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Section A: Warn-up questions
Exercise 4.1

Show that cos(3𝜃 ) = 4 cos3 (𝜃 ) − 3 cos(𝜃 ) for any 𝜃 . [E.g. use exp(3𝑥) = exp(𝑥)3.]

Since exp(3𝜃 ) = exp(𝜃 )3, by Euler’s formula we have

cos(3𝜃 ) + i sin(3𝜃 ) = (cos𝜃 + i sin𝜃 )3

= cos3 𝜃 + 3i cos2 𝜃 sin𝜃 − 3 cos𝜃 sin2 𝜃 − i sin3 𝜃 .

Taking the real parts of both sides:

cos(3𝜃 ) = cos3 𝜃 − 3 cos𝜃 sin2 𝜃

= cos3 𝜃 − 3 cos𝜃 (1 − cos2 𝜃 )
= 4 cos3 𝜃 − 3 cos𝜃 .

Exercise 4.2

Use the formula for the roots of a cubic to show that 4 is a root of 𝑦3 − 15𝑦 − 4.

This is the standard cubic 𝑦3 + 𝑝𝑦 + 𝑞 with 𝑝 = −15 and 𝑞 = −4. The discriminant is given by

𝐷 = 𝑞2 + 4𝑝3

27
= −484 = (22i)2 .

One of the root is therefore given by

𝛼 =
3

√
−𝑞 +

√
𝐷

2
+

3

√
−𝑞 −

√
𝐷

2
= 3
√
2 + 11i + 3

√
2 − 11i = (2 + i) + (2 − i) = 4.

Exercise 4.3

Let 𝜑 : 𝐿 → 𝐿 be an automorphism of a field 𝐿. Explain why the map 𝜑−1 exists, and show that it is also
an automorphism of 𝐿.

(E.g. to show 𝜑−1 (𝑎𝑏) = 𝜑−1 (𝑎)𝜑−1 (𝑏) it may help to set 𝑎 = 𝜑 (𝑥) and 𝑏 = 𝜑 (𝑦) for some 𝑥,𝑦 ∈ 𝐿, which
is fine as 𝜑 is a bijection.)

In the notes a field automorphism 𝜑 is defined to be a bijection ring homomorphism between fields. Since 𝜑 is bi-
jective, its inverse𝜑−1 exists as a map between the underlying sets. To check that it is also a ring homomorphism,
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pick 𝑎,𝑏 ∈ 𝐿. Set 𝑎 = 𝜑 (𝑥) and 𝑏 = 𝜑 (𝑦). Then 𝑎𝑏 = 𝜑 (𝑥𝑦). Since 𝜑 is bijective,

𝜑−1 (𝑎𝑏) = 𝑥𝑦 = 𝜑−1 (𝑎) · 𝜑−1 (𝑏) .

In addition 𝜑−1 (1) = 1 as 𝜑 (1) = 1. Hence 𝜑−1 is a ring homomorphism.

Section B: Problems to hand in
Exercise 4.4

(a) Show that the polynomial 𝑋 2 − 2 is irreducible over F3.

(b) Let 𝛼 be a root of 𝑋 2 − 2 in F3 [𝑋 ]/
(
𝑋 2 − 2

)
. Show that the map 𝐹 : 𝑥 → 𝑥3 is an automorphism of

F3 (𝛼) and determine (F3 (𝛼))𝐹 .

(c) Find the factorization of 𝑋 10 − 1 in Z[𝑋 ].

(a) If 𝑥2 − 2 is reducible over F3, then 𝑥2 − 2 = (𝑥 − 𝑎)(𝑥 − 𝑏) for 𝑎, 𝑏 ∈ F3 = {0, 1, 2}. But we can check that
𝑥2 − 2 ∉ {𝑥2, 𝑥 (𝑥 − 1), 𝑥 (𝑥 − 2), (𝑥 − 1)2, (𝑥 − 1)(𝑥 − 2), (𝑥 − 2)2}. Hence 𝑥2 − 2 is irreducible.

