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Warn-up questions
Exercise 5.1. Definitions of the week.

Write, frommemory, the definitions of irreducible polynomial, simple extension, degree of a field extension,
splitting field and normal extension. Then check your notes to find the first mistake. Repeat until you have
them correct 3 times in a row.

Exercise 5.2

Let 𝜑 : 𝐿 → 𝐿 be an automorphism of a field 𝐿. Explain why the map 𝜑−1 exists, and show that it is also
an automorphism of 𝐿.

(E.g. to show 𝜑−1 (𝑎𝑏) = 𝜑−1 (𝑎)𝜑−1 (𝑏) it may help to set 𝑎 = 𝜑 (𝑥) and 𝑏 = 𝜑 (𝑦) for some 𝑥,𝑦 ∈ 𝐿, which
you can certainly do since 𝜑 is a bijection.)

SeeQuestion 3 of Sheet 4.

Exercise 5.3

Let𝜑 : 𝐿 → 𝐿 be a𝐾-homomorphism of a finite extension 𝐿/𝐾 . Explain why the map𝜑 is an automorphism
of 𝐿 - i.e. it is a bijection. [Hint: injective is easy since 𝐿 is a field (6.1); surjective uses linear algebra, e.g.
the rank-nullity theorem, once you observe that 𝜑 is also a 𝐾-linear map of 𝐾-vector spaces.]

A 𝐾-homomorphism is both a ring homomorphism and a 𝐾-linear map. Since 𝜑 is a ring homomorphism, its
kernel ker𝜑 is an ideal of 𝐿. Hence ker𝜑 = {0} or 𝐿 because 𝐿 is a field. But 𝜑 ≠ 0 as 𝜑 |𝐾 = id. Hence
ker𝜑 = {0}. So 𝜑 is injective. On the other hand, 𝜑 is a linear transformation of the finite-dimensional 𝐾-
vector space 𝐿. Since it is injective, it is also bijective, because im𝜑 � 𝐿/ker𝜑 = 𝐿 by the first isomorphism (i.e.
rank–nullity theorem).

Exercise 5.4

Let 𝜎 ∈ Aut(𝐿) be an automorphism of a field 𝐿. First write down the definition of the fixed field 𝐿𝜎 . Then
show that 𝐿𝜎 ⊆ 𝐿 is a subfield of 𝐿. (i.e. check nonempty, closed under + and × and inverses.)

Show also that 𝐿𝐻 = 𝐿𝜎 , where 𝐻 = ⟨𝜎⟩ is the subgroup of Aut (𝐿) generated by 𝜎 .

The first part is Question 7 of Sheet 4. For the second part, note that by definition

𝐿𝐻 =
∩
𝜏∈𝐻

𝐿𝜏 ⊆ 𝐿𝜎 .

For the reverse inclusion, suppose that 𝑥 ∈ 𝐿𝜎 . Then 𝜎 (𝑥) = 𝑥 . For any 𝜏 = 𝜎𝑖 ∈ 𝐻 , 𝜏 (𝑥) = 𝜎𝑖 (𝑥) = 𝑥 . Hence
𝑥 ∈ 𝐿𝐻 . This finishes the proof.
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Exercise 5.5

If 𝐿/𝐾 has degree [𝐿 : 𝐾] a prime, prove that 𝐿/𝐾 is a simple extension. [Hint: in fact, 𝐿 = 𝐾 (𝛼) for any
𝛼 ∈ 𝐿 \ 𝐾 follows very quickly from the Tower Law.]

SeeQuestion 10 of Sheet 4.

Problems for Week 6
Exercise 5.6

Let 𝐿/𝐾 be an extension and 𝐾 ⊆ 𝑀𝑖 ⊆ 𝐿 be two intermediate fields, with 𝑖 = 1, 2.

(a) Show that 𝑁 = 𝑀1 ∩𝑀2 is also a field (obviously also 𝐾 ⊆ 𝑁 ⊆ 𝐿).

(b) Show that𝑀1 ∪𝑀2 is never a field unless𝑀1 ⊆ 𝑀2 or𝑀2 ⊆ 𝑀1.

