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1. HILBERT BASES THEOREM AND NOETHERIAN RING

1.1. Rings and subrings. We collect some definitions/notations from previous modules.

Definition 1.1. A Ring R = (R,+, ·) is a set R equipped with two operations (addition and
multiplication) satisfying the following axioms:

(a) (R,+) is an abelian group;
(b) (R, ·) is associative and distributive with respect to addition;

ALL ring in this module will be commutative, i.e.,
(a) ∀x, y ∈ R, xy = yx;
(b) ∃1R s.t. ∀x ∈ R, 1Rx = x.

In this module, a ring is commutative with (multiplicative) identity, unless stated otherwise.
By the first axiom, the ring R has an ‘additional identity’ 0R. By the second axiom, we have

0R · x = 0 for any x ∈ R.

Example 1.2. Examples of rings:
(a) Zero ring: R = (0) the only ring such that 0R = 1R.
(b) Z: ring of integers; Q: rational numbers; R: real numbers; C: complex numbers.
(c) Polynomial Rings: Let R be a ring, we define the polynomial ring over R as

R[x] := {a0 + a1x+ · · ·+ anx
n|n ∈ N, ai ∈ R}.

The set R[x] has natural addition and multiplication operations.

Definition 1.3. A subring S (of R) is a subset of R when
(a) (S,+R, ·R) is a ring (closed under operation);
(b) 1S = 1R ∈ S.

Exercise 1.4. (a) Z ⊂ Q ⊂ R ⊂ C;
(b) R ⊂ R[x];
(c) {0R} is a subset of the ring R. Though {0R} is a zero ring itself, it is NOT a subring of R

when R is non-zero.

1.2. Ideals and quotient rings.

Definition 1.5. A ring morphism φ : R→ S is a map (from the set R to the set S) such that:
(a) Compatible with addition: φ(r1 + r2) = φ(r1) + φ(r2);
(b) Compatible with multiplication: φ(r1r2) = φ(r1)φ(r2);
(c) φ(IdR) = IdS .

Definition 1.6. Let R be a ring. An ideal I / R is a subset of R such that
(a) (I,+) is a subgroup of (R,+), i.e., ∀x, y ∈ I , we have x− y ∈ I;
(b) ∀r ∈ R and x ∈ I , we have rx ∈ I .

Proper ideal: I 6= R.
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Proposition and Definition 1.7. Let I be an ideal in R, we define

R/I := {aI |a ∈ R}/ ∼ , where a+ I ∼ a′ + I ⇐⇒ a− a′ ∈ I.
We define two operations for elements in R/I as follows:

(+R) : (a+ I) +R (b+ I) := (a+ b) + I,(1)

(·R) : (a+ I) ·R (b+ I) := (ab) + I.(2)

Then (R/I,+R, ·R) is a ring.

Example 1.8. Let R be a ring, then {0} and R are always ideals in R.

Observation: 1R ∈ I =⇒ ∀x ∈ R, I 3 1Rx = x. Hence I = R.

Definition 1.9. An element a is a unit if ∃b ∈ R s.t. ab = 1R.

The inverse of a unit r is unique, we denoted as r−1.

Definition 1.10. A ring R is a field if
• it is not a zero ring;
• every non-zero element is a unit.

Lemma 1.11. A field F has exactly two ideals, namely, (0) and F .

Example 1.12. Fields: Q, R, C, Q(
√
2) = {a+ b

√
2|a, b ∈ Q}.

1.3. PID.

Definition 1.13. An element a is called a zero-divisor if ∃0 6= b ∈ R s.t. ab = 0.
A ring R is called a domain if it has no non-zero divisor.

Example 1.14. A field is a domain. A finite domain is a field.
The ring of integers Z is a domain.
Let R be a domain, then R[x] is a domain.
The ring Z/6Z = {0, 1, 2, 3, 4, 5} is not a domain.

