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Exercise 7.1

Compute the subfield lattice of F26 . Do the same for F28 and F212 .

We claim that for each divisor 𝑘 of 𝑛, there exists a unique subfield of F2𝑛 of order 2𝑘 . F2𝑛 contains F2 as a prime
subfield and [F2𝑛 : F2] = 𝑛. Since F2𝑛 is the splitting field of the separable polynomial 𝑥2𝑛 − 𝑥 over F2 (as shown
in Question B.1 and B.2 of Sheet 6), F2𝑛/F2 is a Galois extension, and hence | Gal(F2𝑛/F2) | = 𝑛. We claim that
Gal(F2𝑛/F2) is isomorphic to the cyclic group Z/𝑛.

Since F2𝑛 is a finite field of characteristic 2, the Frobenius map 𝜑 : F2𝑛 → F2𝑛 , 𝛼 ↦−→ 𝛼2, is an F2-automorphism.
The fact that F2𝑛 is the set of roots of 𝑥2𝑛 − 𝑥 implies 𝛼2𝑛 = 𝛼 for all 𝛼 ∈ F2𝑛 . So 𝜑𝑛 = id. There does not exists
𝑘 < 𝑛 such that 𝜑𝑘 = id, for otherwise the polynomial 𝑥𝑝𝑘 − 𝑥 has 𝑝𝑛 distinct roots. Hence 𝜑 has order 𝑛 in
Gal(F2𝑛/F2). This proves that claim.

For each divisor 𝑘 of 𝑛, there exists a unique subgroup 𝐻 of Gal(F2𝑛/F2) � Z/𝑛 of order 𝑘 . By Galois correspon-
dence, the fixed field F𝐻2𝑛 ⊆ F2𝑛 has degree [F𝐻2𝑛 : F2] = 𝑘 over F2. Hence F𝐻2𝑛 � F2𝑘 . This is enough to determine
the subfield lattices:
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Exercise 7.2

Let 𝑝 be a prime and 𝐹 be a field of characteristic 𝑝 > 0.

Let 𝑞 = 𝑝𝑛 for some 𝑛 ∈ N. Show that the set of elements of 𝐹 that satisfy 𝑥𝑞 = 𝑥 form a subfield of 𝐹 .

Show that the set of points of 𝐹 that satisfy 𝑥𝑝 = 𝑥 are exactly the prime subfield F𝑝 ⊆ 𝐹 .

Let 𝐾 :=
{
𝛼 ∈ 𝐿 | 𝛼16 = 𝛼

}
. We claim that 𝐾 is a subfield of 𝐿. It is clear that 𝛼𝛽−1 ∈ 𝐾 for 𝛼 ∈ 𝐾 and 𝛽 ∈ 𝐾× , so

𝐾 is closed under multiplication and multiplicative inverse. For 𝛼, 𝛽 ∈ 𝐾 , we have

(𝛼 + 𝛽)𝑝𝑛 = 𝛼𝑝
𝑛 + 𝛽𝑝𝑛 +

𝑝𝑛−1∑
𝑖=1

(
𝑝𝑛

𝑖

)
𝛼𝑖𝛽𝑝

𝑛−𝑖 .

1



We claim that 𝑝𝑛 |
(𝑝𝑛
𝑖

)
for 1 ⩽ 𝑖 ⩽ 𝑝𝑛 − 1. Since 𝑝 is prime, gcd(𝑝𝑛, 𝑖) = 𝑝𝑘 for some 𝑘 < 𝑛. By Bezóut’s lemma,

there exists 𝑎, 𝑏 ∈ Z such that 𝑝𝑘 = 𝑎𝑝𝑛 + 𝑏𝑖 . Then
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= 𝑝𝑛−𝑘−1
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(
𝑝𝑛

𝑖

)
= 𝑝𝑛−𝑘−1

𝑎𝑝𝑛 + 𝑏𝑖
𝑝𝑛
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𝑖
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= 𝑎𝑝𝑛−𝑘−1

(
𝑝𝑛
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)
+ 𝑏𝑝𝑛−𝑘−1

(
𝑝𝑛 − 1
𝑖 − 1

)
∈ Z.

