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Section A: Warn-up questions
Exercise 6.1

Recall that F2 = {0, 1} is a finite field of 2 elements.

(a) Explain why 𝑥2 + 𝑥 + 1 ∈ F2 [𝑥] is irreducible.

(b) Note that F22 = F2 [𝑥]/
(
𝑥2 + 𝑥 + 1

)
is a finite field of 22 = 4 elements: it is a field simply because the

polynomial is irreducible, and it has a basis 1, 𝛼 as a vector space over F2. Denote by 𝛼 the class of 𝑥
in F22 .

(c) Show that 𝛼 (𝛼 + 1) = 1 (noting that −1 = 1 in F2). Conclude that 𝛼 + 1 is the multiplicative inverse
of 𝛼 .

(d) Draw the 4 × 4 addition and multiplication tables of F22 .

(e) Show that the finite field F22 of 4 elements has no subfields other that itself and its prime subfield F2.

(a)–(d) are covered in my solution for Question 8 of Sheet 4. For (e), note that any subfield 𝐾 of F22 is a F2-vector
subspace of F22 . Hence |𝐾 | = |F2 |𝑘 for some 𝑘 ∈ 𝑍>0. But |𝐾 | ⩽ |F22 | = 4. Wemust have 𝑘 = 1 or 2, corresponding
to 𝐾 = F2 or 𝐾 = F22 .

Exercise 6.2

Suppose 𝐿/𝐾 is an extension and 𝛼, 𝛼 ′ ∈ 𝐿. Show that if 𝛼𝛼 ′ ∈ 𝐾 then 𝛼 ′ ∈ 𝐾 (𝛼) and moreover that
𝐾 (𝛼) = 𝐾 (𝛼 ′).

If 𝛼𝛼 ′ = 𝑐 ∈ 𝐾 , then 𝛼 ′ = 𝑐𝛼−1 ∈ 𝐾 (𝛼). Symmetrically 𝛼 ∈ 𝐾 (𝛼 ′). Hence 𝐾 (𝛼) = 𝐾 (𝛼 ′).

Exercise 6.3

Compute all subgroups of the symmetric group 𝑆3 and determine which are transitive.

Recall that a subgroup 𝐻 ⩽ 𝑆𝑛 is called transitive if its natural action on the set {1, ..., 𝑛} is transitive, i.e. for
any 𝑖, 𝑗 ∈ {1, ..., 𝑛} there exists 𝜎 ∈ 𝐻 such that 𝜎 (𝑖) = 𝑗 . By orbit–stabiliser theorem, |𝐻 | = |𝐻 · 𝑥 | · | Stab(𝑥) |. In
particular, 𝑛 = |𝐻 · 𝑥 | divides |𝐻 |.

In the case of 𝑆3, any transitive subgroup has order 3 or 6. These subgroups are ⟨(1 2 3)⟩ and 𝑆3, and it is easy to
check that they are indeed transitive.

Section B: Problems to hand in
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Exercise 6.4

Let 𝑓 = 𝑥16 − 𝑥 ∈ F2 [𝑥].

(a) Prove that 𝑓 is separable over F2.

(b) Let 𝐿/F2 be a splitting field of 𝑓 . How many elements does 𝐿 have?

(c) Compute [𝐿 : F2] (with justification).

(d) Show that there is an intermediate field𝑀 with [𝑀 : F2] = 2.

(e) Compute [𝐿 : 𝑀] and justify it.

(a) By Lemma 9.26, 𝑓 is separable if and only if 𝑓 and its formal derivative D𝑓 are coprime in 𝐾 [𝑥]. For
𝑓 = 𝑥16 − 𝑥 ∈ F2 [𝑥], we have

D𝑓 = 16𝑥15 − 1 = −1 ∈ F2 [𝑥]

as 16 = 0 in F2. Clearly 𝑓 and D𝑓 = −1 are coprime, so 𝑓 is separable.

