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Section A: Warn-up questions
Exercise 2.1

Let 𝛼 =
√
−5 ∈ C and consider the field 𝐾 = Q(𝛼) ⊆ C. Express

1 + 2𝛼 + 3𝛼2 + 4𝛼3

5 + 7𝛼 + 11𝛼2
∈ 𝐾

in the form 𝑎 + 𝑏𝛼 with 𝑎,𝑏 ∈ Q.

Using that 𝛼2 = −5,

1 + 2𝛼 + 3𝛼2 + 4𝛼3

5 + 7𝛼 + 11𝛼2
=
−14 − 18𝛼
−50 + 7𝛼

=
(−14 − 18𝛼) (50 + 7𝛼)
(−50 + 7𝛼) (50 + 7𝛼) =

−70 − 998𝛼
−2745 =

14
549

+ 998
2745

𝛼.

Exercise 2.2

Let 𝑓 ∈ R[𝑥]. If 𝑧 ∈ C is a root of 𝑓 , show that 𝑧 is another root of 𝑓 . (Bear in mind that 𝑓 (𝑧) is just some
complex number, so 𝑓 (𝑧) makes sense. Recall that complex conjugation is a ring homomorphism, so that
𝑧1 + 𝑧2 = 𝑧1 + 𝑧2 and 𝑧1𝑧2 = 𝑧1 · 𝑧2.)

Since complex conjugation is an R-algebra homomorphism, 𝑓 (𝑧) = 𝑓 (𝑧). Since 𝑧 is a root of 𝑓 , then 𝑓 (𝑧) = 0. So
𝑓 (𝑧) = 𝑓 (𝑧) = 0. So 𝑧 is another root of 𝑓 .

Exercise 2.3

Show that any polynomial 𝑓 ∈ R[𝑥] factorises as 𝑓 = 𝑐ℎ1ℎ2 · · ·ℎ𝑠 , where 𝑐 ∈ R and each ℎ𝑖 ∈ R[𝑥] is either
a monic linear polynomial ℎ𝑖 = 𝑥 − 𝑎𝑖 or a monic quadratic polynomial ℎ𝑖 = 𝑥2 +𝑏𝑖𝑥 + 𝑐𝑖 with 𝑏2𝑖 − 4𝑐𝑖 < 0.

By fundamental theorem of algebra, 𝑓 splits into linear factors over C: 𝑓 (𝑥) = 𝑐 (𝑥 − 𝑧1) · · · (𝑥 − 𝑧𝑛) for some
𝑧1, ..., 𝑧𝑛 ∈ C. For each root 𝑧𝑖 of 𝑓 , if 𝑧𝑖 ∉ R, then 𝑧𝑖 is also a root of 𝑓 by Question 2. So 𝑧𝑖 = 𝑧 𝑗 for some 𝑗 ≠ 𝑖 .
In other words, the imaginary roots of 𝑓 comes in pairs. So we can write 𝑓 ∈ C[𝑥] as

𝑓 (𝑥) = 𝑐 (𝑥 − 𝑥1) · · · (𝑥 − 𝑥𝑟 ) (𝑥 − 𝑦1) (𝑥 − 𝑦1) · · · (𝑥 − 𝑦𝑠 ) (𝑥 − 𝑦𝑠 )

where 𝑥1, ..., 𝑥𝑟 ∈ R and 𝑦1, ..., 𝑦𝑠 ∈ C \ R. Note that (𝑥 − 𝑦𝑖 )(𝑥 − 𝑦𝑖 ) = 𝑥2 − 2 Re(𝑦𝑖 )𝑥 + |𝑦𝑖 |2. The discriminant
corresponding to this quadric Δ𝑖 < 0 because it has no real roots. In summary, we have 𝑓 ∈ R[𝑥] factoring over
R as

𝑓 (𝑥) = 𝑐 (𝑥 − 𝑥1) · · · (𝑥 − 𝑥𝑟 ) (𝑥2 − 2 Re(𝑦1)𝑥 + |𝑦1 |2) · · · (𝑥2 − 2 Re(𝑦𝑠 )𝑥 + |𝑦𝑠 |2).
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Exercise 2.4

Consider the (R-algebra) homomorphism𝜑 : R[𝑥] → C determined by𝜑 (𝑥) = 𝑖 . Check that𝜑
(
𝑥2 + 1

)
= 0.

Show that ker𝜑 is the ideal
(
𝑥2 + 1

)
generated by 𝑥2+1. [If 𝑝 ∈ ker𝜑 , then consider division with remainder

of 𝑝 by 𝑥2 + 1.]

Recall that 𝑓 = 𝑥3 − 2 ∈ Q[𝑥] is irreducible. (Easy to prove this case: if 𝑓 = 𝑔ℎ, then one of 𝑔 and ℎ must
be linear, so 𝑓 has a root in Q, contradiction.)

