MA3D5 Galois Theory Sheet 4 Solutions

Peize Liu

7 Nov 2024

Section A: Warn-up questions

Exercise 4.1

Show that $\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$ for any θ . [E.g. use $\exp(3x) = \exp(x)^3$.]

Since $\exp(3\theta) = \exp(\theta)^3$, by Euler's formula we have

$$\cos(3\theta) + i\sin(3\theta) = (\cos\theta + i\sin\theta)^3$$
$$= \cos^3\theta + 3i\cos^2\theta\sin\theta - 3\cos\theta\sin^2\theta - i\sin^3\theta.$$

Taking the real parts of both sides:

$$\cos(3\theta) = \cos^3 \theta - 3\cos\theta \sin^2 \theta$$
$$= \cos^3 \theta - 3\cos\theta (1 - \cos^2 \theta)$$
$$= 4\cos^3 \theta - 3\cos\theta.$$

Exercise 4.2

Use the formula for the roots of a cubic to show that 4 is a root of $y^3 - 15y - 4$.

This is the standard cubic $y^3 + py + q$ with p = -15 and q = -4. The discriminant is given by

$$D = q^2 + \frac{4p^3}{27} = -484 = (22i)^2$$

One of the root is therefore given by

$$\alpha = \sqrt[3]{\frac{-q + \sqrt{D}}{2}} + \sqrt[3]{\frac{-q - \sqrt{D}}{2}} = \sqrt[3]{2 + 11i} + \sqrt[3]{2 - 11i} = (2 + i) + (2 - i) = 4$$

Exercise 4.3

Let $\varphi : L \to L$ be an automorphism of a field *L*. Explain why the map φ^{-1} exists, and show that it is also an automorphism of *L*.

(E.g. to show $\varphi^{-1}(ab) = \varphi^{-1}(a)\varphi^{-1}(b)$ it may help to set $a = \varphi(x)$ and $b = \varphi(y)$ for some $x, y \in L$, which is fine as φ is a bijection.)

In the notes a field automorphism φ is defined to be a bijection ring homomorphism between fields. Since φ is bijective, its inverse φ^{-1} exists as a map between the underlying sets. To check that it is also a ring homomorphism,

pick $a, b \in L$. Set $a = \varphi(x)$ and $b = \varphi(y)$. Then $ab = \varphi(xy)$. Since φ is bijective,

$$\varphi^{-1}(ab) = xy = \varphi^{-1}(a) \cdot \varphi^{-1}(b)$$

In addition $\varphi^{-1}(1) = 1$ as $\varphi(1) = 1$. Hence φ^{-1} is a ring homomorphism.

Section B: Problems to hand in

Exercise 4.4

- (a) Show that the polynomial $X^2 2$ is irreducible over \mathbb{F}_3 .
- (b) Let α be a root of $X^2 2$ in $\mathbb{F}_3[X]/(X^2 2)$. Show that the map $F : x \to x^3$ is an automorphism of $\mathbb{F}_3(\alpha)$ and determine $(\mathbb{F}_3(\alpha))^F$.
- (c) Find the factorization of $X^{10} 1$ in $\mathbb{Z}[X]$.
- (a) If x² 2 is reducible over F₃, then x² 2 = (x a)(x b) for a, b ∈ F₃ = {0, 1, 2}. But we can check that x² 2 ∉ {x², x(x 1), x(x 2), (x 1)², (x 1)(x 2), (x 2)²}. Hence x² 2 is irreducible.
- (b) We have F₃[x]/⟨x² 2⟩ ≅ F₃(α). In particular it is a field which is a finite extension of F₃. To show that the Frobenius map F : a → a³ is an automorphism of F₃(α), we need to check that it is a bijective ring homomorphism. Clearly F(1) = 1 and F(ab) = a³b³ = F(a)F(b). Since F₃(α) has characteristic 3, we have

$$F(a+b) = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 = F(a) + F(b)$$

Hence it is a ring homomorphism. Since $\mathbb{F}_3(\alpha)$ is a field, $F(a) = a^3 = 0$ implies a = 0. Hence *F* is injective. Since $\mathbb{F}_3(\alpha)$ is a finite set, *F* is in fact bijective. This finishes the proof.