(b) Let 𝐾 be the set of roots of 𝑓 in 𝐿. That is, 𝐾 =
{
𝛼 ∈ 𝐿 | 𝛼16 = 𝛼

}
. We claim that 𝐾 is a subfield of 𝐿. It is

clear that 𝛼𝛽−1 ∈ 𝐾 for 𝛼 ∈ 𝐾 and 𝛽 ∈ 𝐾× , so 𝐾 is closed under multiplication and multiplicative inverse.
For 𝛼, 𝛽 ∈ 𝐾 , we have

(𝛼 + 𝛽)16 = 𝛼16 + 𝛽16 +
15∑
𝑖=1

(
16
𝑖

)
𝛼𝑖𝛽16−𝑖 = 𝛼16 + 𝛽16,

where we used the fact that 2 divides
(16
𝑖

)
for 1 ⩽ 𝑖 ⩽ 15. Hence 𝐾 is closed under addition. Moreover,

𝛼 = −𝛼 ∈ 𝐾 since it has characteristic 2. We conclude that 𝐾 is indeed a subfield of 𝐿.

We have the inclusions F2 ⊆ 𝐾 ⊆ 𝐿, where 𝐾 contains all roots of 𝑓 . But 𝐿 is a splitting field of 𝑓 over F2,
so we have 𝐿 = 𝐾 . Since 𝑓 is separable, it has deg 𝑓 = 16 distinct roots in 𝐿. As 𝐿 is exactly the set of roots
of 𝑓 , it has exactly 16 elements.

(c) Let 𝑛 = [𝐿 : F2]. Then 𝐿 � F𝑛2 as a F2-vector space. Then 16 = |𝐿 | = |F2 |𝑛 = 2𝑛 . Hence 𝑛 = 4.

(d) Note that 𝑓 can be factorised as

𝑓 (𝑥) = 𝑥16−𝑥 = 𝑥 ((𝑥3)5−1) = 𝑥 (𝑥3−1) (𝑥15+𝑥12+𝑥9+𝑥6+𝑥3+1) = 𝑥 (𝑥−1)(𝑥2+𝑥+1) (𝑥15+𝑥12+𝑥9+𝑥6+𝑥3+1) .

Then 𝑥2 + 𝑥 + 1 is a factor of 𝑓 , and we have shown in Question 1.(a) that it is irreducible over F2. Let 𝛾 be
a root of 𝑥2 + 𝑥 + 1. Then𝑀 := F2 (𝛾) ⊆ 𝐿 has degree 2 over F2.

(e) By tower law, [𝐿 : F2] = [𝐿 : 𝑀] [𝑀 : F2]. So [𝐿 : 𝑀] = 2.

Exercise 6.5

List and and justify the 𝑛 ∈ {2, . . . , 16} for which there is a field with 𝑛 elements. For each such field give
a polynomial 𝑓 such that it is the splitting field of this polynomial over its prime field.

Let 𝐾 be a finite field. It contains a prime subfield F𝑝 where 𝑝 = char𝐾 is a prime number. Then 𝐾 is a finite
dimensional F𝑝 -vector space. If dimF𝑝 𝐾 = [𝐾 : F𝑝 ] =𝑚, then |𝐾 | = |F𝑝 |𝑚 = 𝑝𝑚 . We deduce that the cardinality
of a finite field must be a power of prime. For 𝑛 ∈ {2, ..., 16}, the prime powers are 2, 3, 4 = 22, 5, 7, 8 = 23, 9 = 32,
11, 13, 16 = 24.

Next, we shall construct a finite field of order 𝑝𝑛 as a splitting field over F𝑝 of some polynomial 𝑓 . Following
the previous question, the best candidate is 𝑓 (𝑥) = 𝑥𝑝

𝑛 − 𝑥 ∈ F𝑝 [𝑥]. Let 𝐿 be the splitting field over F𝑝 .
The same argument as above shows that 𝑓 is separable, and 𝐿 is exactly the set of roots of 𝑓 .1 It follows that
|𝐿 | = deg 𝑓 = 𝑝𝑛 .

