions with remainder. That is, for the following pairs 𝑓 , 𝑔 ∈ 𝐾 [𝑥] compute
polynomials

𝑞, 𝑟 ∈ 𝐾 [𝑥] with deg(𝑟 ) < deg(𝑞) for which 𝑓 = 𝑞𝑔 + 𝑟

where, in truth, I only really care about 𝑟 today, but you might happen to find 𝑞 along the way.

(a) 𝑓 = 𝑥𝑛 − 1, 𝑔 = 𝑥 − 1 ∈ Q[𝑥] for 𝑛 = 2, 3, 4, 5.

(b) 𝑓 = 3𝑥5 + 7𝑥3 − 2𝑥 + 3, 𝑔 = 𝑥2 + 1 ∈ Q[𝑥]. (Compare with the complex number 3𝑖5 + 7𝑖3 − 2𝑖 + 3.)

(c) 𝑓 = 𝑥3 − 5, 𝑔 = 𝑥 − 𝛽 ∈ 𝐾 [𝑥] where 𝛽 = 3
√
5 and 𝐾 = Q(𝛽).

(a) 𝑥𝑛 − 1 = (𝑥 − 1) (𝑥𝑛−1 + · · · + 𝑥 + 1);

(b) 3𝑥5 + 7𝑥3 − 2𝑥 + 3 = (𝑥2 + 1)(3𝑥3 + 4𝑥) + (−6𝑥 + 3). In terms of complex numbers (i is a root of 𝑥2 + 1), this
means 35 + 73 − 2 + 3 = −6 + 3.

(c) 𝑥3 − 5 = 𝑥3 − 𝛽3 = (𝑥 − 𝛽)(𝑥2 + 𝛽𝑥 + 𝛽2).
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Exercise 1.6

Let 𝛼 = 3
√
2 and 𝐾 = Q(𝛼). Let 𝑓 = 𝑥3 − 2 ∈ Q[𝑥] and note that 𝑓 (𝛼) = 0.

(a) Show that 𝛼 ∉ Q. In particular, conclude that if 𝑔 = 𝑎 + 𝑏𝑥 ∈ Q[𝑥] is a linear polynomial (𝑏 ≠ 0),
then 𝑔(𝛼) ≠ 0.

(b) Suppose 𝑔 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 ∈ Q[𝑥] is a quadratic polynomial (𝑐 ≠ 0). Use the division algorithm to
show that if 𝑔(𝛼) = 0 then 𝑔 divides 𝑓 (in Q[𝑥] ). Conclude that 𝑔(𝛼) ≠ 0 for all quadratic 𝑔 ∈ Q[𝑥].

(c) Use that to show that
{
1, 𝛼, 𝛼2

}
is a Q-linearly independent subset of 𝐾 .

(d) Show that if 𝛾 =
∑𝑛

𝑖=0 𝑎𝑖𝛼
𝑖 , then 𝛾 is in the Q-span of

{
1, 𝛼, 𝛼2

}
. (In fact, this is a Q-basis of 𝐾 , as will

become clear in a moment.)

(e) Solve
(
𝑎 + 𝑏𝛼 + 𝑐𝛼2

)
(1+𝛼) ∈ Q for 𝑎,𝑏, 𝑐 ∈ Q. Use that to express (1+𝛼)−1 as aQ-linear combination

of
{
1, 𝛼, 𝛼2

}
.

(f) Express (1 + 3𝛼)/
(
1 − 𝛼2

)
in the Q-basis

{
1, 𝛼, 𝛼2

}
of 𝐾 .

(a) This is the same as 1.(a). Suppose that 𝛼 ∈ Q. Then there exists 𝑝, 𝑞 ∈ Z such that gcd(𝑝, 𝑞) = 1 and
𝛼 = 𝑝/𝑞. Squaring both sides gives 2𝑞3 = 𝑝3. Hence 2 | 𝑝3. Since 2 is cube-free, 2 | 𝑝 . So 23 | 𝑝3. It follows
that 22 | 𝑞3 and hence 2 | 𝑞, contradicting that 𝑝 and 𝑞 are coprime. Hence 𝛼 ∉ Q.

If 𝑔(𝛼) = 𝑎 + 𝑏𝛼 = 0, then 𝛼 = −𝑏/𝑎 ∈ Q, which is a contradiction. Hence 𝛼 is not a root of any linear
polynomial in Q[𝑥].

(b) By division algorithm, 𝑓 = 𝑞𝑔 + 𝑟 for some 𝑞, 𝑟 ∈ Q[𝑥] with deg 𝑟 < deg𝑔 = 2. If 𝑔(𝛼) = 0, then we also
have 𝑟 (𝛼) = 0. But 𝑟 (𝑥) is a constant or a linear polynomial. This contradicts (a).

(c) This is a rephrasing of (a) and (b).

(d) Write 𝑘 = ⌊𝑖/3⌋ to be the largest integer such that 3𝑘 ⩽ 𝑖 . Then we have 𝛼𝑖 = (𝛼3)𝑘 · 𝛼𝑖−3𝑘 = 2𝑘𝛼𝑖−3𝑘 ∈
spanQ

{
1, 𝛼, 𝛼2

}
. It follows that 𝛾 =

∑𝑛
𝑖=0 𝑎𝑖𝛼

𝑖 ∈ spanQ
{
1, 𝛼, 𝛼2

}
.