Proposition and Definition 1.15. Let A be a subset of R, we define the subset

〈A〉 :=

∑
f∈A

rff |rf ∈ R, where only finitely many rf is non-zero

 .

Then 〈A〉 is the minimum ideal that contains the subset A, in other words, if I is an ideal in R
such that I ⊇ A, then I ⊇ 〈A〉.

An ideal is principally generated if ∃f ∈ R such that I = 〈f〉.
An ideal is finitely generated if ∃f1, f2, . . . , fm ∈ R such that I = 〈f1, f2, . . . , fm〉.

Example 1.16. Ideals in a field F : 〈0〉 and 〈1〉 = F .

Definition 1.17. A ring R is a principal ideal domain (PID) if
• R is a domain;
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• every ideal in R is principally generated.

Example 1.18. (a) A field is a PID.
(b) The ring of integers Z is a PID.
(c) Let F be a field, then F [x] is a PID.

We give a proof for the case of F [x] with a ‘trick’ which will appear later.

Proof. Let I be an ideal in F [x]. If I = 〈0〉, then it is automatically principally generated by 0.
Let f(x) be a non-zero element in I with the minimum degree. We write f(x) term-wisely as

f(x) = anx
n + . . . ,

for some an ∈ F and deg f(x) = n.
Suppose I 6= 〈f(x)〉, then we may let g(x) be an element in I \ 〈f(x)〉 with the minimum

degree. We write
g(x) = bmx

m + . . . ,

for some bm ∈ F and deg g(x) = m.
Note that g(x) ∈ I , by the minimum assumption on deg f(x), we have m ≥ n.
Let

g̃(x) := g(x)− a−1n bmx
m−nf(x).

Here a−1n exists as F is a field. The element a−1n bmx
m−n is in F [x].

Note that f(x) ∈ I and g(x) ∈ I \ 〈f(x)〉, we have

g̃(x) ∈ I \ 〈f(x)〉.
Note that the leading terms in g(x) and a−1n bmx

m−nf(x) cancel out, so we have

deg g̃(x) < deg g(x).

This contradicts to the minimum assumption on deg g(x) among all elements in I \ 〈f(x)〉.
Therefore, we must have I = 〈f(x)〉. �

1.4. Generators for ideals in F [x, y].

Example 1.19. Let F be a field, consider the ring F [x, y] and the ideal

I := 〈x, y〉 = {f(x, y)|f(0, 0) = 0}.
We claim that I can NOT be generated by one element.

Proof. Suppose I = 〈f(x, y)〉, then we have x = f(x, y)h(x, y) and y = f(x, y)g(x, y). Note that
x = f(x, y)h(x, y) implies that f(x, y) has no variable y. Therefore, f(x, y) must be a constant
function, 0 6= f(x, y) ≡ f0 ∈ F . But then I = F [x, y], which is a contradiction. �

Example 1.20. Let F be a field, consider the ring F [x, y] and the ideal

I := 〈x2, xy, y2〉 = {
∑
i+j≥2

aijx
iyj |aij ∈ F}.

We claim that I can NOT be generated by two elements.
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Proof. Suppose I = 〈f, g〉 for some

f(x, y) = f20x
2 + f11xy + f02y

2 + f3(x, y),

g(x, y) = g20x
2 + g11xy + g02y

2 + g3(x, y),

where fij , gij ∈ F , the polynoimials f3(x, y) and g3(x, y) only have terms with degree ≥ 3.
Since x2, xy, y2 ∈ I = 〈f, g〉, we must have

x2 = a1(x, y)f(x, y) + b1(x, y)g(x, y),

xy = a2(x, y)f(x, y) + b2(x, y)g(x, y),

y2 = a3(x, y)f(x, y) + b3(x, y)g(x, y),

for some ai(x, y), bi(x, y) ∈ F [x, y].
Compare the degree 2 terms on both hand sides of the equations, we have

x2 = a1(0, 0)(f20x
2 + f11xy + f02y

2) + b1(0, 0)(g20x
2 + g11xy + g02y

2),

xy = a2(0, 0)(f20x
2 + f11xy + f02y

2) + b2(0, 0)(g20x
2 + g11xy + g02y

2),

y2 = a3(0, 0)(f20x
2 + f11xy + f02y

2) + b3(0, 0)(g20x
2 + g11xy + g02y

2),

Note that the coefficients for x2, xy and y2 must be the same on both hand sides, hence1 0 0
0 1 0
0 0 1