For $a \in (\mathbb{F}_3(\alpha))^F$, by definition we have $a^3 = a$. The solutions are exactly $\mathbb{F}_3 = \{0, 1, 2\}$. Hence $(\mathbb{F}_3(\alpha))^F = \mathbb{F}_3$.

(c)
$$(x^{10} - 1) = (x^5 - 1)(x^5 + 1) = (x - 1)(x + 1)(x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)$$

We claim that $f(x) = x^4 + x^3 + x^2 + x + 1$ and $g(x) = x^4 - x^3 + x^2 - x + 1$ are irreducible in $\mathbb{Z}[x]$. Note that g(x) = f(-x), so it suffices to prove that f is irreducible. Note that f is the fifth cyclotomic polynomial and hence is irreducible by Example 5.8 in the notes. Explicitly, consider the polynomial h(x) = f(x - 1). Since $f(x) = \frac{x^5 - 1}{x - 1}$, we have

$$h(x) = \frac{(x+1)^5 - 1}{x} = x^4 + 5x^3 + 10x^2 + 10x + 5.$$

By Eisenstein's criterion with p = 5, h is irreducible in $\mathbb{Z}[x]$. Hence f is also irreducible. In conclusion, the factorisation of $x^{10} - 1$ we obtained is complete in $\mathbb{Z}[x]$.

Exercise 4.5

Let *p* be an odd prime and let $\omega \in \mathbb{C} \setminus \mathbb{R}$ be a root of $X^p - 1$.

- (a) Show that $\operatorname{Aut}(\mathbb{Q}(\omega)) \neq {\operatorname{id}}.$
- (b) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ for all non-real roots α, β of $X^p 1$.
- (c) Bonus: (not graded) Show that $\operatorname{Aut}(\mathbb{Q}(\omega)) = (\mathbb{Z}/p\mathbb{Z})^*$.
- (a) Recall that if $\varphi \in Aut(K)$ and $\alpha \in K$, then α and $\varphi(\alpha)$ have the same minimal polynomial. In particular $\mathbb{Q}(\omega)$ permutes the roots of $x^p 1$ which are included in $\mathbb{Q}(\omega)$. Clearly $\omega^2 \in \mathbb{Q}(\omega)$ is another root of $x^p 1$ with $\omega \neq \omega^2$. Then $\varphi : \omega \longmapsto \omega^2$ induces an automorphism of $\mathbb{Q}(\omega)$ which is not the identity.
- (b) This is similar to Question 5.(c) of Sheet 2. All the non-real roots of $x^p 1$ are of the form $\zeta, \zeta^2, ..., \zeta^{p-1}$,

where ζ is a primitve *p*-th root of unity. For any $i, j \in \{1, ..., p-1\}$, since gcd(j, p) = 1, there exists $r \in \mathbb{Z}$ such that $\zeta^i = (\zeta^j)^r \in \mathbb{Q}(\zeta^j)$. It follows that $\mathbb{Q}(\zeta^i) = \mathbb{Q}(\zeta^j)$ for any i, j.

(c) We may take $\omega = \zeta$ to be one of the primitive roots, which generates all other roots. Consider the group homomorphism

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \longrightarrow \operatorname{Aut}(\mathbb{Q}(\omega))$$
$$k \longmapsto (\omega \longmapsto \omega^{k})$$

It is straightforward to check that this is bijective, as the image of ω completely determines an automorphism of $\mathbb{Q}(\omega)$.

Some cultural remarks. The same result generalises to any *n*, not just for odd prime *p*. Let ζ be a primitive *n*-th root of unity, where $n \ge 2$ is any integer. We claim that

$$\operatorname{Aut}(\mathbb{Q}(\zeta)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \mathbb{Z}/\phi(n)\mathbb{Z},$$

where $\phi(n)$ is the **Euler's totient function**, i.e. $\phi(n)$ is the size of the set $\{m \in \mathbb{Z}_{>0} \mid m < n, \gcd(n, m) = 1\}$.