(b) We have F3 [𝑥]/
⟨
𝑥2 − 2

⟩
� F3 (𝛼). In particular it is a field which is a finite extension of F3. To show that

the Frobenius map 𝐹 : 𝑎 ↦−→ 𝑎3 is an automorphism of F3 (𝛼), we need to check that it is a bijective ring
homomorphism. Clearly 𝐹 (1) = 1 and 𝐹 (𝑎𝑏) = 𝑎3𝑏3 = 𝐹 (𝑎)𝐹 (𝑏). Since F3 (𝛼) has characteristic 3, we have

𝐹 (𝑎 + 𝑏) = (𝑎 + 𝑏)3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 = 𝑎3 + 𝑏3 = 𝐹 (𝑎) + 𝐹 (𝑏).

Hence it is a ring homomorphism. Since F3 (𝛼) is a field, 𝐹 (𝑎) = 𝑎3 = 0 implies 𝑎 = 0. Hence 𝐹 is injective.
Since F3 (𝛼) is a finite set, 𝐹 is in fact bijective. This finishes the proof.

For 𝑎 ∈ (F3 (𝛼))𝐹 , by definition we have 𝑎3 = 𝑎. The solutions are exactly F3 = {0, 1, 2}. Hence (F3 (𝛼))𝐹 =
F3.

(c) (𝑥10 − 1) = (𝑥5 − 1) (𝑥5 + 1) = (𝑥 − 1)(𝑥 + 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)(𝑥4 − 𝑥3 + 𝑥2 − 𝑥 + 1).

We claim that 𝑓 (𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 and 𝑔(𝑥) = 𝑥4 − 𝑥3 + 𝑥2 − 𝑥 + 1 are irreducible in Z[𝑥]. Note that
𝑔(𝑥) = 𝑓 (−𝑥), so it suffices to prove that 𝑓 is irreducible. Note that 𝑓 is the fifth cyclotomic polynomial
and hence is irreducible by Example 5.8 in the notes. Explicitly, consider the polynomial ℎ(𝑥) = 𝑓 (𝑥 − 1).

Since 𝑓 (𝑥) = 𝑥5 − 1
𝑥 − 1

, we have

ℎ(𝑥) = (𝑥 + 1)5 − 1
𝑥

= 𝑥4 + 5𝑥3 + 10𝑥2 + 10𝑥 + 5.

By Eisenstein’s criterion with 𝑝 = 5, ℎ is irreducible in Z[𝑥]. Hence 𝑓 is also irreducible. In conclusion,
the factorisation of 𝑥10 − 1 we obtained is complete in Z[𝑥].

Exercise 4.5

Let 𝑝 be an odd prime and let 𝜔 ∈ C \ R be a root of 𝑋𝑝 − 1.

(a) Show that Aut(Q(𝜔)) ≠ {id}.

(b) Show that Q(𝛼) = Q(𝛽) for all non-real roots 𝛼, 𝛽 of 𝑋𝑝 − 1.

(c) Bonus: (not graded) Show that Aut(Q(𝜔)) = (Z/𝑝Z)∗.

(a) Recall that if 𝜑 ∈ Aut(𝐾) and 𝛼 ∈ 𝐾 , then 𝛼 and 𝜑 (𝛼) have the same minimal polynomial. In particular
Q(𝜔) permutes the roots of 𝑥𝑝 −1which are included in Q(𝜔). Clearly𝜔2 ∈ Q(𝜔) is another root of 𝑥𝑝 −1
with 𝜔 ≠ 𝜔2. Then 𝜑 : 𝜔 ↦−→ 𝜔2 induces an automorphism of Q(𝜔) which is not the identity.

(b) This is similar to Question 5.(c) of Sheet 2. All the non-real roots of 𝑥𝑝 − 1 are of the form 𝜁 , 𝜁 2, ..., 𝜁 𝑝−1,
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where 𝜁 is a primitve 𝑝-th root of unity. For any 𝑖, 𝑗 ∈ {1, ..., 𝑝 − 1}, since gcd( 𝑗, 𝑝) = 1, there exists 𝑟 ∈ Z
such that 𝜁 𝑖 = (𝜁 𝑗 )𝑟 ∈ Q(𝜁 𝑗 ). It follows that Q(𝜁 𝑖 ) = Q(𝜁 𝑗 ) for any 𝑖, 𝑗 .