 =

a1(0, 0) b1(0, 0)
a2(0, 0) b2(0, 0)
a3(0, 0) b3(0, 0)

(f20 f11 f02
g20 g11 g02

)
as a product of matrices with coefficients in F . Note that the matrices on the right hand side are
3 × 2 and 2 × 3, both of which has rank at most 2. Their product has rank at most 2. We get the
contradiction as the the 3× 3 identity matrix has rank 3. �

There is no bound for the number of generators for an arbitrary ideal in F [x, y].

Example 1.21. Let F be a field, the ideal I = 〈xn, xn−1y, . . . , yn〉 in F [x, y] can NOT be gener-
ated by n elements.

Theorem 1.22 (Hilbert Bases Theorem ‘Toy Case’). Let F be a field and I be an ideal in F [x, y],
then I is finitely generated.

Convention: We think F [x, y] as the polynomial ring (F [x])[y] with variable y and coefficient
in F [x]. For every element f ∈ (F [x])[y], we can write

f(x, y) = fn(x)y
n + fn−1(x)y

n−1 + · · ·+ f0(x)

for some fi(x) ∈ F [x] in a unique way, where fn(x) 6= 0. We denote the y-degree of f(x, y) as
Degyf(x, y) = n.

Proof. If I = (0), then we are done.
Otherwise, let F1(x, y) be a non-zero element in I with the minimum degree Degy. We write

F1(x, y) = f1(x)y
n1 + . . . ,

where DegyF1(x, y) = n1 and f1(x) ∈ F [x] is the leading coefficient.
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If I = 〈F1(x, y)〉, then we are done.
Otherwise, let F2(x, y) be a non-zero element in I \ 〈F1(x, y)〉 with the minimum degree Degy.

We write
F2(x, y) = f2(x)y

n2 + . . . ,

where DegyF2(x, y) = n2 and f2(x) ∈ F [x] is the leading coefficient.
By the minimum assumption on DegyF1(x, y) among all non-zero elements in I , we have n2 ≥

n1.
Suppose f2(x) ∈ 〈f1(x)〉 in F [x], then we can write f2 = r1(x)f1(x) for some r1(x) ∈ F [x].
Let

F̃2(x, y) := F2(x, y)− r1(x)yn2−n1F1(x, y),

, then by the same argument as that in Example 1.18, we have DegyF̃2(x, y) < DegyF2(x, y) and
F̃2(x, y) ∈ I \ 〈F1(x, y)〉. This contradicts the minimum assumption on DegyF2(x, y) among all
elements in I \ 〈F1(x, y)〉. Therefore f2(x) 6∈ 〈f1(x)〉 in F [x], in other words,

〈f1(x)〉 ( 〈f1(x), f2(x)〉.
If I = 〈F1(x, y), F2(x, y)〉, then we are done.
Otherwise, let F3(x, y) be a non-zero element in I \ 〈F1(x, y), F2(x, y)〉 with the minimum

degree Degy. We write
F3(x, y) = f3(x)y

n3 + . . . ,

where DegyF3(x, y) = n3 and f3(x) ∈ F [x] is the leading coefficient.
By the minimum assumption on DegyF2(x, y) among all elements in I \ 〈F1(x, y)〉, we have

n3 ≥ n2.
Suppose f3(x) ∈ 〈f1(x), f2(x)〉 in F [x], then we can write f2 = r1(x)f1(x) + r2(x)f2(x) for

some ri(x) ∈ F [x].
Let

F̃3(x, y) := F3(x, y)− r1(x)yn3−n1F1(x, y)− r2(x)yn3−n2F2(x, y),

then by the same argument as that in Example 1.18, we have DegyF̃3(x, y) < DegyF3(x, y) and
F̃3(x, y) ∈ I \ 〈F1(x, y), F2(x, y)〉. This contradicts the minimum assumption on DegyF3(x, y)
among all elements in I \ 〈F1(x, y), F2(x, y)〉.

