MA3D5 Galois Theory Sheet 5 Solutions

Peize Liu

7 Nov 2024

Warn-up questions

Exercise 5.1. Definitions of the week.

Write, from memory, the definitions of irreducible polynomial, simple extension, degree of a field extension, splitting field and normal extension. Then check your notes to find the first mistake. Repeat until you have them correct 3 times in a row.

Exercise 5.2

Let $\varphi : L \to L$ be an automorphism of a field *L*. Explain why the map φ^{-1} exists, and show that it is also an automorphism of *L*.

(E.g. to show $\varphi^{-1}(ab) = \varphi^{-1}(a)\varphi^{-1}(b)$ it may help to set $a = \varphi(x)$ and $b = \varphi(y)$ for some $x, y \in L$, which you can certainly do since φ is a bijection.)

See Question 3 of Sheet 4.

Exercise 5.3

Let $\varphi : L \to L$ be a *K*-homomorphism of a finite extension L/K. Explain why the map φ is an automorphism of *L* - i.e. it is a bijection. [Hint: injective is easy since *L* is a field (6.1); surjective uses linear algebra, e.g. the rank-nullity theorem, once you observe that φ is also a *K*-linear map of *K*-vector spaces.]

A *K*-homomorphism is both a ring homomorphism and a *K*-linear map. Since φ is a ring homomorphism, its kernel ker φ is an ideal of *L*. Hence ker $\varphi = \{0\}$ or *L* because *L* is a field. But $\varphi \neq 0$ as $\varphi|_K = \text{id}$. Hence ker $\varphi = \{0\}$. So φ is injective. On the other hand, φ is a linear transformation of the finite-dimensional *K*-vector space *L*. Since it is injective, it is also bijective, because im $\varphi \cong L/\ker \varphi = L$ by the first isomorphism (i.e. rank–nullity theorem).

Exercise 5.4

Let $\sigma \in Aut(L)$ be an automorphism of a field *L*. First write down the definition of the fixed field L^{σ} . Then show that $L^{\sigma} \subseteq L$ is a subfield of *L*. (i.e. check nonempty, closed under + and × and inverses.)

Show also that $L^H = L^{\sigma}$, where $H = \langle \sigma \rangle$ is the subgroup of Aut (*L*) generated by σ .

The first part is Question 7 of Sheet 4. For the second part, note that by definition

$$L^H = \bigcap_{\tau \in H} L^\tau \subseteq L^\sigma$$

For the reverse inclusion, suppose that $x \in L^{\sigma}$. Then $\sigma(x) = x$. For any $\tau = \sigma^i \in H$, $\tau(x) = \sigma^i(x) = x$. Hence $x \in L^H$. This finishes the proof.

Exercise 5.5

If L/K has degree [L : K] a prime, prove that L/K is a simple extension. [Hint: in fact, $L = K(\alpha)$ for any $\alpha \in L \setminus K$ follows very quickly from the Tower Law.]

See Question 10 of Sheet 4.

Problems for Week 6

Exercise 5.6

Let L/K be an extension and $K \subseteq M_i \subseteq L$ be two intermediate fields, with i = 1, 2.

- (a) Show that $N = M_1 \cap M_2$ is also a field (obviously also $K \subseteq N \subseteq L$).
- (b) Show that $M_1 \cup M_2$ is never a field unless $M_1 \subseteq M_2$ or $M_2 \subseteq M_1$.

These results should seem familiar to you in linear algebra.

- (a) This is straightforward by checking the definition.
- (b) Suppose that $M_1 \cup M_2$ is a field, $M_1 \notin M_2$ or $M_2 \notin M_1$. Then take $x \in M_1 \setminus M_2$ and $y \in M_2 \setminus M_1$. Then $x + y \notin M_1$ and $x + y \notin M_2$, because both M_1 and M_2 are fields. On the other hand, since $x, y \in M_1 \cup M_2$ and $M_1 \cup M_2$ is a field, we have $x + y \in M_1 \cup M_2$. This is a contradiction.

Exercise 5.7

Consider our basic example: $L = \mathbb{Q}(\alpha, \omega)$ with $\alpha = \sqrt[3]{2} \in \mathbb{R}$ and $\omega \in \mathbb{C}$ a primitive cube root of unity. Let $\sigma : L \to L$ be complex conjugation, $\sigma(z) = \overline{z}$.