(c) We may take 𝜔 = 𝜁 to be one of the primitive roots, which generates all other roots. Consider the group
homomorphism

(Z/𝑝Z)× Aut(Q(𝜔))
𝑘 (𝜔 ↦−→ 𝜔𝑘 )

It is straightforward to check that this is bijective, as the image of 𝜔 completely determines an automor-
phism of Q(𝜔).

Some cultural remarks. The same result generalises to any 𝑛, not just for odd prime 𝑝 . Let 𝜁 be a primitive
𝑛-th root of unity, where 𝑛 ⩾ 2 is any integer. We claim that

Aut(Q(𝜁 )) � (Z/𝑛Z)× � Z/𝜙 (𝑛)Z,

where 𝜙 (𝑛) is the Euler’s totient function, i.e. 𝜙 (𝑛) is the size of the set {𝑚 ∈ Z>0 | 𝑚 < 𝑛, gcd(𝑛,𝑚) = 1}.

The idea is to think of a field automorphism 𝜎 ∈ Aut(Q(𝜁 )) as a permutation of the 𝑛-th roots of unity, and hence
is a group automorphism of the cyclic group 𝜇𝑛 = {𝜁 𝑖 | 0 ⩽ 𝑖 ⩽ 𝑛 − 1} of all 𝑛-th roots of unity. In particular we
have an injection Aut(Q(𝜁 )) ↩→ AutGrp (𝜇𝑛). The latter satisfies

AutGrp (𝜇𝑛) � AutGrp (Z/𝑛Z) � (Z/𝑛Z)× � Z/𝜙 (𝑛)Z,

which is a standard result in group theory. To show that Aut(Q(𝜁 )) ↩→ AutGrp (𝜇𝑛) is surjective, we may need a
bit more Galois theory and some results about symmetric polynomials.

Note thatQ(𝜁 ) contains all roots of 𝑥𝑛−1, i.e. it is the splitting field of 𝑥𝑛−1. HenceQ(𝜁 )/Q is a Galois extension,
and hence [Q(𝜁 ) : Q] = |Aut(Q(𝜁 )) | ⩽ |AutGrp (𝜇𝑛) | = 𝜙 (𝑛). On the other hand, the 𝑛-th cyclotomic polynomial
is given by

Φ𝑛 (𝑥) :=
∏

𝜔 primitive 𝑛-th root
(𝑥 − 𝜔).

It is a polynomial in Q(𝜁 ) [𝑥] of degree 𝜙 (𝑛), and its coefficients are symmetric polynomials in the primitve 𝑛-th
roots of unity. Since any field automorphism 𝜎 ∈ Aut(Q(𝜁 )) permutes the primitve 𝑛-th roots, the coefficients
of Φ𝑛 are fixed by 𝜎 . In particular, the coefficients

𝑐0, ..., 𝑐𝑛 ∈ QAut(Q(𝜁 ) ) :=
∩

𝜎∈Aut(Q(𝜁 ) )
Q𝜎 = Q.

Again we are using the fact that Q(𝜁 )/Q is a Galois extension. Hence Φ𝑛 (𝑥) ∈ Q(𝑥). It is clear that 𝜁 is a root
of Φ𝑛 (𝑥); on the other hand you can prove that Φ𝑛 (𝑥) is in fact irreducible over Q (the proof goes on for half
more page but no need for more Galois theory). So Φ𝑛 (𝑥) is the minimal polynomial of 𝜁 over Q. It follows that
[Q(𝜁 ) : Q] = degΦ𝑛 = 𝜙 (𝑛). We conclude that |Aut(Q(𝜁 )) | = |AutGrp (𝜇𝑛) | and the two groups are isomorphic.

Exercise 4.6

For an odd prime 𝑝 , consider the polynomial 𝑓 = 𝑋𝑝 − 2. Let 𝛼 be a root of 𝑓 .

