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Section A: Warn-up questions

Exercise 4.1

Show that cos(36) = 4 cos®(#) — 3 cos(6) for any 6. [E.g. use exp(3x) = exp(x)°.]

Since exp(36) = exp(6)®, by Euler’s formula we have

cos(360) +isin(360) = (cos @ +isin 6)*

= cos® 0 + 3icos? @ sin O — 3 cos sin® O — isin® 6.
Taking the real parts of both sides:

cos(36) = cos® 6 — 3 cos O sin? 6
=cos®  — 3 cos O(1 — cos? 6)

=4cos’ 6 —3cos.

Exercise 4.2

Use the formula for the roots of a cubic to show that 4 is a root of y* — 15y — 4.

This is the standard cubic y* + py + g with p = —15 and ¢ = —4. The discriminant is given by
2, 4 2
D=gq +E=—484:(221).

One of the root is therefore given by

a:i/_q';\/B.F\/_q_z\/B: 3/—2+lli+ 3/—2_11i=(2+i)+(2_i):4'

Exercise 4.3

Let ¢ : L — L be an automorphism of a field L. Explain why the map ¢! exists, and show that it is also
an automorphism of L.

(E.g. to show ¢~ 1(ab) = ¢~ 1(a)p~1(b) it may help to set a = ¢(x) and b = ¢(y) for some x,y € L, which
is fine as ¢ is a bijection.)

In the notes a field automorphism ¢ is defined to be a bijection ring homomorphism between fields. Since ¢ is bi-
jective, its inverse ¢! exists as a map between the underlying sets. To check that it is also a ring homomorphism,



pick a,b € L. Set a = ¢(x) and b = ¢(y). Then ab = ¢(xy). Since ¢ is bijective,

¢~ (ab) =xy=¢ ' (a) - 97 (D).

In addition ¢~1(1) = 1 as ¢(1) = 1. Hence ¢! is a ring homomorphism.

Section B: Problems to hand in

Exercise 4.4

(a) Show that the polynomial X? — 2 is irreducible over Fs.

(b) Let ar be a root of X? — 2 in F3[X]/(X? — 2). Show that the map F : x — x> is an automorphism of
F3(a) and determine (Fs(a))F.

(c) Find the factorization of X'° — 1 in Z[X].

(a) If x2 — 2 is reducible over Fs, then x? — 2 = (x — a)(x — b) for a,b € F5 = {0,1,2}. But we can check that
x2—=2¢ {x x(x—1),x(x —2), (x —1)2 (x = 1)(x — 2), (x — 2)?}. Hence x? — 2 is irreducible.

(b) We have F3[x]/ <x2 - 2> = F; (). In particular it is a field which is a finite extension of Fs. To show that

the Frobenius map F: a — @ is an automorphism of F3(a), we need to check that it is a bijective ring

homomorphism. Clearly F(1) = 1 and F(ab) = a®b® = F(a)F(b). Since F3(«) has characteristic 3, we have
Fla+b) = (a+b)®=0d>+3a%b+3ab’ +b* = a® + b> = F(a) + F(b).

Hence it is a ring homomorphism. Since F3(«) is a field, F(a) = a® = 0 implies a = 0. Hence F is injective.

Since F3(a) is a finite set, F is in fact bijective. This finishes the proof.

For a € (F3(a))F, by definition we have a® = a. The solutions are exactly Fs = {0, 1,2}. Hence (F3(a))f =
Fs.

© - =-DE+D)=(x-DEx+Dx*+x3+x2+x+D)(x -3 +x2-x+1).

We claim that f(x) = x* +x3 + x> + x + 1 and g(x) = x* — x> + x? — x + 1 are irreducible in Z[x]. Note that
g(x) = f(—x), so it suffices to prove that f is irreducible. Note that f is the fifth cyclotomic polynomial

and hence is irreducible by Example 5.8 in the notes. Explicitly, consider the polynomial h(x) = f(x — 1).
5

x> =1
Since f(x) = ~— Ve have
X —

(x+1)° -1

h(x) = = x* +5x% + 10x? + 10x + 5.

By Eisenstein’s criterion with p = 5, h is irreducible in Z[x]. Hence f is also irreducible. In conclusion,
the factorisation of x!° — 1 we obtained is complete in Z[x].

Exercise 4.5

Let p be an odd prime and let € C \ R be a root of X? — 1.
(a) Show that Aut(Q(w)) # {id}.
(b) Show that Q(a) = Q(p) for all non-real roots a, f of XP — 1.
(c) Bonus: (not graded) Show that Aut(Q(w)) = (Z/pZ)*.

(a) Recall that if ¢ € Aut(K) and @ € K, then « and ¢(«) have the same minimal polynomial. In particular
Q(w) permutes the roots of x” — 1 which are included in Q(w). Clearly w? € Q(w) is another root of x” — 1
with @ # w? Then ¢ : w — w? induces an automorphism of Q(w) which is not the identity.

