
MA3D5 Galois Theory
Sheet 3 Solutions

Peize Liu
22 Oct 2024

Exercise 3.1

Find the minimal polynomials 𝑓 ∈ 𝐾 [𝑥] of the given elements of the given extensions 𝐿/𝐾 :

(a) 𝛾 in Q(𝛾)/Q, where 𝛾 =
√
5.

(b) 𝛾 + 1 in Q(𝛾)/Q (same 𝛾 as (a)).

(c) 𝜔 (a primitive cube root of unity) in C/Q.

(d) 𝜔 (a primitive cube root of unity) in C/Q(
√
−3).

(e) 𝛿 =
√
2 +

√
3 in C/Q. (No need to prove irreducibility in this case, unless you want to - will discuss

more later.)

(f) 𝛿 =
√
2 +

√
3 in C/Q(

√
2).

(a) 𝛾 =
√
5 implies that 𝛾 is a root of 𝑓1 (𝑥) = 𝑥2 − 5. 𝑓1 is irreducible over Q because it has no rational roots.

Hence 𝑓1 is the minimal of 𝛾 .

(b) Let 𝛼 = 𝛾 + 1 =
√
5 + 1. Then 5 = (𝛼 − 1)2. Hence 𝛾 + 1 is a root of 𝑓2 (𝑥) = 𝑥2 − 2𝑥 − 4 because it has no

rational roots. Hence 𝑓2 is the minimal of 𝛾 + 1.

(c) 𝜔 satisfies𝜔3 = 1 and𝜔 ≠ 1. Note that 0 = 𝜔3−1 = (𝜔−1)(𝜔2+𝜔+1). Hence𝜔 is a root of 𝑓3 (𝑥) = 𝑥2+𝑥+1.
𝑓3 is irreducible because it has no rational roots (in fact its roots 𝜔,𝜔2 ∉ R). Hence 𝑓3 is the minimal of 𝛾 .

(d) We take 𝜔 = exp

(
2𝜋 i
3

)
=

−1 +
√
−3

2
. Then 𝜔 ∈ Q(

√
−3). The minimal polynomial of 𝜔 in Q(

√
−3) [𝑥] is

just 𝑓4 (𝑥) = 𝑥 − 𝜔 .

(e) Since 𝛿 =
√
2 +

√
3, then

√
3 =

√
2 − 𝛿 . Taking the square of both sides gives 3 = 2 + 𝛿2 − 2𝛿

√
2. Rearrange:

2𝛿
√
2 = 𝛿2−1. Again taking the square: 8𝛿2 = 𝛿4−2𝛿2+1. Hence 𝛿 is a root of 𝑓5 (𝑥) = 𝑥4−10𝑥2+1 ∈ Q[𝑥].

We claim that 𝑓5 is the minimal polynomial of 𝛿 over Q. It suffices to show that [Q(𝛿) : Q] = deg 𝑓5 = 4.
Observe that

𝛿3 = (
√
2 +

√
3)3 = 11

√
2 + 9

√
3.

Then we have
√
2 =

1
2

(
(
√
2 +

√
3)3 − 9(

√
2 +

√
3)
)
∈ Q(𝛿)

√
3 =

1
2

(
11(

√
2 +

√
3) − (

√
2 +

√
3)3

)
∈ Q(𝛿) .

This shows Q(
√
2,
√
3) ⊆ Q(𝛿). The reverse inclusion is obvious. We deduce that Q(𝛿) = Q(

√
2,
√
3).

Suppose that
√
2 ∈ Q(

√
3). Every element of Q(

√
3) is of the form 𝑎 + 𝑏

√
3 for some 𝑎,𝑏 ∈ Q. Write

√
2 = 𝑎 + 𝑏

√
3. Taking the square of both sides gives

√
3 =

2 − 𝑎2 − 3𝑏2

2𝑎𝑏
. Note that RHS is a rational

number, thus giving a contradiction.

Therefore we obtain a tower of non-trivial extensions Q ⊊ Q(
√
3) ⊊ Q(𝛿). Hence by tower law, [Q(𝛿) :

Q] = [Q(𝛿) : Q(
√
3)] [Q(

√
3) : Q] ⩾ 2 · 2 = 4. We conclude that [Q(𝛿) : Q] = 4 and 𝑓5 is the minimal

polynomial of 𝛿 over Q.

(f) Recall that we have shown that 𝛿 satisfies 𝛿2 − 2
√
2𝛿 − 1 = 0. Hence 𝛿 is a root of 𝑓6 (𝑥) = 𝑥2 − 2

√
2𝑥 − 1 ∈

1



Q(
√
2) [𝑥]. 𝑓6 is irreducible overQ(

√
2), asQ(𝛿) is a non-trivial extension ofQ(

√
2). Hence 𝑓6 is theminimal

polynomial of 𝛿 over Q(
√
2).

