MA3D5 Galois Theory Sheet 7 Solutions

Peize Liu

20 Nov 2024

Exercise 7.1

Compute the subfield lattice of \mathbb{F}_{2^6} . Do the same for \mathbb{F}_{2^8} and $\mathbb{F}_{2^{12}}$.

We claim that for each divisor k of n, there exists a unique subfield of \mathbb{F}_{2^n} of order 2^k . \mathbb{F}_{2^n} contains \mathbb{F}_2 as a prime subfield and $[\mathbb{F}_{2^n} : \mathbb{F}_2] = n$. Since \mathbb{F}_{2^n} is the splitting field of the separable polynomial $x^{2^n} - x$ over \mathbb{F}_2 (as shown in Question B.1 and B.2 of Sheet 6), $\mathbb{F}_{2^n}/\mathbb{F}_2$ is a Galois extension, and hence $|\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)| = n$. We claim that $\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)$ is isomorphic to the cyclic group \mathbb{Z}/n .

Since \mathbb{F}_{2^n} is a finite field of characteristic 2, the Frobenius map $\varphi : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, \alpha \mapsto \alpha^2$, is an \mathbb{F}_2 -automorphism. The fact that \mathbb{F}_{2^n} is the set of roots of $x^{2^n} - x$ implies $\alpha^{2^n} = \alpha$ for all $\alpha \in \mathbb{F}_{2^n}$. So $\varphi^n = \text{id}$. There does not exists k < n such that $\varphi^k = \text{id}$, for otherwise the polynomial $x^{p^k} - x$ has p^n distinct roots. Hence φ has order n in $\text{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)$. This proves that claim.

For each divisor k of n, there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) \cong \mathbb{Z}/n$ of order k. By Galois correspondence, the fixed field $\mathbb{F}_{2^n}^H \subseteq \mathbb{F}_{2^n}$ has degree $[\mathbb{F}_{2^n}^H : \mathbb{F}_2] = k$ over \mathbb{F}_2 . Hence $\mathbb{F}_{2^n}^H \cong \mathbb{F}_{2^k}$. This is enough to determine the subfield lattices:

Exercise 7.2

Let p be a prime and F be a field of characteristic p > 0.

Let $q = p^n$ for some $n \in \mathbb{N}$. Show that the set of elements of *F* that satisfy $x^q = x$ form a subfield of *F*.

Show that the set of points of *F* that satisfy $x^p = x$ are exactly the prime subfield $\mathbb{F}_p \subseteq F$.

Let $K := \{ \alpha \in L \mid \alpha^{16} = \alpha \}$. We claim that *K* is a subfield of *L*. It is clear that $\alpha \beta^{-1} \in K$ for $\alpha \in K$ and $\beta \in K^{\times}$, so *K* is closed under multiplication and multiplicative inverse. For $\alpha, \beta \in K$, we have

$$(\alpha + \beta)^{p^{n}} = \alpha^{p^{n}} + \beta^{p^{n}} + \sum_{i=1}^{p^{n}-1} {p^{n} \choose i} \alpha^{i} \beta^{p^{n}-i}.$$

We claim that $p^n \mid {p^n \choose i}$ for $1 \le i \le p^n - 1$. Since p is prime, $gcd(p^n, i) = p^k$ for some k < n. By Bezóut's lemma, there exists $a, b \in \mathbb{Z}$ such that $p^k = ap^n + bi$. Then

$$\frac{1}{p}\binom{p^{n}}{i} = p^{n-k-1}\frac{p^{k}}{p^{n}}\binom{p^{n}}{i} = p^{n-k-1}\frac{ap^{n}+bi}{p^{n}}\binom{p^{n}}{i} = ap^{n-k-1}\binom{p^{n}}{i} + bp^{n-k-1}\binom{p^{n}-1}{i-1} \in \mathbb{Z}.$$

IUn particular $\binom{p^n}{i} = 0$ in any field with characteristic p. Hence $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$. The set K preserves addition.

For $\alpha \in K$, if p = 2, then $-\alpha = \alpha \in K$; if p > 2 is an odd prime, then $(-\alpha)^{p^n} = -\alpha^{p^n} = -\alpha$, and thus $\alpha \in K$. So *K* is closed under additive inverse. We conclude that *K* is a subfield of *F*.

The prime subfield \mathbb{F}_p has multiplicative group $\mathbb{F}_p^{\times} \cong \mathbb{Z}/(p-1)$. Hence $\alpha^{p-1} = 1$ for any $\alpha \in \mathbb{F}_p^{\times}$ (i.e. Fermat's little theorem). It follows that $\alpha^p = \alpha$ for all $\alpha \in \mathbb{F}_p$. Hence all elements in \mathbb{F}_p are roots of $x^p - x$. But $x^p - x$ has at most p roots. We conclude that its set of roots is exactly \mathbb{F}_p .

Exercise 7.3

Let p be a prime. Prove that S_p is generated by a single transposition together with any p-cycle.

Prove that any subgroup $H \subseteq S_p$ that has order #*H* divisible by *p* must contain a *p*-cycle.

Consider a transposition $\tau \in S_p$ and a *p*-cycle $\sigma \in S_p$. Without loss of generality, let $\sigma = (1 \ 2 \ \cdots \ p)$ and $\tau = (i \ j)$, where $1 \le i < j \le p$. Note that $\sigma^{j-i}(i) = i + (j - i) = j$. Since *p* is prime, σ^{j-i} is also a *p*-cycle. Consider the relabelling $\rho : S_n \to S_n$ such that $\rho(i) = 1$ and $\rho(j) = 2$, and $\rho \circ \sigma^{j-i} \circ \rho^{-1}(k) = k + 1$ for all $k \in \{1, ..., n\}$. Then after relabelling we may assume that $G = \langle \sigma', \tau' \rangle$ where $\sigma' = \rho \sigma^{j-i} \rho^{-1} = (1 \ 2 \ \cdots \ p)$ and $\tau' \rho \tau \rho^{-1} = (1 \ 2)$.

We shall prove that $G = S_p$. First we note that

$$(k \ k+1) = (1 \ 2 \ \cdots \ p)^{-k+1} (1 \ 2) (1 \ 2 \ \cdots \ p)^{k-1} \in G,$$

for any *k*. Second, if $(1 k) \in G$, then

$$(1 k + 1) = (1 k)(k k + 1)(1 k) \in G.$$

Hence by induction $(1 k) \in G$ for any k. Then for any k, ℓ ,

$$(k \ \ell) = (1 \ k)(1 \ \ell)(1 \ k) \in G.$$

In particular G contains all transpositions. It is clear that S_p is generated by transpositions. So $G = S_p$.

Suppose that $H \leq S_p$ has order |H| divisible by p. By Cauchy's theorem, any finite group whose order divisible by a prime p has an element of order p. So H has an element σ of order p. By the cycle type decomposition, σ is the composition of some disjoint cycles, and the order of σ is the least common multiple of the length of these cycles. Since $\sigma \in S_p$ and p is prime, σ must be a p-cycle.