- (a) Prove that σ is well defined; that is, $\sigma(\beta) \in L$ for all $\beta \in L$.
- (b) Prove that σ is a homomorphism (of fields i.e. it is a ring homomorphism). Note therefore that it is injective (prove this, if not obvious to you).
- (c) Explain why $\sigma : L \to L$ is both a \mathbb{Q} -homomorphism and a $\mathbb{Q}(\alpha)$ -homomorphism.
- (d) Prove that σ is surjective in two ways. [Hint. You could find two elements of *L* that map to α and ω respectively, and then use that σ is a *K*-homomorphism, or note that σ is an injective linear map of *K*-vector spaces $L \to L$ (or of $K(\alpha)$ vector spaces, if you'd rather), and apply the rank-nullity formula.]
- (a) (We assume (c) for this one.) Since σ is a \mathbb{Q} -homomorphism, it suffices to show that $\sigma(\alpha) \in L$ and $\sigma(\omega) \in L$. This is clear as

$$\sigma(\alpha) = \alpha; \qquad \sigma(\omega) = \overline{\omega} = \omega^2 \in L.$$

- (b) This is straightforward by checking the definition. Also, $\overline{z} = 0$ if and only if z = 0 for all $z \in \mathbb{C}$. Hence σ is an injective ring homomorphism.
- (c) $\sigma(z) = z$ for all $z \in \mathbb{R}$. Since $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{R}$, σ fixes all elements of \mathbb{Q} and of $\mathbb{Q}(\alpha)$. This makes σ a \mathbb{Q} -(algebra)homomorphism and a $\mathbb{Q}(\alpha)$ -(algebra)homomorphism.
- (d) We have shown in Question 3 that any \mathbb{Q} -homomorphism of a finite extension L/\mathbb{Q} is bijective.

Exercise 5.8

Let $G = S_3$, the group of permutations of $\{1, 2, 3\}$.

- (a) Write out all elements of G.
- (b) Check that $\sigma\tau\sigma^{-1} = (2,3)$ where $\tau = (1,2)$ and $\sigma = (1,2,3)$. More generally, recall that $\sigma\tau\sigma^{-1}$ is the same cycle type as τ , for any σ and τ , but with the entries replaced by their image under σ .
- (c) Show that the pair (1, 2) and (1, 2, 3) generate G that is, any element of G may be written as a combination of these (and their inverses, possibly with repeats).
- (d) Find all the subgroups of *G*, and draw them in a subgroup lattice (as in Lecture 1), with inclusions down the page (so {id} will be at the top of your picture and *G* will be at the bottom).

This is purely group theory and these results are very standard. Let me omit this one.

Exercise 5.9

Let $L = \mathbb{Q}(\alpha, \omega)$ with $\alpha = \sqrt[3]{2} \in \mathbb{R}$ and $\omega \in \mathbb{C}$ a primitive cube root of unity. Show that $\mathbb{Q}(\alpha)$ is not the splitting field of any polynomial $g \in \mathbb{Q}[x]$. (Or equivalently, since $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a finite extension, that if is not a normal extension.)

Suppose that $\mathbb{Q}(\alpha)$ is the splitting field of $g \in \mathbb{Q}[x]$. Since α is a root of $x^3 - 2$, which is irreducible over \mathbb{Q} , by Theorem 9.9 in the notes, $x^3 - 2$ splits into linear factors over $\mathbb{Q}(\alpha)$. But this is impossible, as the two other roots $\alpha\omega, \alpha\omega^2$ are not real, and hence not in $\mathbb{Q}(\alpha)$.

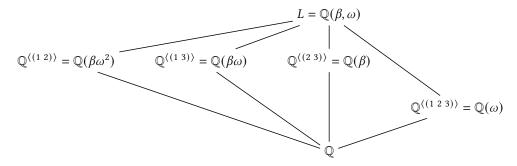
Exercise 5.10

 $L = \mathbb{Q}(\beta, \omega)$ with $\beta = \sqrt[3]{5} \in \mathbb{R}$ and $\omega \in \mathbb{C}$ a primitive cube root of unity.