Exercise 3.2

(From Ian Stewart’s book.) Consider complex numbers 𝛼, 𝛽 whose minimal polynomials over Q are 𝑥2 − 2
and 𝑥2 − 4𝑥 + 2 respectively. Show that Q(𝛼) and Q(𝛽) are isomorphic.

Observe that the change of variable 𝑥 ↦−→ 𝑡 = 𝑥 + 2 changes 𝑥2 − 2 to (𝑡 − 2)2 − 2 = 𝑡2 − 4𝑡 + 2. This implies that
𝛽 = 𝛼 + 2. So Q(𝛽) = Q(𝛼 + 2) = Q(𝛼). These two fields are not only isomorphic but in fact equal as subfields of
C.

Exercise 3.3

Let 𝛼 = 3
√
2 ∈ R and 𝛽 = 𝛼𝜔 where 𝜔 is a primitive cube root of unity. Show that Q(𝛼) and Q(𝛽) are

isomorphic (but distinct subfields of C).

Find a third distinct subfield of C that is isomorphic to them both. Is there a fourth one?

Let 𝜑 : Q(𝛼) → Q(𝛽) be a Q-algebra homomorphism such that 𝜑 (𝛼) = 𝛽 . This is well-defined as 𝛼3 = 𝛽3 = 2.
This is an isomorphism with inverse given by 𝜑−1 (𝛽) = 𝛼 .

Q(𝛼) ≠ Q(𝛽) because Q(𝛼) ⊆ R while Q(𝛼) ⊄ R.

A third distinct subfield of C isomorphism to them would be Q(𝛼𝜔2). These are pairwise distinct by the same
argument as Question 7(c) of Sheet 2.

Suppose that 𝐾 is a subfield of C isomorphic to Q(𝛼). Let 𝜑 : Q(𝛼) → 𝐾 be the field isomorphism and let
𝛿 := 𝜑 (𝛼). It follows that 𝛿3 − 2 = 𝜑 (𝛼3 − 2) = 𝜑 (0) = 0. So 𝛿 ∈ {𝛼, 𝛼𝜔, 𝛼𝜔3}. It follows that 𝐾 contains Q(𝛼),
Q(𝛼𝜔) or Q(𝛼𝜔2) as a subfield. But [𝐾 : Q] = [Q(𝛼) : Q] = 3. So 𝐾 is equal to one of Q(𝛼), Q(𝛼𝜔), Q(𝛼𝜔2).
There is no a fourth distinct isomorphic subfield.

Exercise 3.4

Let 𝐾 = C. Are there any (non-trivial) algebraic field extensions 𝐿/𝐾? [Hint: Let 𝐿/𝐾 be such an extension
and 𝛼 ∈ 𝐿 \ 𝐾 . What is the minimal polynomial of 𝛼 over C ? You may use the fundamental theorem of
algebra.]

Are there any (non-trivial) field extensions 𝐿/𝐾 (again for 𝐾 = C)?

Suppose that 𝐿/C is a non-trivial algebraic extension. Take 𝛼 ∈ 𝐿 \ C. Since 𝛼 is algebraic over 𝐾 , there exists
𝑓 (𝑥) ∈ C[𝑥] such that 𝑓 (𝛼) = 0. In particular we take 𝑓 to be the minimal polynomial 𝑚𝛼 ∈ C[𝑥] of 𝛼 . By
the fundamental theorem of algebra, 𝑚𝛼 splits into linear factors. In particular𝑚𝛼 (𝑥) = (𝑥 − 𝛼)𝑔(𝑥) for some
𝑔(𝑥) ∈ C[𝑥], contradicting the minimality. Hence C has no non-trivial algebraic extension.

But the field of rational functions over C, C(𝑥) is a non-trivial field extension of C. It is in fact a transcendental
extension. You will see a lot of such examples in the commutative algebra or algebraic geometry module.

Exercise 3.5

Give an example of two finite extensions 𝐿1, 𝐿2 ⊆ C of Q that have the same degree, [𝐿1 : Q] = [𝐿2 : Q],
but are not isomorphic (and not seen in lectures).

I am not sure if this is covered in the lectures but the simplest example is to take 𝐿1 = Q(
√
2) and 𝐿2 = Q(

√
3).

Suppose that there exists a field isomorphism 𝜑 : 𝐿1 → 𝐿2. Since Q is a prime subfield of both 𝐿1 and 𝐿2, the fact
that 𝜑 (1) = 1 forces 𝜑 |Q = id. Since 𝛼 =

√
2 ∈ 𝐿1 satisfies 𝛼2 − 2 = 0, then 𝜑 (𝛼2 − 2) = 𝜑 (𝛼)2 − 2 = 0 ∈ 𝐿2.
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Hence 𝐿2 contains a root of 𝑥2 − 2 ∈ Q[𝑥], which means 𝛼 =
√
2 ∈ 𝐿2. In Q1.(e) we have shown that this is

impossible.

F⊯
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