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Exercise 8.1

Let 𝑝 be a prime and 𝜁 a primitive 𝑝-th root of unity. Let 𝐹 = Q(𝜁 ) and 𝐺 = Gal(𝐹/Q).

(a) Show that 𝐺 has a unique subgroup of index 2.

(b) Show that there is a unique intermediate field Q ⊆ 𝐸 ⊆ 𝐹 , with [𝐸 : Q] = 2.

(c) Show that 𝐸 = Q(√𝜖𝑝), with 𝜖 = (−1) (𝑝−1)/2. [Hint: Show that all powers of 𝜁 are perfect squares
in 𝐸. Then show that

(
(1 − 𝜁 )

(
1 − 𝜁 2

)
· · ·

(
1 − 𝜁 (𝑝−1)/2

)2
= 𝜖𝑝/𝜁𝑘 for some 𝑘 .]

(a) We must assume that 𝑝 > 2. Q(𝜁 )/Q is a cyclotomic extension and hence 𝐺 = Gal(Q(𝜁 )/Q) � (Z/𝑝)× .
Since 𝑝 is prime,𝐺 � Z/(𝑝 − 1). Since 𝑝 is odd,𝑚 := 𝑝−1

2 is a positive integer and𝐺 has a unique subgroup
isomorphic to Z/𝑚. This is a subgroup of index 2 in 𝐺 .

(b) By Galois correspondence, the subgroups of index 𝑎 are in bijective correspondence with intermediate
fields with degree 𝑎 over Q. It follows from (a) that there is a unique intermediate field 𝐸 with [𝐸 : Q] = 2.

(c) Let 𝝁𝑝 =
{
𝛼 ∈ 𝐹 | ∃𝑘 ∈ Z, 𝛼𝑘 = 1

}
be the group of roots of unity of 𝐹 . We know that 𝝁𝑝 � Z/𝑝 is a cyclic

group generated by 𝜁 ∈ 𝐹 . Since 𝑝 is prime, every non-identity element of 𝝁𝑝 is a generator of 𝝁𝑝 . In
particular 𝜁 2 also generates 𝝁𝑝 . That is, every 𝛼 = 𝜁 𝑖 ∈ 𝝁𝑝 is of the form 𝜁 𝑖 = (𝜁 2) 𝑗 = (𝜁 𝑗 )2 for some 𝑗 .

Recall that the minimal polynomial of 𝜁 over Q is the 𝑝-th cyclotomic polynomial:

Φ𝑝 (𝑥) = 𝑥𝑝−1 + · · · + 𝑥 + 1,

which splits over 𝐹 as Φ𝑝 (𝑥) =
∏𝑝−1
𝑖=0 (𝑥 − 𝜁 𝑖 ). Evaluate the polynomial at 𝑥 = 1:

𝑝 =
𝑝−1∏
𝑖=1

(1 − 𝜁 𝑖 ) =
(𝑝−1)/2∏
𝑖=1

(1 − 𝜁 𝑖 )(1 − 𝜁 −𝑖 ) =
(𝑝−1)/2∏
𝑖=1

(1 − 𝜁 𝑖 )2 (−𝜁 −𝑖 ).

Hence

𝜖𝑝 = (−1)
𝑝−1
2 𝑝 = 𝜁𝑘

( (𝑝−1)/2∏
𝑖=1

(1 − 𝜁 𝑖 )
)2
,

where 𝑘 = −∑(𝑝−1)/2
𝑖=1 𝑖 . Since 𝜁𝑘 is a perfect square, 𝜁𝑘 = 𝜁 2𝑘

′ for some 𝑘 ′ ∈ Z. It follows that

√
𝜖𝑝 = 𝜁𝑘

′
(𝑝−1)/2∏
𝑖=1

(1 − 𝜁 𝑖 ) ∈ 𝐹 .

Since √𝜖𝑝 has minimal polynomial 𝑥2 − 𝜖𝑝 over Q, we have that Q ⊆ Q(√𝜖𝑝) ⊆ 𝐹 and [Q(√𝜖𝑝) : Q] = 2.
By uniqueness, 𝐸 = Q(√𝜖𝑝).
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Exercise 8.2

Let 𝐿/𝐾 be a Galois extension and 𝐺 = Gal(𝐿/𝐾). Define 𝑁 : 𝐿 → 𝐿, by 𝑁 (𝑎) = ∏
𝜎∈𝐺 𝜎 (𝑎). Prove that

𝑁 (𝑎) ∈ 𝐾 for all 𝑎 ∈ 𝐿. Prove that 𝑁 (𝑎) = 𝑎 [𝐿:𝐾 ] if 𝑎 ∈ 𝐾 .