These results should seem familiar to you in linear algebra.

(a) This is straightforward by checking the definition.

(b) Suppose that 𝑀1 ∪ 𝑀2 is a field, 𝑀1 ⊄ 𝑀2 or 𝑀2 ⊄ 𝑀1. Then take 𝑥 ∈ 𝑀1 \ 𝑀2 and 𝑦 ∈ 𝑀2 \ 𝑀1. Then
𝑥 +𝑦 ∉ 𝑀1 and 𝑥 +𝑦 ∉ 𝑀2, because both𝑀1 and𝑀2 are fields. On the other hand, since 𝑥,𝑦 ∈ 𝑀1 ∪𝑀2 and
𝑀1 ∪𝑀2 is a field, we have 𝑥 + 𝑦 ∈ 𝑀1 ∪𝑀2. This is a contradiction.

Exercise 5.7

Consider our basic example: 𝐿 = Q(𝛼,𝜔) with 𝛼 = 3
√
2 ∈ R and 𝜔 ∈ C a primitive cube root of unity. Let

𝜎 : 𝐿 → 𝐿 be complex conjugation, 𝜎 (𝑧) = 𝑧.

(a) Prove that 𝜎 is well defined; that is, 𝜎 (𝛽) ∈ 𝐿 for all 𝛽 ∈ 𝐿.

(b) Prove that 𝜎 is a homomorphism (of fields - i.e. it is a ring homomorphism). Note therefore that it is
injective (prove this, if not obvious to you).

(c) Explain why 𝜎 : 𝐿 → 𝐿 is both a Q-homomorphism and a Q(𝛼)-homomorphism.

(d) Prove that 𝜎 is surjective in two ways. [Hint. You could find two elements of 𝐿 that map to 𝛼 and
𝜔 respectively, and then use that 𝜎 is a 𝐾-homomorphism, or note that 𝜎 is an injective linear map
of 𝐾-vector spaces 𝐿 → 𝐿 (or of 𝐾 (𝛼) vector spaces, if you’d rather), and apply the rank-nullity
formula.]

(a) (We assume (c) for this one.) Since 𝜎 is aQ-homomorphism, it suffices to show that 𝜎 (𝛼) ∈ 𝐿 and 𝜎 (𝜔) ∈ 𝐿.
This is clear as

𝜎 (𝛼) = 𝛼 ; 𝜎 (𝜔) = 𝜔 = 𝜔2 ∈ 𝐿.

(b) This is straightforward by checking the definition. Also, 𝑧 = 0 if and only if 𝑧 = 0 for all 𝑧 ∈ C. Hence 𝜎 is
an injective ring homomorphism.

(c) 𝜎 (𝑧) = 𝑧 for all 𝑧 ∈ R. Since Q ⊆ Q(𝛼) ⊆ R, 𝜎 fixes all elements of Q and of Q(𝛼). This makes 𝜎 a
Q-(algebra )homomorphism and a Q(𝛼)-(algebra )homomorphism.

(d) We have shown inQuestion 3 that any Q-homomorphism of a finite extension 𝐿/Q is bijective.
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Exercise 5.8

Let 𝐺 = 𝑆3, the group of permutations of {1, 2, 3}.

(a) Write out all elements of 𝐺 .

(b) Check that 𝜎𝜏𝜎−1 = (2, 3) where 𝜏 = (1, 2) and 𝜎 = (1, 2, 3). More generally, recall that 𝜎𝜏𝜎−1 is the
same cycle type as 𝜏 , for any 𝜎 and 𝜏 , but with the entries replaced by their image under 𝜎 .

(c) Show that the pair (1, 2) and (1, 2, 3) generate 𝐺 - that is, any element of 𝐺 may be written as a
combination of these (and their inverses, possibly with repeats).

(d) Find all the subgroups of 𝐺 , and draw them in a subgroup lattice (as in Lecture 1), with inclusions
down the page (so {id} will be at the top of your picture and 𝐺 will be at the bottom).

This is purely group theory and these results are very standard. Let me omit this one.