(a) Show that 𝑓 is irreducible over Q.

(b) Show that Aut(Q(𝛼)) = {id}.

(a) Apply Eisenstein with the prime 2.

(b) Since an automorphism of Q(𝛼) permutes the roots of 𝑥𝑝 − 2 that are included in Q(𝛼). To prove that
Aut(Q(𝛼)) = {id}, it suffices to show that Q(𝛼) does not contain other roots of 𝑥𝑝 − 2. This is similar to
Question 7.(c) of Sheet 2.

Suppose the contrary and let 𝛽 be such a root. Then (𝛽/𝛼)𝑝 = 1 and 𝛽/𝛼 ≠ 1. We have [Q(𝛼) : Q] =
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𝑝 = [Q(𝛼) : Q(𝛼/𝛽)] [Q(𝛼/𝛽) : Q] and thus [Q(𝛽/𝛼) : Q] = 𝑝 or [Q(𝛽/𝛼) : Q] = 1. In the first case
we get a contradiction because 𝑥𝑝 − 1 is reducible and so [Q(𝛼/𝛽) : Q] < 𝑝 . In the second case we get a
contradiction because 𝛽/𝛼 is not real and is thus a root of 𝑥4+𝑥3+𝑥2+1, which is an irreducible polynomial.

Exercise 4.7

Let 𝜎 ∈ Aut(𝐿) be an automorphism of a field 𝐿. First write down the definition of the fixed field 𝐿𝜎 . Then
show that 𝐿𝜎 ⊆ 𝐿 is a subfield of 𝐿. (i.e. check nonempty, closed under + and × and inverses.)

As a subset, the fixed field is defined by

𝐿𝜎 = {𝑥 ∈ 𝐿 | 𝜎 (𝑥) = 𝑥} .

It is non-empty because 0, 1 ∈ 𝐿𝜎 . To check that it is a subfield, by the so-called ’subgroup test’ it is enough to
show that 𝑎 − 𝑏, 𝑎𝑏−1 ∈ 𝐿𝜎 for 𝑎,𝑏 ∈ 𝐿𝜎 (𝑏 ≠ 0). This is clear, as 𝜎 is a ring homomorphism:

𝜎 (𝑎 − 𝑏) = 𝜎 (𝑎) − 𝜎 (𝑏) = 𝑎 − 𝑏; 𝜎 (𝑎𝑏−1) = 𝜎 (𝑎)𝜎 (𝑏)−1 = 𝑎𝑏−1.

Section C: Additional problems
Exercise 4.8

Write addition and multiplication tables (4 × 4 and 3 × 3 arrays, omitting 0 for multiplication) for the set
𝐹 = {0, 1, 𝑎, 𝑏} of four elements (where 𝑎 and 𝑏 are symbols), so that 𝐹 is a field with those operations, with
0 and 1 behaving as the respective identities.

Do the same for the 4 elements of 𝐺 = F2 [𝑥]/
(
𝑥2 + 𝑥 + 1

)
.

Firstly, note that a finite field 𝐹 contains F𝑝 as a prime subfield for some 𝑝 = 2, and hence 𝐹 � F𝑛𝑝 as an F𝑝 -vector
space. Since |𝐹 | = 4, we have that 𝐹 � F22 as a F2-vector space. In particular it has characteristic 2.

The elements of 𝐹 are 0, 1, 𝑎, 𝑏. Consider 𝑐 = 𝑎 + 1 ∈ {0, 1, 𝑎, 𝑏}. If 𝑐 = 0, then 𝑎 = −1 = 1; if 𝑐 = 1, then 𝑎 = 0; if
𝑐 = 𝑎, then 0 = 1. In all cases we obtain a contradiction. Hence 𝑐 = 𝑎 + 1 = 𝑏. This is enough to fix the addition
table of 𝐹 :