Let 𝛼 = 3
√
2 ∈ R. Consider 𝜑 : R[𝑥] → C determined by 𝜑 (𝑥) = 𝛼 . Check that 𝜑 (𝑓 ) = 0. Show that ker𝜑 is

the ideal (𝑓 ) generated by 𝑓 .

The onlyR-algebra homomorphism𝜑 : R[𝑥] → 𝐶 with𝜑 (𝑥) = i is given by 𝑓 (𝑥) ↦−→ 𝑓 (i). So𝜑 (𝑥2+1) = i2+1 = 0.
Hence

⟨
𝑥2 + 1

⟩
⊆ ker𝜑 . To show the reverse inclusion, suppose that 𝑔(𝑥) ∈ ker𝜑 . By division algorithm,

𝑔(𝑥) = (𝑥2 + 1)ℎ(𝑥) + (𝑎𝑥 + 𝑏) for some 𝑎,𝑏 ∈ R It follows that

0 = 𝜑 (𝑔) = 𝜑 (𝑥2 + 1)𝜑 (ℎ) + 𝑎i + 𝑏 = 𝑎i + 𝑏.

Hence 𝑎 = 𝑏 = 0. So 𝑔(𝑥) = (𝑥2 + 1)ℎ(𝑥) ∈
⟨
𝑥2 + 1

⟩
. We conclude that ker𝜑 =

⟨
𝑥2 + 1

⟩
.

Since 𝛼 = 3
√
2, 𝛼3 = 2. Then 𝜑 (𝑓 ) = 𝜑 (𝑥3 − 2) = 𝛼3 − 2 = 0. Since R[𝑥] is a PID (this could be proved using

division algorithm), ker𝜑 = ⟨𝑔⟩ for some 𝑔 ∈ R[𝑥]. Since 𝑓 ∈ ker𝜑 (𝑥), 𝑓 = 𝑔ℎ for some ℎ ∈ R[𝑥]. But 𝑓 is
irreducible, so ℎ is a unit (i.e. ℎ ∈ R×). It follows that ker𝜑 = ⟨𝑔⟩ = ⟨𝑓 ⟩.

Section B: Problems to hand in
Exercise 2.5

Let 𝜔 ∈ C be a primitive 5 th root of unity, so 𝜔5 = 1, 𝜔 ≠ 1
)
.

(a) Show that 𝜔4 + 𝜔3 + 𝜔2 + 𝜔 + 1 = 0.

(b) Show that 𝜔 ∉ R. (Hint: Analysis.)

(c) Show that Q(𝜔) = Q
(
𝜔𝑖

)
, 𝑖 = 1, 2, 3, 4.

(a) This follows from the fact that 0 = 𝜔5 − 1 = (𝜔 − 1)(𝜔4 + 𝜔3 + 𝜔2 + 𝜔 + 1) and that 𝜔 − 1 ≠ 0.

(b) Consider the function 𝑓 : R → R given by 𝑓 (𝑥) = 𝑥5 − 1. Its derivative 𝑓 ′ (𝑥) = 5𝑥4 satisfies 𝑓 ′ (𝑥) ⩾ 0 for
all 𝑥 ∈ R. Hence 𝑓 is non-decreasing. If 𝜔 ∈ R, that 𝑓 (𝜔) = 0 implies that 𝑓 (𝑥) is identically zero between
1 and 𝜔 . Since 𝜔 ≠ 1 and 𝑓 is a polynomial, this is impossible.

(c) That Q
(
𝜔𝑖

)
⊆ Q(𝜔) is obvious. As gcd(𝑖, 5) = 1 for 𝑖 = 1, 2, 3, 4, there exists 𝑘𝑖 ∈ {1, 2, 3, 4} such that

𝑖𝑘𝑖 = 1 mod 5 and thus 𝜔𝑖𝑘𝑖 = 𝜔, 𝑖 = 1, 2, 3, 4. This shows the other direction.

Exercise 2.6

(a) Show that there does not exist an element 𝛼 ∈ R, such that 𝛼2 = −1.

(b) Show that for all 𝐷 < 0, 𝐷 ∈ R, [R(
√
𝐷) : R] = 2.

(a) It is a very standard exercise in Analysis I showing that 𝑥2 ⩾ 0 for all 𝑥 in an ordered field from the axioms.

• Suppose that 𝑥 > 0. By the axiom 𝑥2 = 𝑥 · 𝑥 ⩾ 0.

• Suppose that 𝑥 = 0. Then 𝑥2 = 0 ⩾ 0.