(b) This is similar to Question 5.(c) of Sheet 2. All the non-real roots of x — 1 are of the form {, ¢?%,..., (P71,



where { is a primitve p-th root of unity. For any i, j € {1, ...,p — 1}, since ged(j, p) = 1, there exists r € Z
such that ¥ = (/)" € Q(¢/). It follows that Q({*) = Q(¢V) for any i, j.

(c) We may take w = { to be one of the primitive roots, which generates all other roots. Consider the group
homomorphism

(Z/p2)* —— Aut(Q(w))
k ——— (w — k)

It is straightforward to check that this is bijective, as the image of w completely determines an automor-
phism of Q(w).

Some cultural remarks. The same result generalises to any n, not just for odd prime p. Let { be a primitive
n-th root of unity, where n > 2 is any integer. We claim that

Aut(Q()) = (Z/nZ)" = Z/$(n)Z,
where ¢(n) is the Euler’s totient function, i.e. ¢(n) is the size of the set {m € Z.¢ | m < n, ged(n,m) = 1}.

The idea is to think of a field automorphism o € Aut(Q({)) as a permutation of the n-th roots of unity, and hence
is a group automorphism of the cyclic group p, = {{’ | 0 < i < n— 1} of all n-th roots of unity. In particular we
have an injection Aut(Q({)) < Autgrp(p,). The latter satisfies

Autgp (pn) = Autg,(Z/nZ) = (Z/nZ)* = Z/$(n)Z,

which is a standard result in group theory. To show that Aut(Q({)) < Autgrp(pn) is surjective, we may need a
bit more Galois theory and some results about symmetric polynomials.

Note that Q({) contains all roots of x™” —1, i.e. it is the splitting field of x™ — 1. Hence Q({)/Q is a Galois extension,
and hence [Q({) : Q] = | Aut(Q({))| < | Autgrp ()| = ¢(n). On the other hand, the n-th cyclotomic polynomial
is given by

Dp(x) = ]_[ (x - o).

w primitive n-th root

It is a polynomial in Q({) [x] of degree ¢(n), and its coefficients are symmetric polynomials in the primitve n-th
roots of unity. Since any field automorphism o € Aut(Q({)) permutes the primitve n-th roots, the coefficients
of &, are fixed by o. In particular, the coefficients

€0y vy Cp € QAUHQAE)) .= ﬂ Q° =Q.
geAut(Q(¢))

Again we are using the fact that Q({)/Q is a Galois extension. Hence ®,(x) € Q(x). It is clear that { is a root
of ®,(x); on the other hand you can prove that ®,(x) is in fact irreducible over Q (the proof goes on for half
more page but no need for more Galois theory). So ®,(x) is the minimal polynomial of { over Q. It follows that
[Q() : Q] = deg @, = ¢(n). We conclude that | Aut(Q({))| = | Autgrp(¢n)| and the two groups are isomorphic.

Exercise 4.6
For an odd prime p, consider the polynomial f = X? — 2. Let « be a root of f.
(a) Show that f is irreducible over Q.

(b) Show that Aut(Q(«)) = {id}.

(a) Apply Eisenstein with the prime 2.

(b) Since an automorphism of Q(«) permutes the roots of x” — 2 that are included in Q(&). To prove that
Aut(Q(a)) = {id}, it suffices to show that Q(«) does not contain other roots of x” — 2. This is similar to
Question 7.(c) of Sheet 2.

Suppose the contrary and let § be such a root. Then (f/a)? = 1 and f/a # 1. We have [Q(a) : Q] =



p = [Q(a) : Q(a/P)1[Q(a/p) : Q] and thus [Q(f/a) : Q] = p or [Q(f/a) : Q] = 1. In the first case
we get a contradiction because x” — 1 is reducible and so [Q(a/f) : Q] < p. In the second case we get a
contradiction because 3/« is not real and is thus a root of x*+x3+x%+1, which is an irreducible polynomial.

Exercise 4.7

Let 0 € Aut(L) be an automorphism of a field L. First write down the definition of the fixed field L°. Then
show that L? C L is a subfield of L. (i.e. check nonempty, closed under + and X and inverses.)

As a subset, the fixed field is defined by
L°={xel]|o(x)=x}.

It is non-empty because 0,1 € L°. To check that it is a subfield, by the so-called ’subgroup test’ it is enough to
show that a — b,ab™! € L for a,b € L° (b # 0). This is clear, as o is a ring homomorphism:

o(a-—b)=0c(a)—o(b)=a-1b; o(ab ") = o(a)o(b) ' =ab~l.

Section C: Additional problems

Exercise 4.8

Write addition and multiplication tables (4 X 4 and 3 X 3 arrays, omitting 0 for multiplication) for the set
F ={0, 1, a, b} of four elements (where a and b are symbols), so that F is a field with those operations, with
0 and 1 behaving as the respective identities.

Do the same for the 4 elements of G = Fy[x]/(x? + x + 1).

Firstly, note that a finite field F contains F, as a prime subfield for some p = 2, and hence F = F} as an F),-vector
space. Since |F| = 4, we have that F = F2 as a F,-vector space. In particular it has characteristic 2.