+ 0 1 𝑎 𝑏

0 0 1 𝑎 𝑏

1 1 0 𝑏 𝑎

𝑎 𝑎 𝑏 0 1
𝑏 𝑏 𝑎 1 0

For the multiplication, consider 𝑑 = 𝑎2. Since 𝐹 is a field, if 𝑑 ≠ 0. If 𝑑 = 1, then 𝑎 = 1; if 𝑑 = 𝑎, then 𝑎(𝑎 − 1) = 0
and hence 𝑎 = 0 or 𝑎 = 1. In both cases we have a contradiction. Hence 𝑎2 = 𝑏. Similarly we have 𝑏2 = 𝑎. Finally,
𝑎𝑏 = 𝑎2 + 𝑎 = 𝑎 + 𝑏 = 1. The multiplication is given by:

× 1 𝑎 𝑏

1 1 𝑎 𝑏

𝑎 𝑎 𝑏 1
𝑏 𝑏 1 𝑎

For𝐺 = F2 [𝑥]/
⟨
𝑥2 + 𝑥 + 1

⟩
, we claim that this is a field. It suffices to show that 𝑥2 + 𝑥 + 1 is irreducible in F2 [𝑥].

It is clear, because the only linear polynomials of F2 [𝑥] are 𝑥 and 𝑥 + 1, and it is straightforward to check that
𝑥2 + 𝑥 + 1 ∉ {𝑥2, 𝑥 (𝑥 + 1), (𝑥 + 1)2}. Then 𝐺 is a field with [𝐺 : F2] = deg(𝑥2 + 𝑥 + 1) = 2. So 𝐺 is a field with
4 elements. We must have 𝐺 � 𝐹 as the field structure on 4 elements is unique. The isomorphism is given by
𝑥 ↦−→ 𝑎 and 𝑥 + 1 ↦−→ 𝑏.
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Exercise 4.9

Factorise 𝑥7 − 𝑥 ∈ 𝐾 [𝑥] into irreducible factors over each of the following fields:

(a) 𝐾 = Q

(b) 𝐾 = Q(𝜔)

(c) 𝐾 = F2

(d) 𝐾 = F7

where 𝜔 ∈ C is a primitive cube root of unity.

(a) 𝑥7 −𝑥 = 𝑥 (𝑥6 − 1) = 𝑥 (𝑥3 − 1)(𝑥3 + 1) = 𝑥 (𝑥 − 1) (𝑥 + 1)(𝑥2 +𝑥 + 1)(𝑥2 −𝑥 + 1). We claim that 𝑥2 +𝑥 + 1 and
𝑥2 − 𝑥 + 1 are irreducible over Q. This can be checked either by showing that they have no rational roots
or by modulo 2.

(b) Pick the primitive cube root of unity 𝜔 =
−1 +

√
−3

2
. So Q(𝜔) = Q(

√
−3). Then using the quadratic

formula, we have

𝑥7 − 𝑥 = 𝑥 (𝑥 − 1) (𝑥 + 1)(𝑥2 + 𝑥 + 1) (𝑥2 − 𝑥 + 1)

= 𝑥 (𝑥 − 1) (𝑥 + 1)
(
𝑥 − −1 +

√
−3

2

) (
𝑥 − −1 −

√
−3

2

) (
𝑥 − 1 +

√
−3

2

) (
𝑥 − 1 −

√
−3

2

)
.

(c) Over F2 we have

𝑥7 − 𝑥 = 𝑥 (𝑥 − 1) (𝑥 + 1)(𝑥2 + 𝑥 + 1) (𝑥2 − 𝑥 + 1) = 𝑥 (𝑥 + 1)2 (𝑥2 + 𝑥 + 1)2.

We have shown that 𝑥2 + 𝑥 + 1 is irreducible over F2 in Q8.

(d) Note that 1 = −6 in F7. Hence we have

𝑥7 − 𝑥 = 𝑥 (𝑥 − 1) (𝑥 + 1) (𝑥2 + 𝑥 + 1) (𝑥2 − 𝑥 + 1)
= 𝑥 (𝑥 − 1) (𝑥 + 1) (𝑥2 + 𝑥 − 6) (𝑥2 − 𝑥 − 6)
= 𝑥 (𝑥 − 1) (𝑥 + 1) (𝑥 − 2)(𝑥 + 3)(𝑥 + 2) (𝑥 − 3)
= 𝑥 (𝑥 − 1) (𝑥 − 2)(𝑥 − 3)(𝑥 − 4) (𝑥 − 5)(𝑥 − 6) .