For 𝜏 ∈ 𝐺 , we have
𝜏 (𝑁 (𝑎)) =

∏
𝜎∈𝐺

𝜏𝜎 (𝑎) =
∏
𝜎 ′∈𝐺

𝜎 ′ (𝑎) = 𝑁 (𝑎),

where we used the fact that left multiplication of 𝜏 defines a group automorphism of𝐺 . In particular 𝑁 (𝑎) ∈ 𝐿𝐺
for all 𝑎 ∈ 𝐿. Since 𝐿/𝐾 is Galois and 𝐺 = Gal(𝐿/𝐾), we have 𝐿𝐺 = 𝐾 and hence 𝑎 ∈ 𝐾 .

For 𝑎 ∈ 𝐾 , we have 𝜎 (𝑎) = 𝑎 for all 𝜎 ∈ 𝐺 . Hence

𝑁 (𝑎) =
∏
𝜎∈𝐺

𝑎 = 𝑎 |𝐺 | = 𝑎 [𝐿:𝐾 ] .

Remark. For 𝛼 ∈ 𝐿, 𝑁 (𝛼) ∈ 𝐾 is called the norm of 𝛼 . Similarly we can define the trace of 𝛼 to be 𝑇 (𝛼) =∑
𝜎∈𝐺 𝜎 (𝛼) ∈ 𝐾 . There is an alternative way to look at the norm and trace. Fix a 𝐾-basis {𝑢1, ..., 𝑢𝑛} of 𝐿. The

𝐾-linear map 𝐿 → 𝐿 given by multiplication by 𝛼 has matrix 𝐴 = (𝑎𝑖 𝑗 ) with respect to this basis. That is,
𝛼 (𝑢𝑖 ) =

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑢 𝑗 . Then the norm and trace of 𝛼 are given by

𝑁 (𝛼) = det𝐴; 𝑇 (𝛼) = tr𝐴 =
𝑛∑
𝑖=1

𝑎𝑖𝑖 .

Exercise 8.3

Let 𝐿 = Q(√𝑝,√𝑞) for primes 𝑝, 𝑞. Find, with justification, 𝛼 ∈ 𝐿, such that 𝐿 = Q(𝛼).

For 𝑝 = 𝑞, we can trivially take 𝛼 =
√
𝑝 . So we assume that 𝑝 ≠ 𝑞. We claim that 𝐿 = Q(√𝑝,√𝑞) = Q(√𝑝 + √

𝑞).
It is clear that Q(√𝑝,√𝑞) ⊇ Q(√𝑝 + √

𝑞). To show the reverse inclusion,

• you could simply observe that

√
𝑝 =

(√𝑝 + √
𝑞)3 − (𝑞 + 3𝑝) (√𝑝 + √

𝑞)
2(𝑞 − 𝑝) ∈ Q(√𝑝+√𝑞); √

𝑞 =
(√𝑝 + √

𝑞)3 − (𝑝 + 3𝑞) (√𝑝 + √
𝑞)

2(𝑝 − 𝑞) ∈ Q(√𝑝+√𝑞).

which shows Q(√𝑝,√𝑞) ⊆ Q(√𝑝 + √
𝑞) directly.

• If the above method is too tricky, we can work alternatively as follows. Consider the tower of extensions

Q(√𝑝,√𝑞)

Q(√𝑝) Q(√𝑝 + √
𝑞)

Q

⩽2

2

To show that Q(√𝑝,√𝑞) = Q(√𝑝 + √
𝑞). It suffices to show that [Q(√𝑝 + √

𝑞) : Q] > 2. Suppose that there
exists 𝑝 (𝑥) = 𝑥2 + 𝑏𝑥 + 𝑐 ∈ Q[𝑥] such that 𝑝 (𝛼) = 0. Then

𝑝 (𝛼) = 𝑝 + 𝑞 + 2
√
𝑝𝑞 + 𝑏 (√𝑝 + √

𝑞) + 𝑐 = 0.

Hence −𝑏 (√𝑝 + √
𝑞) = 𝑝 + 𝑞 + 2

√
𝑝𝑞 + 𝑐 . Taking the square, we have

𝑏2 (𝑝 + 𝑞 + 2
√
𝑝𝑞) = (𝑝 + 𝑞 + 𝑐)2 + 4𝑝𝑞 + 4(𝑝 + 𝑞 + 𝑐)√𝑝𝑞.
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Since √𝑝𝑞 ∉ Q, 1 and √
𝑝𝑞 are Q-linearly independent, and hence we must have{

𝑏2 = 2(𝑝 + 𝑞 + 𝑐)
𝑏2 (𝑝 + 𝑞) = (𝑝 + 𝑞 + 𝑐)2 + 4𝑝𝑞

.

Combining the two equations, we have 2(𝑝 + 𝑞 + 𝑐)(𝑝 + 𝑞) = (𝑝 + 𝑞 + 𝑐)2 + 4𝑝𝑞. After simplifying we get
(𝑝 − 𝑞)2 = 𝑐2. Hence 𝑐 = 𝑝 − 𝑞 or 𝑞 − 𝑝 . Plug this into the first equation, we have either 𝑏 = 2

√
𝑝 or 2√𝑞.

But both 𝑝, 𝑞 are primes, this is a contradiction to 𝑏 ∈ Q.
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