1When proving that the roots of 𝑓 form a subfield of 𝐿, take care of the binomial coefficients — you need to show that 𝑝𝑛 divides
(𝑝𝑛
𝑖

)
for 1 ⩽ 𝑖 ⩽ 𝑝𝑛 − 1. See Question 2 of Sheet 7 for details.
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Remark. We can prove moreover that the finite field of order 𝑝𝑛 is unique up to isomorphism, as a result of the
uniqueness of splitting field.

Let 𝐾 be a finite field of order 𝑝𝑛 . We know that 𝐾× is a cyclic group of order 𝑝𝑛 − 1. Hence any 𝛼 ∈ 𝐾× satisfies
𝛼𝑝

𝑛−1 − 1 = 0 and hence is a root of 𝑓 (𝑥) := 𝑥𝑝
𝑛 − 𝑥 ∈ F𝑝 [𝑥]. In addition, 0 ∈ 𝐾 is also a root of 𝑓 . Hence 𝑓

splits over 𝐾 and 𝐾 is exactly the set of all roots of 𝑓 . Hence 𝐾 is the splitting field of 𝑓 over F𝑝 . We conclude
that 𝐾 � 𝐿.

Exercise 6.6

Let 𝑓 = 𝑥5 − 2. Write down the splitting field of 𝑓 over Q and compute its degree.

Let 𝛼 := 5
√
2 be a real root of 𝑓 , and 𝜁 a primtive fifth root of unity. Then 𝑓 is factorised over C as

𝑓 (𝑥) = 𝑥5 − 2 = (𝑥 − 𝛼) (𝑥 − 𝛼𝜁 ) (𝑥 − 𝛼𝜁 2) (𝑥 − 𝛼𝜁 3)(𝑥 − 𝛼𝜁 4).

The splitting field of 𝑓 over Q is given by Q(𝛼, 𝛼𝜁 , 𝛼𝜁 2, 𝛼𝜁 3, 𝛼𝜁 4). It is clear that 𝐾 = Q(𝛼, 𝜁 ); on the other hand
we have 𝛼 ∈ 𝐾 and 𝜁 = 𝛼𝜁 /𝛼 ∈ 𝐾 . Hence 𝐾 = Q(𝛼, 𝜁 ).

To compute the degree of 𝐾 over Q, consider the tower law:

[𝐾 : Q] = [Q(𝛼, 𝜁 ) : Q(𝛼)] [Q(𝛼) : Q] = [Q(𝛼, 𝜁 ) : Q(𝜁 )] [Q(𝜁 ) : Q] .

Since 𝑥5 − 2 is the minimal polynomial of 𝛼 over Q, we have [Q(𝛼) : Q] = 5; since 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 is the
minimal polynomial of 𝜁 over Q, we have [Q(𝜁 ) : Q] = 4. It follows that

[𝐾 : Q] = 5[𝐾 : Q(𝛼)] = 4[𝐾 : Q(𝜁 )] .

As gcd(4, 5) = 1, we have that 5 divides [𝐾 : Q(𝜁 )]. But 𝛼 is a root of 𝑥5 − 2 viewed as a polynomial in Q(𝜁 ) [𝑥].
So [𝐾 : Q(𝜁 )] ⩽ 5. We must have [𝐾 : Q(𝜁 )] = 5 and hence [𝐾 : Q] = 5 × 4 = 20.

Section C: Additional problems

—

Exercise 6.7

Show that if 𝐿/𝐾 is a Galois extension and 𝐾 ⊆ 𝑀 ⊆ 𝐿 is an intermediate field, then 𝐿/𝑀 is a Galois
extension. [No work required, but take care to have addressed all parts of what it means to be Galois.]

For a finite field extension 𝐿/𝐾 , recall that the following are equivalent:

1) 𝐿 is the splitting field of some separable polynomial 𝑓 ∈ 𝐾 [𝑥];
2) 𝐿/𝐾 is separable and normal;
3) 𝐿Aut𝐾 𝐿 = 𝐾 .