• Suppose that 𝑥 < 0. 𝑥 + (−𝑥) = 0 > 𝑥 implies that −𝑥 > 0. Then 𝑥2 = (−𝑥) · (−𝑥) ⩾ 0.

(b) (b) The polynomial 𝑥2 + 𝐷 is irreducible in R[𝑥], because otherwise it would have a root in R, which we
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showed in (a) to be impossible. The field R(
√
𝐷) =

{
𝑎 + 𝑏

√
𝐷

𝑐 + 𝑑
√
𝐷
;𝑎,𝑏, 𝑐, 𝑑 ∈ R, (𝑐, 𝑑) ≠ (0, 0)

}
. However we

can clear the denominator of 𝑎 + 𝑏
√
𝐷

𝑐 + 𝑑
√
𝐷

by multiplying by 𝑐 − 𝑑
√
𝐷 . This shows that {1,

√
𝐷} is a basis for

R[
√
𝐷].

Exercise 2.7

Let 𝑓 (𝑋 ) = 𝑋 5 − 2.

(a) Show that 𝑓 is irreducible.

(b) Show that 𝑓 has a real root.

(c) Show that there are three roots 𝛼, 𝛽,𝛾 of 𝑓 , such that Q(𝛼),Q(𝛽),Q(𝛾) are three pairwise distinct
fields. You may assume that for all roots of 𝛼 of 𝑓 , [Q(𝛼) : Q] ⩽ 5.

1. Apply the Eisenstein criterion with the prime 2.

2. The real continuous function 𝑓 (𝑥) = 𝑥5−2 satisfies 𝑓 (−1) = −3 < 0 and 𝑓 (2) = 30 > 0. By the intermediate
value theorem we deduce that 𝑓 has a real root.

3. Take 𝛼 to be a real root of 𝑓 . Then for any other root 𝛽 ≠ 𝛼 of 𝑓 , 𝜔 = 𝛽/𝛼 ≠ 1, satisfies 𝜔5 = 1. From Q5(b),
we know that 𝜔 is not real. We can also check that 𝛽𝑘 = 𝛼𝜔𝑘 , 𝑘 = 0, 1, 2, 3, 4 are distinct roots of 𝑓 . Since
suppose we would have 0 ⩽ 𝑖 < 𝑗 ⩽ 4 such that 𝛽𝑖 = 𝛽 𝑗 ,this would imply that 𝛽 𝑗/𝛽𝑖 = 𝜔 𝑗−𝑖 = 1. Since
gcd( 𝑗 − 𝑖, 5) = 1, there exists 𝑘 ∈ {1, 2, 3, 4} such that 𝑘 ( 𝑗 − 𝑖) ≡ 1 mod 5. Hence 𝜔 = 𝜔 ( 𝑗−𝑖 )𝑘 = 1. This
contradicts that 𝜔 ∉ R.

Now suppose that Q(𝛼) = Q (𝛽𝑘 ) for some 𝑘 ∈ {1, 2, 3, 4}. Then 𝜔𝑘 = 𝛽𝑘/𝛼 ∈ Q(𝛼) but we know that 𝜔𝑘

is not real as it satisfies the conditions of Q5. Contradiction.

Now suppose that Q (𝛽2) = Q (𝛽1). Then 𝛽21/𝛽2 = 𝛼 ∈ Q (𝛽1). So Q(𝛼) is a subfield of Q (𝛽1) and because
[Q (𝛽1) : Q] ⩽ 5 it follows from the tower law that Q(𝛼) = Q (𝛽1). This in turn implies that 𝛽1 ∈ R and
hence 𝜔 ∈ R. A contradiction to Q5(b).

In conclusion, Q(𝛼), Q(𝛼𝜔) and Q(𝛼𝜔2) are three pairwise distinct fields.

Exercise 2.8

Let 𝑓 = 𝑥3 + 𝑥 + 2 ∈ C[𝑥].

(a) Express the roots of 𝑓 in terms of radicals of rational numbers.

(b) What is the smallest subfield of C that contains all the roots of 𝑓 ? (Express your answer in the form
Q(𝛼) for some specified 𝛼 ∈ C.)

(a) Observe that −1 is a root of 𝑓 . Then

𝑓 (𝑥) = 𝑥3 + 𝑥 + 2 = (𝑥 + 1)(𝑥2 − 𝑥 + 2) = (𝑥 + 1)
(
𝑥 − 1 +

√
−7

2

) (
𝑥 − 1 −

√
−7

2

)
.

Hence the roots of 𝑓 are −1, 1 +
√
7i

2
, and 1 −

√
7i

2
.

(b) The field is Q(
√
−7).

Section C: Additional problems
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Exercise 2.9

If 𝐾 is a field (or even an integral domain) prove that 𝐾 [𝑥] is an integral domain.