Exercise 5.9

Let 𝐿 = Q(𝛼,𝜔) with 𝛼 = 3
√
2 ∈ R and 𝜔 ∈ C a primitive cube root of unity. Show that Q(𝛼) is not the

splitting field of any polynomial 𝑔 ∈ Q[𝑥]. (Or equivalently, since Q(𝛼)/Q is a finite extension, that if is
not a normal extension.)

Suppose that Q(𝛼) is the splitting field of 𝑔 ∈ Q[𝑥]. Since 𝛼 is a root of 𝑥3 − 2, which is irreducible over Q, by
Theorem 9.9 in the notes, 𝑥3 − 2 splits into linear factors over Q(𝛼). But this is impossible, as the two other roots
𝛼𝜔, 𝛼𝜔2 are not real, and hence not in Q(𝛼).

Exercise 5.10

𝐿 = Q(𝛽, 𝜔) with 𝛽 = 3
√
5 ∈ R and 𝜔 ∈ C a primitive cube root of unity.

(a) Show that 𝐿 is the splitting field for 𝑝 = 𝑥3 − 5 ∈ Q[𝑥].

(b) Compute the 3 roots of 𝑝 in 𝐿, and call them 𝛽1, 𝛽2, 𝛽3. Explain why any Q-homomorphism of 𝐿 must
permute the 𝛽𝑖 (either by proving this statement or by referring to relevant results from the lectures).

(c) Let 𝐺 = 𝑆3 act on 𝐿 by permuting the 3 roots in the natural way (by permuting the indices of their
names). You may assume that each such permutation extends to aQ-automorphism of 𝐿 (or you may
prove that, either directly or by referring to results from the lectures). Find the fixed field 𝐿𝐻 of each
subgroup 𝐻 ⊆ 𝐺 .

(d) Recall the definition of normal subgroup. Recall that if 𝐻 ⊆ 𝑆𝑛 is a subgroup of a symmetric group
𝑆𝑛 , then 𝐻 is a normal subgroup if and only if 𝐻 is a union of complete cycle types. (That is, for
example, if 𝐻 contains a 3-cycle (𝑖, 𝑗, 𝑘) then it contains all 3-cycles; similarly for any other cycle
type. This follows quickly from 8(b) above.)

(e) By inspecting each fixed field 𝐿𝐻 , show that for this 𝐿 and 𝐺 , 𝐻 ⊆ 𝐺 is a normal subgroup if and
only if 𝐿𝐻 is a normal extension of Q.

(a) In the splitting field, 𝑝 (𝑥) = 𝑥3 − 5 = (𝑥 − 𝛽) (𝑥 − 𝛽𝜔)(𝑥 − 𝛽𝜔2). Hence the splitting field of 𝑝 is given by
Q(𝛽, 𝛽𝜔, 𝛽𝜔2) as a subfield of C. It is clear that Q(𝛽, 𝛽𝜔, 𝛽𝜔2) ⊆ 𝐿 = Q(𝛽, 𝜔). For the reverse inclusion,
just note that 𝛽 ∈ Q(𝛽, 𝛽𝜔, 𝛽𝜔2) and also 𝜔 = 𝛽𝜔/𝛽 ∈ Q(𝛽, 𝛽𝜔, 𝛽𝜔2). Hence 𝐿 is the splitting field of 𝑝 .

(b) The three roots of 𝑝 are 𝛽𝑖 = 𝛽𝜔𝑖−1 for 𝑖 = 1, 2, 3. The fact that any Q-homomorphism permutes the roots
is Fundamental Observation 6.35 in the notes.