- (a) Show that *L* is the splitting field for $p = x^3 5 \in \mathbb{Q}[x]$.
- (b) Compute the 3 roots of *p* in *L*, and call them $\beta_1, \beta_2, \beta_3$. Explain why any \mathbb{Q} -homomorphism of *L* must permute the β_i (either by proving this statement or by referring to relevant results from the lectures).
- (c) Let $G = S_3$ act on L by permuting the 3 roots in the natural way (by permuting the indices of their names). You may assume that each such permutation extends to a \mathbb{Q} -automorphism of L (or you may prove that, either directly or by referring to results from the lectures). Find the fixed field L^H of each subgroup $H \subseteq G$.
- (d) Recall the definition of normal subgroup. Recall that if $H \subseteq S_n$ is a subgroup of a symmetric group S_n , then H is a normal subgroup if and only if H is a union of complete cycle types. (That is, for example, if H contains a 3-cycle (i, j, k) then it contains all 3-cycles; similarly for any other cycle type. This follows quickly from 8(b) above.)
- (e) By inspecting each fixed field L^H , show that for this L and G, $H \subseteq G$ is a normal subgroup if and only if L^H is a normal extension of \mathbb{Q} .
- (a) In the splitting field, $p(x) = x^3 5 = (x \beta)(x \beta\omega)(x \beta\omega^2)$. Hence the splitting field of p is given by $\mathbb{Q}(\beta, \beta\omega, \beta\omega^2)$ as a subfield of \mathbb{C} . It is clear that $\mathbb{Q}(\beta, \beta\omega, \beta\omega^2) \subseteq L = \mathbb{Q}(\beta, \omega)$. For the reverse inclusion, just note that $\beta \in \mathbb{Q}(\beta, \beta\omega, \beta\omega^2)$ and also $\omega = \beta\omega/\beta \in \mathbb{Q}(\beta, \beta\omega, \beta\omega^2)$. Hence L is the splitting field of p.
- (b) The three roots of *p* are $\beta_i = \beta \omega^{i-1}$ for i = 1, 2, 3. The fact that any Q-homomorphism permutes the roots is **Fundamental Observation 6.35** in the notes.
- (c) Any Q-automorphism σ of L = Q(β₁, β₂, β₃) permutes the three roots. This gives a natural injection Aut(L) → G = S₃. We identify Aut(L) as a subgroup of G. To show that Aut(L) = G, consider firstly the complex conjugation σ₁: z → z̄. Under σ₁ we have (β₁, β₂, β₃) → (β₁, β₃, β₂). That is, σ₁ = (2 3) ∈ G. Sec-

ondly, $\sigma_2 : \begin{cases} \beta \mapsto \beta \omega \\ \omega \mapsto \omega \end{cases}$ induces a \mathbb{Q} -automorphism $\sigma_2 : (\beta_1, \beta_2, \beta_3) \mapsto (\beta_2, \beta_3, \beta_1)$. Hence $\sigma_2 = (1 \ 2 \ 3) \in G$. Since (2 3) and (1 2 3) generates *G*, we have Aut(*L*) = *G*. In particular, every permutation of the roots

 $\{\beta_1, \beta_2, \beta_3\}$ extends to a Q-automorphism. The subfield lattice of *L* is given by



- (d) Note that any two different 2-cycles generate S_3 . Hence the only non-trivial normal subgroup of S_3 is $\langle (1 2 3) \rangle$.
- (e) The normal subgroups of *G* are $\{e\}$, $\langle (1 2 3) \rangle$, and *G*. The corresponding fixed fields $L^{\{e\}} = L, L^{\langle (1 2 3) \rangle} = \mathbb{Q}(\omega)$, and $L^G = \mathbb{Q}$ are normal; the non-normal subgroups of *G* are $\langle (1 2) \rangle$, $\langle (1 3) \rangle$, and $\langle (2 3) \rangle$. The corresponding fixed fields are not normal, which is clear from the lattice above.

Additional problems

Exercise 5.11

Factorise $x^7 - x \in K[x]$ into irreducible factors over each of the following fields:

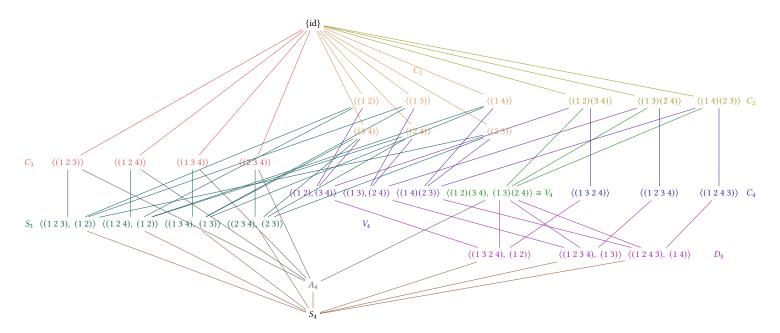
(a) $K = \mathbb{Q}$ (b) $K = \mathbb{Q}(\omega)$ (c) $K = \mathbb{F}_2$ (d) $K = \mathbb{F}_7$ where $\omega \in \mathbb{C}$ is a primitive cube root of unity.

See Question 9 of Sheet 4.

Exercise 5.12

Repeat Q8 above with $G = S_4$. You can even do S_5 if you're brave.

There are 11 subgroups of S_4 up to conjugacy. The subgroup lattice of S_4 is given by



There are 19 subgroups of S_5 up to conjugacy. It would be impossible to draw the subgroup lattice of S_5 on the paper!