This modules takes (1) as the basic definition of a Galois extension and other equivalent forms as theorems. Using
(1) in this question, we see that 𝐿 is the splitting field of some separable 𝑓 ∈ 𝐾 [𝑥]. That is, 𝐿 = 𝐾 (𝛼1, ..., 𝛼𝑛) with
𝛼1, ..., 𝛼𝑛 the roots of 𝑓 . Since 𝐾 ⊆ 𝑀 ⊆ 𝐿, regarding 𝑓 as a polynomial in 𝑀 [𝑥], it is still separable and has the
same roots: 𝐿 = 𝑀 (𝛼1, ..., 𝛼𝑛). So 𝐿 is also a splitting field of𝑀 , and hence 𝐿/𝑀 is a Galois extension.
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Exercise 6.8

Compute the Galois group Gal(𝑓 ) of 𝑓 = 𝑥3 − 5 ∈ Q[𝑥].

Identify all subgroups of Gal(𝑓 ) and draw the corresponding lattice of fixed fields. Identify all the normal
field extensions of Q in the lattice of fixed fields, and confirm that they correspond to normal subgroups of
Gal(𝑓 ).

How do other normal field extensions in the lattice of fixed fields correspond to normal subgroups of certain
other groups?

See Question 10 of Sheet 5.

Exercise 6.9

Let 𝑓 = 𝑥4 − 2 ∈ Q[𝑥]. Show that its splitting field 𝐿 ⊆ C may be written 𝐿 = Q(𝛼, 𝑖), with 𝛼 = 4
√
2 ∈ R,

and confirm [𝐿 : Q] = 8.

Show that the following two maps

𝜎 :

{
𝑖 ↦→ 𝑖

𝛼 ↦→ 𝑖𝛼
and 𝜏 :

{
𝑖 ↦→ −𝑖
𝛼 ↦→ 𝛼

are automorphisms, 𝜎, 𝜏 ∈ Gal(𝑓 ) = Gal(𝐿/Q). [I find it useful to draw the field lattice of 𝐿,Q(𝛼),Q(𝑖),Q,
and think about which extensions 𝑁 /𝑀 are splitting fields for which irreducible polynomials. We have
results that guarantee that certain permutations of roots of those polynomials are in Aut𝑀 (𝑁 ). Or one can
check it by hand too, given that I’ve said what the answer is!]

Show they satisfy 𝜎4 = 𝜏2 = id and 𝜏𝜎 = 𝜎3𝜏 . Conclude that Gal(𝑓 ) � 𝐷8, the dihedral group with 8
elements (a.k.a. the symmetry group of the square).

Calculate the subgroup lattice of 𝐷8. [In terms of symmetries of the square, labelling the corners 1, 2, 3, 4
cyclically and roots ordered 𝛼, 𝑖𝛼,−𝛼,−𝑖𝛼 , we have 𝜎 = (1234) and 𝜏 = (24).] [Hint2: five order 2 sub-
groups, three order 4.]

Compute the lattice of fixed subfields of 𝐿.

Over the splitting field 𝐿, 𝑓 splits as

𝑓 (𝑥) = 𝑥4 − 2 = (𝑥 − 𝛼) (𝑥 + 𝛼) (𝑥 − 𝛼 i) (𝑥 + 𝛼 i).

Hence 𝐿 = Q(𝛼,−𝛼, 𝛼 i,−𝛼 i) = Q(𝛼, 𝛼 i) = Q(𝛼, i). By tower law,

[𝐿 : Q] = [Q(𝛼, i) : Q(𝛼)] [Q(𝛼) : Q] .

We have [Q(𝛼) : Q] = deg 𝑓 = 4 because 𝑓 is irreducible over Q and hence is the minimal polynomial of
𝛼 over Q. Next, [Q(𝛼, i) : Q(𝛼)] = 2 because 𝑥2 + 1 is the minimal polynomial of i over Q(𝛼). Therefore
[𝐿 : Q] = 2 × 4 = 8.