The idea is to think of a field automorphism $\sigma \in \operatorname{Aut}(\mathbb{Q}(\zeta))$ as a permutation of the *n*-th roots of unity, and hence is a group automorphism of the cyclic group $\mu_n = \{\zeta^i \mid 0 \le i \le n-1\}$ of all *n*-th roots of unity. In particular we have an injection $\operatorname{Aut}(\mathbb{Q}(\zeta)) \hookrightarrow \operatorname{Aut}_{\operatorname{Grp}}(\mu_n)$. The latter satisfies

$$\operatorname{Aut}_{\operatorname{Grp}}(\mu_n) \cong \operatorname{Aut}_{\operatorname{Grp}}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \mathbb{Z}/\phi(n)\mathbb{Z},$$

which is a standard result in group theory. To show that $\operatorname{Aut}(\mathbb{Q}(\zeta)) \hookrightarrow \operatorname{Aut}_{\mathsf{Grp}}(\mu_n)$ is surjective, we may need a bit more Galois theory and some results about symmetric polynomials.

Note that $\mathbb{Q}(\zeta)$ contains all roots of $x^n - 1$, i.e. it is the splitting field of $x^n - 1$. Hence $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension, and hence $[\mathbb{Q}(\zeta) : \mathbb{Q}] = |\operatorname{Aut}(\mathbb{Q}(\zeta))| \leq |\operatorname{Aut}_{\mathsf{Grp}}(\mu_n)| = \phi(n)$. On the other hand, the *n*-th cyclotomic polynomial is given by

$$\Phi_n(x) := \prod_{\substack{\omega \text{ primitive } n \text{-th root}}} (x - \omega).$$

It is a polynomial in $\mathbb{Q}(\zeta)[x]$ of degree $\phi(n)$, and its coefficients are symmetric polynomials in the primitve *n*-th roots of unity. Since any field automorphism $\sigma \in \operatorname{Aut}(\mathbb{Q}(\zeta))$ permutes the primitve *n*-th roots, the coefficients of Φ_n are fixed by σ . In particular, the coefficients

$$c_0, ..., c_n \in \mathbb{Q}^{\operatorname{Aut}(\mathbb{Q}(\zeta))} := \bigcap_{\sigma \in \operatorname{Aut}(\mathbb{Q}(\zeta))} \mathbb{Q}^{\sigma} = \mathbb{Q}.$$

Again we are using the fact that $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension. Hence $\Phi_n(x) \in \mathbb{Q}(x)$. It is clear that ζ is a root of $\Phi_n(x)$; on the other hand you can prove that $\Phi_n(x)$ is in fact irreducible over \mathbb{Q} (the proof goes on for half more page but no need for more Galois theory). So $\Phi_n(x)$ is the minimal polynomial of ζ over \mathbb{Q} . It follows that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \deg \Phi_n = \phi(n)$. We conclude that $|\operatorname{Aut}(\mathbb{Q}(\zeta))| = |\operatorname{Aut}_{\mathsf{Grp}}(\mu_n)|$ and the two groups are isomorphic.

Exercise 4.6

For an odd prime *p*, consider the polynomial $f = X^p - 2$. Let α be a root of *f*.

- (a) Show that f is irreducible over \mathbb{Q} .
- (b) Show that $Aut(\mathbb{Q}(\alpha)) = {id}$.
- (a) Apply Eisenstein with the prime 2.
- (b) Since an automorphism of Q(α) permutes the roots of x^p − 2 that are included in Q(α). To prove that Aut(Q(α)) = {id}, it suffices to show that Q(α) does not contain other roots of x^p − 2. This is similar to Question 7.(c) of Sheet 2.

Suppose the contrary and let β be such a root. Then $(\beta/\alpha)^p = 1$ and $\beta/\alpha \neq 1$. We have $[\mathbb{Q}(\alpha) : \mathbb{Q}] =$

 $p = [\mathbb{Q}(\alpha) : \mathbb{Q}(\alpha/\beta)][\mathbb{Q}(\alpha/\beta) : \mathbb{Q}]$ and thus $[\mathbb{Q}(\beta/\alpha) : \mathbb{Q}] = p$ or $[\mathbb{Q}(\beta/\alpha) : \mathbb{Q}] = 1$. In the first case we get a contradiction because $x^p - 1$ is reducible and so $[\mathbb{Q}(\alpha/\beta) : \mathbb{Q}] < p$. In the second case we get a contradiction because β/α is not real and is thus a root of $x^4 + x^3 + x^2 + 1$, which is an irreducible polynomial.