Consider non-zero 𝑓 , 𝑔 ∈ 𝐾 [𝑥] such that 𝑓 𝑔 = 0. Write 𝑓 (𝑥) = ∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) = ∑𝑚
𝑖=0 𝑏𝑖𝑥

𝑖 , where 𝑎𝑛 ≠ 0 and
𝑏𝑚 ≠ 0. Note that

𝑓 (𝑥)𝑔(𝑥) =
(

𝑘∑
𝑖=0

𝑎𝑖𝑥
𝑖

) (
𝑚∑
𝑖=0

𝑏𝑖𝑥
𝑖

)
= 𝑎𝑛𝑏𝑚𝑥

𝑛+𝑚 +
𝑛+𝑚−1∑
𝑖=0

𝑐𝑖𝑥
𝑖 .

Since 𝐾 is an integral domain, 𝑎𝑛𝑏𝑚 ≠ 0. Hence 𝑓 𝑔 ≠ 0. We conclude that 𝐾 [𝑥] is an integral domain.

Exercise 2.10

Consider a cubic 𝑓 = 𝑥3 + 𝑝𝑥 + 𝑞 with 𝑝, 𝑞 ∈ C. Let 𝛼1, 𝛼2, 𝛼3 be the 3 roots (in C, possibly with repeats).
Define the discriminant Δ to be

Δ = (𝛼1 − 𝛼2)2 (𝛼1 − 𝛼3)2 (𝛼2 − 𝛼3)2

Comparing coefficients after expanding 𝑓 = (𝑥 − 𝛼1) (𝑥 − 𝛼2) (𝑥 − 𝛼3), express Δ in terms of 𝑝 and 𝑞. (The
answer should be −27𝑞2 − 4𝑝3. You can certainly do this by hand, but it might be easier to use a computer
to do the multiplications.)

Besides a brute force computation, we can also use the following trick. Let 𝑆𝑛 = 𝑆 (𝛼1, 𝛼2, 𝛼3) be the 𝑛-th elemen-
tary symmetric polynomial in 𝛼1, 𝛼2, 𝛼3. Then we know that

𝑆1 = 𝛼1 + 𝛼2 + 𝛼3 = 0; 𝑆2 = 𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼1 = 𝑝; 𝑆3 = 𝛼1𝛼2𝛼3 = −𝑞.

Note that Δ = (𝛼1 − 𝛼2)2 (𝛼1 − 𝛼3)2 (𝛼2 − 𝛼3)2 is a symmetric polynomial in 𝛼1, 𝛼2, 𝛼3 and is homogeneous of
degree 6. By the fundamental theorem of symmetric polynomials, Δ is a polynomial in Z[𝑆1, 𝑆2, 𝑆3]. Since 𝑆1 = 0,
by comparing the degree we have Δ = 𝑎𝑆23 +𝑏𝑆32 = 𝑎𝑞2 +𝑏𝑝3 for some 𝑎,𝑏 ∈ Z. To determine 𝑎, 𝑏 we consider the
following two special cases:

• 𝛼1 = 𝛼2 = 𝑡 and 𝛼3 = −2𝑡 . In this case we have Δ = 0, 𝑞 = −2𝑡3, and 𝑝 = −3𝑡2. Hence 4𝑎 + 27𝑏 = 0.

• 𝛼1 = 𝑡 , 𝛼2 = −𝑡 and 𝛼3 = 0. In this case we have Δ = 4𝑡6, 𝑞 = 0, and 𝑝 = −𝑡2. Hence 4 = −𝑏.

Solving the equations we obtain that 𝑎 = −27 and 𝑏 = −4. That is, Δ = −27𝑞2 − 4𝑝3.

Exercise 2.11

What is the degree of the extension Q(𝛼) over Q, where 𝛼 is a root of 𝑥5 − 3𝑥3 − 2𝑥2 + 6 ? (Beware: not
every polynomial is irreducible … in which case it might depend on which root we’re talking about …)

In C[𝑥] we have

𝑥5 − 3𝑥3 − 2𝑥2 + 6 = (𝑥3 − 2) (𝑥2 − 3) = (𝑥 +
√
3) (𝑥 −

√
3) (𝑥 − 3

√
2) (𝑥 − 3

√
2𝜔) (𝑥 − 3

√
2𝜔2)

where 𝜔 is a primitive third root of unity.

If 𝛼 =
√
3 or −

√
3, thenQ(𝛼) = Q(

√
3) is a quadratic extension ofQ. If 𝛼 = 3

√
2, 3
√
2𝜔 or 3

√
2𝜔2, then [Q(𝛼) : Q] = 3

since the minimal polynomial of 𝛼 over Q is given by 𝑥3 − 2.
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