To check that 𝜎, 𝜏 are automorphisms of 𝐿, it suffices to check that they map roots of 𝑓 to roots:

𝜎 :


𝛼 ↦−→ 𝛼 i

−𝛼 ↦−→ −𝛼 i
𝛼 i ↦−→ −𝛼
−𝛼 i ↦−→ 𝛼

, 𝜏 :


𝛼 ↦−→ 𝛼

−𝛼 ↦−→ −𝛼
𝛼 i ↦−→ −𝛼 i
−𝛼 i ↦−→ 𝛼 i

.

The automorphism 𝜏 is complex conjugation, so 𝜏2 = id; 𝜎 : 𝛼 i𝑛 ↦→ 𝛼 i𝑛+1 permutes the four roots of 𝑓 cyclically,
thus 𝜎4 = id. In fact on the square of the four roots 𝛼𝑛 := 𝛼 i𝑛−1 on the complex plane, 𝜎 = (1 2 3 4) is
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the rotation anti-clockwise by 𝜋/2 and 𝜏 = (2 4) is the reflection in the 𝑥-axis. It is clear that 𝜏𝜎 = 𝜎3𝜏 and
⟨𝜎, 𝜏⟩ � 𝐷8 ⩽ Gal(𝑓 ). Note that |𝐷8 | = 8 = [𝐿 : Q] = | Gal(𝑓 ) |. Hence Gal(𝑓 ) � 𝐷8.

Next we determine the subgroup lattice of 𝐷8. The list of all element of 𝐷8 is as follows:

• Order 1: 𝑒;
• Order 2: 𝜎2, 𝜏 , 𝜎𝜏 , 𝜎2𝜏 , 𝜎3𝜏 ;
• Order 4: 𝜎 , 𝜎3.

it is clear that each element of order 2 generates a distinct subgroup of 𝐷8 of order 2, and this exhausts all the
subgroups of order 2. For 𝐻 ⩽ 𝐷8 of order 4, if 𝐻 � 𝐶4 then 𝐻 = ⟨𝜎⟩ =

⟨
𝜎3

⟩
; if 𝐻 � 𝐶2 ×𝐶2, then 𝐻 = ⟨𝛼, 𝛽⟩ for

some elements 𝛼, 𝛽 of order 2. Suppose that 𝛼, 𝛽 are of the form 𝜎𝑖𝜏 , 𝜎 𝑗𝜏 . Then 𝜎𝑖− 𝑗 = 𝛼𝛽−1 ∈ 𝐻 . If 𝑖 − 𝑗 is even,
then 𝜎 ∈ 𝐻 , which is impossible as 𝐻 cannot have elements of order 4; if 𝑖 − 𝑗 is odd, then 𝜎2 ∈ 𝐻 . So in any case
𝐻 is of the form

⟨
𝜎2, 𝜎𝑖𝜏

⟩
for some 𝑖 . We can check that

⟨
𝜎2, 𝜏

⟩
=
⟨
𝜎2, 𝜎2𝜏

⟩
≠
⟨
𝜎2, 𝜎𝜏

⟩
=
⟨
𝜎2, 𝜎3𝜏

⟩
. In this way

we have found all the non-trivial subgroups of 𝐷8. They are organised in the following lattice:

{𝑒}

⟨𝜏⟩
⟨
𝜎2𝜏

⟩ ⟨
𝜎2

⟩
⟨𝜎𝜏⟩

⟨
𝜎3𝜏

⟩
⟨
𝜎2, 𝜏

⟩
⟨𝜎⟩

⟨
𝜎2, 𝜎𝜏

⟩
𝐷8

To determine the fixed field of e.g. the subgroup ⟨𝜏⟩, we write down a basis of 𝐿: {1, 𝛼, 𝛼2, 𝛼3, i, 𝛼 i, 𝛼2i, 𝛼3i}. For
𝑥 =