The elements of F are 0,1,a,b. Considerc =a+1 € {0,1,a,b}. If c =0, thena = -1 = 1;if ¢c = 1, then a = 0; if
¢ = a, then 0 = 1. In all cases we obtain a contradiction. Hence ¢ = a + 1 = b. This is enough to fix the addition
table of F:

+]0 1 a b
0/0 1 a b
111 0 b a
ala b 0 1
b|b a 1 0

For the multiplication, consider d = a®. Since F is a field, if d # 0. Ifd = 1, then a = 1; if d = a, then a(a— 1) = 0
and hence a = 0 or a = 1. In both cases we have a contradiction. Hence a® = b. Similarly we have b? = a. Finally,
ab = a®+a=a+b = 1. The multiplication is given by:

X|1 a b
11 a b
ala b 1
b |b a

ForG =F, [x]/(x2 +x+ 1>, we claim that this is a field. It suffices to show that x? + x + 1 is irreducible in F,[x].
It is clear, because the only linear polynomials of F,[x] are x and x + 1, and it is straightforward to check that
x2+x+1¢ {x%x(x+1),(x +1)?}. Then G is a field with [G : F;] = deg(x® + x + 1) = 2. So G is a field with
4 elements. We must have G = F as the field structure on 4 elements is unique. The isomorphism is given by
X+ aandx+1+— b.



Exercise 4.9

Factorise x” — x € K[x] into irreducible factors over each of the following fields:

(@) K

(b) K =Q(w)
() K=F,
d K=F,

where w € C is a primitive cube root of unity.

(@ x"—x=x(x®-1) =x(x>-1)(x*+1) = x(x = 1) (x+ 1) (x? +x+1)(x*> = x +1). We claim that x> +x+1 and
x? — x + 1 are irreducible over Q. This can be checked either by showing that they have no rational roots

or by modulo 2.

-1+V-3
(b) Pick the primitive cube root of unity v = +T\/_ So Q(w) = Q(V-3). Then using the quadratic

formula, we have

X —x=x(x =D+ +x+1)(x*-x+1)

I e |

=x(x—-1)(x+1) (x— 5 5 5

(c) Over F, we have
7 _ 2 2 _ 20,2 2
X' —x=x(x-Dx+D)x"+x+D(x"—x+1) =x(x+ 1)*(x* +x +1)°.

We have shown that x2 + x + 1 is irreducible over F; in Q8.

(d) Note that 1 = —6 in F;. Hence we have

x—x=x(x-Dx+DE*+x+1)(x* —x+1)
=x(x =) (x+1)(x*+x-6)(x* —x—6)
=x(x-1)(x+1D(x=2)(x+3)(x+2)(x—3)
=x(x—-1)(x=2)(x=-3)(x—4)(x = 5)(x —6).
This is not a coincidence. In general, if K is field with char K = p, then ¢ : K — K given by a +— of is
a field automorphism, called the Frobenius map. Its restriction on the prime subfield FF, is the identity.

That is, a” = a for all a € F,. Hence the polynomial x” — x splits into linear factors over F, for any prime

p, whose roots are exactly all the elements of F,,.

Exercise 4.10

If L/K has degree [L : K] a prime, prove that L = K(«) is a simple extension for any a € L \ K.

For any a € L \ K, we have K C K(«) C L. By tower law,
[L:K]=[L:K(a)][K():K] =p.

Since p is prime and [K(a) : K] > 1, then [L : K(a)] = 1 and [K(a) : K] = p. Hence L = K(a) and L | Kisa

simple extension.



Exercise 4.11

Go back to the polynomial y® — 15y — 4, which obviously has 4 as a root. Set y = Az and solve for A to
present the result as z> — (3/4)z + c. Check that ¢ € [—1/4, 1/4], and use the trig formula to find the roots,
rediscovering y = 4.

Consider the equation y* — 15y — 4 = 0. Substituting y = Az, we have

, 15 4
z _ﬁZ_F_ .
15 3
Set — = —,ie. A = 2V5. We obtai
Tzl V5. We obtain
z3—§z—L—0
4" 10v5
1 11 , 3 1 _
Clearly ——— € |——, —|. If we set z = cos 0, then by Q1 we have z° — —z— — cos(360) = 0. In particular we have
105 4 4 4" 4

2 2
cos(30) = 7 Then all the real solutions is given by y = A cos(@ + ?ﬁk) for k = 0,1,2. To find cos 6 without
5vV5

solving the equation again, I have no choice but to seek help from plane geometry:

2
In the picture below, AOAB is a right triangle with cos ZAOB = ——. Pick the point C on AB such that AC =

5v5
1
HAB and extend OC to the point E such that OF = OB. It is not difficult to see that BC = BE. As a result,
1 OA 2 2
LAOC = - /AOB. Hence cos 0 = cos LZAOC = — = —. It follows that y = 245 — =4,
3 oc s V6
®)
5J5
25
C D
A \ 4 u) 3 B
s
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