Exercise 4.7

Let $\sigma \in \operatorname{Aut}(L)$ be an automorphism of a field *L*. First write down the definition of the fixed field L^{σ} . Then show that $L^{\sigma} \subseteq L$ is a subfield of *L*. (i.e. check nonempty, closed under + and × and inverses.)

As a subset, the fixed field is defined by

$$L^{\sigma} = \{ x \in L \mid \sigma(x) = x \} \,.$$

It is non-empty because $0, 1 \in L^{\sigma}$. To check that it is a subfield, by the so-called 'subgroup test' it is enough to show that $a - b, ab^{-1} \in L^{\sigma}$ for $a, b \in L^{\sigma}$ ($b \neq 0$). This is clear, as σ is a ring homomorphism:

 $\sigma(a-b) = \sigma(a) - \sigma(b) = a - b; \qquad \sigma(ab^{-1}) = \sigma(a)\sigma(b)^{-1} = ab^{-1}.$

Section C: Additional problems

Exercise 4.8

Write addition and multiplication tables $(4 \times 4 \text{ and } 3 \times 3 \text{ arrays}, \text{ omitting 0 for multiplication})$ for the set $F = \{0, 1, a, b\}$ of four elements (where *a* and *b* are symbols), so that *F* is a field with those operations, with 0 and 1 behaving as the respective identities.

Do the same for the 4 elements of $G = \mathbb{F}_2[x]/(x^2 + x + 1)$.

Firstly, note that a finite field *F* contains \mathbb{F}_p as a prime subfield for some p = 2, and hence $F \cong \mathbb{F}_p^n$ as an \mathbb{F}_p -vector space. Since |F| = 4, we have that $F \cong \mathbb{F}_2^2$ as a \mathbb{F}_2 -vector space. In particular it has characteristic 2.

The elements of *F* are 0, 1, *a*, *b*. Consider $c = a + 1 \in \{0, 1, a, b\}$. If c = 0, then a = -1 = 1; if c = 1, then a = 0; if c = a, then 0 = 1. In all cases we obtain a contradiction. Hence c = a + 1 = b. This is enough to fix the addition table of *F*:

+	0	1	а	b
0	0	1	а	b
1	1	0	b	а
а	a	b	0	1
b	b	а	1	0

For the multiplication, consider $d = a^2$. Since *F* is a field, if $d \neq 0$. If d = 1, then a = 1; if d = a, then a(a - 1) = 0 and hence a = 0 or a = 1. In both cases we have a contradiction. Hence $a^2 = b$. Similarly we have $b^2 = a$. Finally, $ab = a^2 + a = a + b = 1$. The multiplication is given by:

×	1	а	b
1	1	а	b
а	a	b	1
b	b	1	а

For $G = \mathbb{F}_2[x]/\langle x^2 + x + 1 \rangle$, we claim that this is a field. It suffices to show that $x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. It is clear, because the only linear polynomials of $\mathbb{F}_2[x]$ are x and x + 1, and it is straightforward to check that $x^2 + x + 1 \notin \{x^2, x(x+1), (x+1)^2\}$. Then G is a field with $[G : \mathbb{F}_2] = \deg(x^2 + x + 1) = 2$. So G is a field with 4 elements. We must have $G \cong F$ as the field structure on 4 elements is unique. The isomorphism is given by $\overline{x} \mapsto a$ and $\overline{x+1} \mapsto b$.

Exercise 4.9

Factorise $x^7 - x \in K[x]$ into irreducible factors over each of the following fields:

- (a) K = Q
 (b) K = Q(ω)
 (c) K = F₂
- (d) $K = \mathbb{F}_7$

where $\omega \in \mathbb{C}$ is a primitive cube root of unity.

- (a) $x^7 x = x(x^6 1) = x(x^3 1)(x^3 + 1) = x(x 1)(x + 1)(x^2 + x + 1)(x^2 x + 1)$. We claim that $x^2 + x + 1$ and $x^2 x + 1$ are irreducible over \mathbb{Q} . This can be checked either by showing that they have no rational roots or by modulo 2.
- (b) Pick the primitive cube root of unity $\omega = \frac{-1 + \sqrt{-3}}{2}$. So $\mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{-3})$. Then using the quadratic formula, we have

$$x^{7} - x = x(x-1)(x+1)(x^{2} + x + 1)(x^{2} - x + 1)$$

= $x(x-1)(x+1)\left(x - \frac{-1 + \sqrt{-3}}{2}\right)\left(x - \frac{-1 - \sqrt{-3}}{2}\right)\left(x - \frac{1 + \sqrt{-3}}{2}\right)\left(x - \frac{1 - \sqrt{-3}}{2}\right)$.