∑3
𝑗=0 𝑐 𝑗𝛼

𝑗 +∑3
𝑘=0 𝑑𝑘𝛼

𝑘 i ∈ 𝐿,

𝑥 = 𝜏 (𝑥) ⇐⇒
3∑
𝑗=0

𝑐 𝑗𝛼
𝑗 +

3∑
𝑘=0

𝑑𝑘𝛼
𝑘 i =

3∑
𝑗=0

𝑐 𝑗𝛼
𝑗 −

3∑
𝑘=0

𝑑𝑘𝛼
𝑘 i ⇐⇒ 𝑑0 = 𝑑1 = 𝑑2 = 𝑑3 = 0.

Hence 𝐿⟨𝜏 ⟩ =
{∑3

𝑗=0 𝑐 𝑗𝛼
𝑗 | 𝑐0, ..., 𝑐3 ∈ Q

}
= Q(𝛼). Other subfields of 𝐿 can be computed in a similar way. The

subfield lattice is shown below:

𝐿 = Q(𝛼, i)

𝐿⟨𝜏 ⟩ = Q(𝛼) 𝐿⟨𝜎2𝜏⟩ = Q(𝛼 i) 𝐿⟨𝜎2⟩ = Q(𝛼2, i) 𝐿⟨𝜎𝜏 ⟩ = Q(𝛼 (1 + i)) 𝐿⟨𝜎3𝜏⟩ = Q(𝛼 (1 − i))

𝐿⟨𝜎2,𝜏⟩ = Q(𝛼2) 𝐿⟨𝜎 ⟩ = Q(i) 𝐿⟨𝜎2,𝜎𝜏⟩ = Q(𝛼2i)

𝐿𝐷8 = Q

Each line in the diagram represents an extension of degree 2.

Exercise 6.10

Compute all the transitive subgroups of 𝑆4. [Hint: there are five, up to conjugacy, of orders 4, 4, 8, 12, 24
respectively. ”Up to conjugacy” means if you include ⟨(1234)⟩ you don’t have to include ⟨(1324)⟩ and
others achieved merely by relabelling the corners of the square.]

(You could also think about 𝑆5. Again there are five, this time of orders 5, 10, 20, 60, 120. Good time to
practice drawing pentagons and pentagrams.)
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I will just do 𝑆4. Let 𝐻 be a transitive subgroup. By orbit–stabiliser theorem 4 | |𝐻 |. From the subgroup lattice
of 𝑆4, we note that the subgroups of 𝑆4 of order 4𝑘 are given up to conjugacy by:

⟨(1 2 3 4)⟩ � 𝐶4; ⟨(1 2), (3 4)⟩ � 𝑉4; ⟨(1 2)(3 4), (1 3) (2 4)⟩ � 𝑉4; ⟨(1 2 3 4) (1 2)⟩ � 𝐷8; 𝐴4; 𝑆4 .

Since ⟨(1 2 3 4)⟩ � 𝐶4 acts on {1, 2, 3, 4} by cyclic permutations, it is transitive. Therefore ⟨(1 2 3 4) (1 2)⟩ � 𝐷8,
𝐴4 and 𝑆4 are all transitive as they contain ⟨(1 2 3 4)⟩.

The subgroup ⟨(1 2), (3 4)⟩ is not transitive as {1, 2} and {3, 4} are two disjoint orbits under this action.

The subgroup ⟨(1 2)(3 4), (1 3) (2 4)⟩ = {id, (1 2) (3 4), (1 3) (2 4), (1 4)(2 3)} is transitive. Checking is straight-
forward.

In summary, the transitive subgroups of 𝑆4 are:

⟨(1 2 3 4)⟩ ; ⟨(1 2) (3 4), (1 3) (2 4)⟩ ; ⟨(1 2 3 4)(1 2)⟩ ; 𝐴4; 𝑆4 .
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