Therefore f3(x) 6∈ 〈f1(x), f2(x)〉 in F [x], in other words,

〈f1(x), f2(x)〉 ( 〈f1(x), f2(x), f3(x)〉.
Suppose the ideal I is not finitely generated, then we can continue this procedure to an ascending

chain of ideals:

〈F1〉 ( 〈F1, F2〉 ( 〈F1, F2, F3〉 ( . . . 〈F1, F2, . . . , Fm〉 ( . . .

such that Fm(x, y) is with minimum Degy among all elements in I \ 〈F1, . . . , Fm−1〉.
Write Fm(x, y) = fm(x)y

nm + . . . .
By the ‘Cancellation Technic’, we get an ascending chain of ideals:

〈f1(x)〉 ( 〈f1(x), f2(x)〉 ( 〈f1(x), f2(x), f3(x)〉 ( . . . 〈f1(x), f2(x), . . . , fm(x)〉 ( . . .

in F [x].
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Note that F [x] is a PID by Example 1.18, we have

〈f1, . . . , fm〉 = 〈hm(x)〉
for some hm(x) ∈ F [x].

Note that 〈hm−1(x)〉 ( 〈hm(x)〉, we have hm−1(x) = hm(x)gm(x) for non-unit polynomial
gm(x). In particular, deg gm(x) ≥ 1.

Therefore, we have the chain

deg h1 > deg h2 > · · · > deg hm > . . . .

This is a contradiction as deg ht ∈ Z≥0 for every non-zero polynomial ht. Hence I is finitely
generated with at most 1 + deg f1(x) generators. �

Example 1.23. Let I = {f(x, y)|f(0, 0) = f(0, 1) = f(1, 0) = 0}. Find a set of generators for I
according to the procedure as that in the proof.

Note that I is indeed an ideal: ∀f, g ∈ I and h ∈ F [x, y], we have

(f ± g)(a, b) = f(a, b)± g(a, b) = 0;

(fh)(a, b) = f(a, b)g(a, b) = 0

for any (a, b) = (0, 0), (0, 1) or (1, 0). Therefore, f ± g, fh ∈ I .
To find generators for I , we first search element with Degy = 0. In particular, if f(x) = 0 for

x = 0 and 1, then we have x(x − 1)|f(x). We may choose F1(x, y) = x(x − 1) with Degy = 0
and leading coefficient f1(x) = x(x− 1).

In the last paragraph, we have also shown that any element in I \ 〈x(x− 1)〉 has Degy ≥ 1. To
search F2, we may write it as f2(x)y + r(x). By the proof of Theorem 1.22, we may assume that
deg f2(x) ≤ 1 and f2(x)|f1(x). This helps us to find F2(x, y) = xy ‘quickly’.

By the proof of Theorem 1.22, there is at most one extra generator, and its leading coefficient
has degree strictly smaller than 1. It is easy to figure out that y + r(x) 6∈ I for any r(x) ∈ F [x],
therefore, the third generator has Degy ≥ 2!

We may choose F3(x, y) = y2 − y, with DegyF3 = 2 and leading coefficient 1. By the proof of
Theorem 1.22, the ideal I = 〈x(x− 1), xy, y(y − 1)〉.

1.5. Noetherian Ring.

Definition 1.24. A ring R is called Noetherian if every ideal I in R can be finitely generated.

Definition 1.25. Let R be a ring. We say that (the set of ideals of) R has the ascending chain
condition (a.c.c.) if every chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ . . .
eventually stops, in other words, there exists k such that Ik = Ik+1 = Ik+2 = . . . .