(c) Any Q-automorphism 𝜎 of 𝐿 = Q(𝛽1, 𝛽2, 𝛽3) permutes the three roots. This gives a natural injection
Aut(𝐿) ↩→ 𝐺 = 𝑆3. We identify Aut(𝐿) as a subgroup of 𝐺 . To show that Aut(𝐿) = 𝐺 , consider firstly the
complex conjugation𝜎1 : 𝑧 ↦−→ 𝑧. Under𝜎1 we have (𝛽1, 𝛽2, 𝛽3) ↦−→ (𝛽1, 𝛽3, 𝛽2). That is, 𝜎1 = (2 3) ∈ 𝐺 . Sec-
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ondly, 𝜎2 :
{
𝛽 ↦→ 𝛽𝜔

𝜔 ↦→ 𝜔
induces aQ-automorphism 𝜎2 : (𝛽1, 𝛽2, 𝛽3) ↦−→ (𝛽2, 𝛽3, 𝛽1). Hence 𝜎2 = (1 2 3) ∈ 𝐺 .

Since (2 3) and (1 2 3) generates 𝐺 , we have Aut(𝐿) = 𝐺 . In particular, every permutation of the roots
{𝛽1, 𝛽2, 𝛽3} extends to a Q-automorphism. The subfield lattice of 𝐿 is given by

𝐿 = Q(𝛽, 𝜔)

Q⟨ (1 2) ⟩ = Q(𝛽𝜔2) Q⟨ (1 3) ⟩ = Q(𝛽𝜔) Q⟨ (2 3) ⟩ = Q(𝛽)

Q⟨ (1 2 3) ⟩ = Q(𝜔)

Q

(d) Note that any two different 2-cycles generate 𝑆3. Hence the only non-trivial normal subgroup of 𝑆3 is
⟨(1 2 3)⟩.

(e) The normal subgroups of 𝐺 are {𝑒}, ⟨(1 2 3)⟩, and 𝐺 . The corresponding fixed fields 𝐿{𝑒 } = 𝐿, 𝐿⟨ (1 2 3) ⟩ =
Q(𝜔), and 𝐿𝐺 = Q are normal; the non-normal subgroups of 𝐺 are ⟨(1 2)⟩, ⟨(1 3)⟩, and ⟨(2 3)⟩. The
corresponding fixed fields are not normal, which is clear from the lattice above.

Additional problems
Exercise 5.11

Factorise 𝑥7 − 𝑥 ∈ 𝐾 [𝑥] into irreducible factors over each of the following fields:

(a) 𝐾 = Q

(b) 𝐾 = Q(𝜔)

(c) 𝐾 = F2

(d) 𝐾 = F7

where 𝜔 ∈ C is a primitive cube root of unity.

SeeQuestion 9 of Sheet 4.

Exercise 5.12

Repeat Q8 above with 𝐺 = 𝑆4. You can even do 𝑆5 if you’re brave.

There are 11 subgroups of 𝑆4 up to conjugacy. The subgroup lattice of 𝑆4 is given by
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{id}

𝐶2

⟨(1 2)⟩ ⟨(1 3)⟩ ⟨(1 4)⟩ ⟨(1 2) (3 4)⟩ ⟨(1 3)(2 4)⟩ ⟨(1 4)(2 3)⟩ 𝐶2

⟨(3 4)⟩ ⟨(2 4)⟩ ⟨(2 3)⟩

𝐶3 ⟨(1 2 3)⟩ ⟨(1 2 4)⟩ ⟨(1 3 4)⟩ ⟨(2 3 4)⟩

⟨(1 2), (3 4)⟩ ⟨(1 3), (2 4)⟩ ⟨(1 4) (2 3)⟩ ⟨(1 2)(3 4), (1 3) (2 4)⟩ � 𝑉4 ⟨(1 3 2 4)⟩ ⟨(1 2 3 4)⟩ ⟨(1 2 4 3)⟩ 𝐶4

𝑆3 ⟨(1 2 3), (1 2)⟩ ⟨(1 2 4), (1 2)⟩ ⟨(1 3 4), (1 3)⟩ ⟨(2 3 4), (2 3)⟩ 𝑉4

⟨(1 3 2 4), (1 2)⟩ ⟨(1 2 3 4), (1 3)⟩ ⟨(1 2 4 3), (1 4)⟩ 𝐷8

𝐴4

𝑆4

There are 19 subgroups of 𝑆5 up to conjugacy. It would be impossible to draw the subgroup lattice of 𝑆5 on the
paper!
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