IUn particular
(𝑝𝑛
𝑖

)
= 0 in any field with characteristic 𝑝 . Hence (𝛼 + 𝛽)𝑝𝑛 = 𝛼𝑝

𝑛 + 𝛽𝑝𝑛 . The set 𝐾 preserves
addition.

For 𝛼 ∈ 𝐾 , if 𝑝 = 2, then −𝛼 = 𝛼 ∈ 𝐾 ; if 𝑝 > 2 is an odd prime, then (−𝛼)𝑝𝑛 = −𝛼𝑝𝑛 = −𝛼 , and thus 𝛼 ∈ 𝐾 . So 𝐾
is closed under additive inverse. We conclude that 𝐾 is a subfield of 𝐹 .

The prime subfield F𝑝 has multiplicative group F×𝑝 � Z/(𝑝 − 1). Hence 𝛼𝑝−1 = 1 for any 𝛼 ∈ F×𝑝 (i.e. Fermat’s
little theorem). It follows that 𝛼𝑝 = 𝛼 for all 𝛼 ∈ F𝑝 . Hence all elements in F𝑝 are roots of 𝑥𝑝 − 𝑥 . But 𝑥𝑝 − 𝑥 has
at most 𝑝 roots. We conclude that its set of roots is exactly F𝑝 .

Exercise 7.3

Let 𝑝 be a prime. Prove that 𝑆𝑝 is generated by a single transposition together with any 𝑝-cycle.

Prove that any subgroup 𝐻 ⊆ 𝑆𝑝 that has order #𝐻 divisible by 𝑝 must contain a 𝑝-cycle.

Consider a transposition 𝜏 ∈ 𝑆𝑝 and a 𝑝-cycle 𝜎 ∈ 𝑆𝑝 . Without loss of generality, let 𝜎 = (1 2 · · · 𝑝) and 𝜏 = (𝑖 𝑗),
where 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑝 . Note that 𝜎 𝑗−𝑖 (𝑖) = 𝑖 + ( 𝑗 − 𝑖) = 𝑗 . Since 𝑝 is prime, 𝜎 𝑗−𝑖 is also a 𝑝-cycle. Consider the
relabelling 𝜌 : 𝑆𝑛 → 𝑆𝑛 such that 𝜌 (𝑖) = 1 and 𝜌 ( 𝑗) = 2, and 𝜌 ◦ 𝜎 𝑗−𝑖 ◦ 𝜌−1 (𝑘) = 𝑘 + 1 for all 𝑘 ∈ {1, ..., 𝑛}. Then
after relabelling we may assume that𝐺 = ⟨𝜎 ′, 𝜏 ′⟩ where 𝜎 ′ = 𝜌𝜎 𝑗−𝑖𝜌−1 = (1 2 · · · 𝑝) and 𝜏 ′𝜌𝜏𝜌−1 = (1 2).

We shall prove that 𝐺 = 𝑆𝑝 . First we note that

(𝑘 𝑘 + 1) = (1 2 · · · 𝑝)−𝑘+1 (1 2) (1 2 · · · 𝑝)𝑘−1 ∈ 𝐺,

for any 𝑘 . Second, if (1 𝑘) ∈ 𝐺 , then

(1 𝑘 + 1) = (1 𝑘)(𝑘 𝑘 + 1)(1 𝑘) ∈ 𝐺.

Hence by induction (1 𝑘) ∈ 𝐺 for any 𝑘 . Then for any 𝑘, ℓ,

(𝑘 ℓ) = (1 𝑘)(1 ℓ)(1 𝑘) ∈ 𝐺.

In particular 𝐺 contains all transpositions. It is clear that 𝑆𝑝 is generated by transpositions. So 𝐺 = 𝑆𝑝 .

Suppose that 𝐻 ⩽ 𝑆𝑝 has order |𝐻 | divisible by 𝑝 . By Cauchy’s theorem, any finite group whose order divisible
by a prime 𝑝 has an element of order 𝑝 . So 𝐻 has an element 𝜎 of order 𝑝 . By the cycle type decomposition, 𝜎 is
the composition of some disjoint cycles, and the order of 𝜎 is the least common multiple of the length of these
cycles. Since 𝜎 ∈ 𝑆𝑝 and 𝑝 is prime, 𝜎 must be a 𝑝-cycle.
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