(c) Over \mathbb{F}_2 we have

$$x^{7} - x = x(x - 1)(x + 1)(x^{2} + x + 1)(x^{2} - x + 1) = x(x + 1)^{2}(x^{2} + x + 1)^{2}.$$

We have shown that $x^2 + x + 1$ is irreducible over \mathbb{F}_2 in Q8.

(d) Note that 1 = -6 in \mathbb{F}_7 . Hence we have

$$x^{7} - x = x(x - 1)(x + 1)(x^{2} + x + 1)(x^{2} - x + 1)$$

= x(x - 1)(x + 1)(x^{2} + x - 6)(x^{2} - x - 6)
= x(x - 1)(x + 1)(x - 2)(x + 3)(x + 2)(x - 3)
= x(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6).

This is not a coincidence. In general, if *K* is field with char K = p, then $\varphi : K \to K$ given by $\alpha \mapsto \alpha^p$ is a field automorphism, called the **Frobenius map**. Its restriction on the prime subfield \mathbb{F}_p is the identity. That is, $\alpha^p = \alpha$ for all $\alpha \in \mathbb{F}_p$. Hence the polynomial $x^p - x$ splits into linear factors over \mathbb{F}_p for any prime p, whose roots are exactly all the elements of \mathbb{F}_p .

Exercise 4.10

If L/K has degree [L:K] a prime, prove that $L = K(\alpha)$ is a simple extension for any $\alpha \in L \setminus K$.

For any $\alpha \in L \setminus K$, we have $K \subsetneq K(\alpha) \subseteq L$. By tower law,

$$[L:K] = [L:K(\alpha)][K(\alpha):K] = p.$$

Since *p* is prime and $[K(\alpha) : K] > 1$, then $[L : K(\alpha)] = 1$ and $[K(\alpha) : K] = p$. Hence $L = K(\alpha)$ and L | K is a simple extension.

Exercise 4.11

Go back to the polynomial $y^3 - 15y - 4$, which obviously has 4 as a root. Set $y = \lambda z$ and solve for λ to present the result as $z^3 - (3/4)z + c$. Check that $c \in [-1/4, 1/4]$, and use the trig formula to find the roots, rediscovering y = 4.

Consider the equation $y^3 - 15y - 4 = 0$. Substituting $y = \lambda z$, we have

$$z^3 - \frac{15}{\lambda^2}z - \frac{4}{\lambda^3} = 0.$$

Set $\frac{15}{\lambda^2} = \frac{3}{4}$, i.e. $\lambda = 2\sqrt{5}$. We obtain

$$z^3 - \frac{3}{4}z - \frac{1}{10\sqrt{5}} = 0.$$

Clearly $-\frac{1}{10\sqrt{5}} \in \left[-\frac{1}{4}, \frac{1}{4}\right]$. If we set $z = \cos \theta$, then by Q1 we have $z^3 - \frac{3}{4}z - \frac{1}{4}\cos(3\theta) = 0$. In particular we have $\cos(3\theta) = \frac{2}{5\sqrt{5}}$. Then all the real solutions is given by $y = \lambda \cos\left(\theta + \frac{2\pi}{3}k\right)$ for k = 0, 1, 2. To find $\cos \theta$ without solving the equation again, I have no choice but to seek help from plane geometry:

In the picture below, $\triangle OAB$ is a right triangle with $\cos \angle AOB = \frac{2}{5\sqrt{5}}$. Pick the point *C* on *AB* such that $AC = \frac{1}{11}AB$ and extend *OC* to the point *E* such that OE = OB. It is not difficult to see that BC = BE. As a result, $\angle AOC = \frac{1}{3}\angle AOB$. Hence $\cos \theta = \cos \angle AOC = \frac{OA}{OC} = \frac{2}{\sqrt{5}}$. It follows that $y = 2\sqrt{5} \cdot \frac{2}{\sqrt{5}} = 4$.