(e) Note that (1 − 𝛼 + 𝛼2)(1 − 𝛼) = 1 + 𝛼3 = 3 ∈ Q. Hence

1
1 + 𝛼 =

(1 − 𝛼 + 𝛼2)
(1 − 𝛼 + 𝛼2)(1 − 𝛼) =

1
3
− 1
3
𝛼 + 1

3
𝛼2 .

(f) Similarly, (1 + 𝛼 + 𝛼2) (1 − 𝛼2) = −3. Hence

1 + 3𝛼
1 − 𝛼2 =

(1 + 3𝛼) (1 + 𝛼 + 𝛼2)
(1 − 𝛼2)(1 + 𝛼 + 𝛼2) = −1

3

(
7 + 5𝛼 + 7𝛼2

)
.

Exercise 1.7

For each of 𝑛 = 1, 2, 3, 4, 5, draw the 𝑛th roots of unity on the Argand diagram, and express them all in both
polar and Cartesian coordinates. (You can find nice formulas in surds, either in memory or online or by
trig, for the particular trig values you encounter, such as cos(2𝜋/3) and similar.)

The 𝑛-th roots of unity are given by

𝜉𝑘𝑛 = exp

(
2𝜋𝑘i
𝑛

)
= cos

(
2𝜋𝑘
𝑛

)
+ i sin

(
2𝜋𝑘
𝑛

)
, 𝑘 = 0, 1, ..., 𝑛 − 1.

• 𝑛 = 1: 1.

• 𝑛 = 2: 1, −1.
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• 𝑛 = 3: 1, −1
2
+
√
3
2
i, −1

2
−
√
3
2
i.

• 𝑛 = 4: 1, i, −1, −i.

• 𝑛 = 5: 1,
√
5 − 1
4

+
√
10 + 2

√
5

4
i, −

√
5 + 1
4

+
√
10 − 2

√
5

4
i, −

√
5 + 1
4

−
√
10 + 2

√
5

4
i,
√
5 − 1
4

−
√
10 + 2

√
5

4
i.

For 𝑛 = 5, we have 𝜉5 − 1 = (𝜉 − 1)(𝜉4 + 𝜉3 + 𝜉2 + 𝜉 + 1). So we need to compute the roots of 𝑧4 + 𝑧3 + 𝑧2 + 𝑧 + 1.
Divide the whole equation by 𝑧2 and completing the square, we have(

𝑧 + 1
𝑧

)2
+
(
𝑧 + 1

𝑧

)
− 1 = 0.

Hence 𝑧 + 1
𝑧
=
±
√
5 − 1
2

. Let 𝜉 := exp

(
2𝜋
5

)
= cos

(
2𝜋
5

)
+ i sin

(
2𝜋
5

)
. Then this implies that

𝜉 + 1
𝜉
= 𝜉 + 𝜉4 =

√
5 − 1
2

; 𝜉2 + 1
𝜉2

= 𝜉2 + 𝜉3 = −
√
5 + 1
2

.

On the other hand,
𝜉 + 1

𝜉
= exp

(
2𝜋
5

)
+ exp

(
−2𝜋

5

)
= 2 cos

(
2𝜋
5

)
.

We deduce that cos
(
2𝜋
5

)
=

√
5 − 1
4

and hence sin
(
2𝜋
5

)
=

√
1 − cos2

(
2𝜋
5

)
=

√
10 + 2

√
5

4
.

Similarly for 𝜉2 we have cos
(
4𝜋
5

)
= −

√
5 + 1
4

and sin

(
4𝜋
5

)
=

√
1 − cos2

(
4𝜋
5

)
=

√
10 − 2

√
5

4
.

Figure 1: Fifth roots of unity

Exercise 1.8

Find the smallest subfield 𝐿 ⊆ C over which the polynomial 𝑥5 − 5𝑥3 − 𝑥2 + 5 splits into linear factors.
(Answer: 𝐿 = Q(

√
5,
√
−3).) Same for

(
𝑥3 − 3

) (
𝑥2 + 3

)
.

The subfield 𝐿 of C is generated over Q by all the roots of the polynomial 𝑥5 − 5𝑥3 − 𝑥2 + 5, which factorises in
C[𝑥] as

𝑥5 − 5𝑥3 − 𝑥2 + 5 = (𝑥2 − 5)(𝑥3 − 1) = (𝑥 +
√
5)(𝑥 −

√
5)(𝑥 − 1) (𝑥 − 𝜔)(𝑥 − 𝜔2),

where 𝜔 is a primitive third root of unity. It follows that 𝐿 = Q(
√
5, 𝜔) = Q(

√
5,
√
−3).

For
(
𝑥3 − 3

) (
𝑥2 + 3

)
, it factorises as

(𝑥 − 3
√
3)(𝑥 − 3

√
3𝜔) (𝑥 − 3

√
3𝜔2) (𝑥 −

√
−3)(𝑥 +

√
−3).

Hence 𝐿 = Q( 3
√
3, 𝜔,

√
−3) = Q( 3

√
3,
√
−3). (Note that 𝜔 =

−1 +
√
−3

2
lies in Q(

√
−3).)
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