This is not a coincidence. In general, if 𝐾 is field with char𝐾 = 𝑝 , then 𝜑 : 𝐾 → 𝐾 given by 𝛼 ↦−→ 𝛼𝑝 is
a field automorphism, called the Frobenius map. Its restriction on the prime subfield F𝑝 is the identity.
That is, 𝛼𝑝 = 𝛼 for all 𝛼 ∈ F𝑝 . Hence the polynomial 𝑥𝑝 − 𝑥 splits into linear factors over F𝑝 for any prime
𝑝 , whose roots are exactly all the elements of F𝑝 .

Exercise 4.10

If 𝐿/𝐾 has degree [𝐿 : 𝐾] a prime, prove that 𝐿 = 𝐾 (𝛼) is a simple extension for any 𝛼 ∈ 𝐿 \ 𝐾 .

For any 𝛼 ∈ 𝐿 \ 𝐾 , we have 𝐾 ⊊ 𝐾 (𝛼) ⊆ 𝐿. By tower law,

[𝐿 : 𝐾] = [𝐿 : 𝐾 (𝛼)] [𝐾 (𝛼) : 𝐾] = 𝑝.

Since 𝑝 is prime and [𝐾 (𝛼) : 𝐾] > 1, then [𝐿 : 𝐾 (𝛼)] = 1 and [𝐾 (𝛼) : 𝐾] = 𝑝 . Hence 𝐿 = 𝐾 (𝛼) and 𝐿 | 𝐾 is a
simple extension.
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Exercise 4.11

Go back to the polynomial 𝑦3 − 15𝑦 − 4, which obviously has 4 as a root. Set 𝑦 = 𝜆𝑧 and solve for 𝜆 to
present the result as 𝑧3 − (3/4)𝑧 + 𝑐 . Check that 𝑐 ∈ [−1/4, 1/4], and use the trig formula to find the roots,
rediscovering 𝑦 = 4.

Consider the equation 𝑦3 − 15𝑦 − 4 = 0. Substituting 𝑦 = 𝜆𝑧, we have

𝑧3 − 15
𝜆2
𝑧 − 4

𝜆3
= 0.

Set 15
𝜆2

=
3
4
, i.e. 𝜆 = 2

√
5. We obtain

𝑧3 − 3
4
𝑧 − 1

10
√
5
= 0.

Clearly − 1

10
√
5
∈
[
−1
4
,
1
4

]
. If we set 𝑧 = cos𝜃 , then by Q1 we have 𝑧3− 3

4
𝑧− 1

4
cos(3𝜃 ) = 0. In particular we have

cos(3𝜃 ) = 2

5
√
5
. Then all the real solutions is given by 𝑦 = 𝜆 cos

(
𝜃 + 2𝜋

3
𝑘

)
for 𝑘 = 0, 1, 2. To find cos𝜃 without

solving the equation again, I have no choice but to seek help from plane geometry:

In the picture below, △𝑂𝐴𝐵 is a right triangle with cos ∠𝐴𝑂𝐵 =
2

5
√
5
. Pick the point 𝐶 on 𝐴𝐵 such that 𝐴𝐶 =

1
11
𝐴𝐵 and extend 𝑂𝐶 to the point 𝐸 such that 𝑂𝐸 = 𝑂𝐵. It is not difficult to see that 𝐵𝐶 = 𝐵𝐸. As a result,

∠𝐴𝑂𝐶 =
1
3
∠𝐴𝑂𝐵. Hence cos𝜃 = cos ∠𝐴𝑂𝐶 =

𝑂𝐴

𝑂𝐶
=

2
√
5
. It follows that 𝑦 = 2

√
5 · 2

√
5
= 4.
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