In other words, R has a.c.c. if it has no strictly ascending chain of ideals:

I1 ( I2 ( I3 · · · ( Im ( . . . .

Proposition 1.26. A ring R is Noetherian if and only if R has a.c.c..
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Proof. ‘⇐=’: Let I be an ideal in R, suppose I is not finitely generated.
There exists f1 ∈ I .
As I is not finitely generated, I 6= 〈f1〉. There exists f2 ∈ I \ 〈f1〉, in other words, 〈f1〉 (

〈f1, f2〉.
As I is not finitely generated, I 6= 〈f1, f2〉. There exists f3 ∈ I \ 〈f1, f2〉, in other words,

〈f1〉 ( 〈f1, f2〉 ( 〈f1, f2, f3〉.
We may carry on this procedure and get a strictly asceding chain of ideals:

〈f1〉 ( 〈f1, f2〉 ( · · · ( 〈f1, . . . , fm〉 ( . . . .

This contradicts to the a.c.c. on R.

‘=⇒’: Let
I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ . . .

be an ascending chain of ideals in R.
Take J = ∪+∞m=1Im, we claim that J is an ideal:
• ∀x, y ∈ J , we have x, y ∈ Ik for some k large enough, therefore x± y ∈ Ij ⊆ J .
• ∀r ∈ R, we have xr ∈ Ik ⊆ J .

By the Noetherian assumption on R, the ideal J is finitely generated, namely,

J = 〈f1, . . . , ft〉
for some f1, . . . , ft ∈ R. Note that fi ∈ Imi for somemi ∈ Z≥1, we may take k := max{m1, . . . ,mt},
then f1, . . . , ft ∈ Ik.

Therefore,
J = 〈f1, . . . , ft〉 ⊆ Ik ⊆ Ik+1 ⊆ · · · ⊆ J.

Hence, Ik = Ik+1 = . . . , in other words, R has a.c.c.. �

1.6. Hilbert Bases Theorem.

Theorem 1.27 (Hilbert Bases Theorem). Let R be a Noetherian ring, then R[x] is Noetherian.

Proof. Let I be an ideal in R[x], suppose I is NOT finitely generated, we have an ascending chain
of ideals in R[x]:

〈F1(x)〉 ( 〈F1(x), F2(x)〉 ( · · · ( 〈F1(x), . . . , Fm(x)〉 ( . . . ,

where Fm(x) is with the minimum degree among all elements in I \ 〈F1(x), . . . , Fm−1(x)〉. We
write

Fm(x) = fmx
nm + . . . ,

where DegFm = nm and fm ∈ R is the leading coefficient of Fm(x). By the minimum assumption
on degree of Fi’s, we have

n1 ≤ n2 ≤ · · · ≤ nm ≤ . . . .
Suppose fm ∈ 〈f1, . . . , fm−1〉, then we have

fm = r1f1 + · · ·+ rm−1fm−1
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for some r1, . . . , rm−1 ∈ R. We may consider

F̃m(x) := F (x)− r1xnm−n1F1(x)− · · · − rm−1xnm−nm−1Fm−1(x).

By a formal check, we have
• deg F̃m(x) < degFm(x);
• F̃m(x) ∈ I \ 〈F1(x), . . . , Fm−1(x)〉.

This contradicts the minimum assumption on degFm(x) among all elements in I\〈F1(x), . . . , Fm−1(x)〉.

Therefore, fm 6∈ 〈f1, . . . , fm−1〉. We have a strictly ascending chain of ideals

〈f1〉 ( 〈f1, f2〉 ( · · · ( 〈f1, . . . , fm〉 ( . . . .

This contradicts to the fact that R has a.c.c.(by Proposition 1.26). �

Proposition 1.28. Let R be a Noetherian ring and I be an ideal in R. Then R/I is Noetherian.

Proof. Let J be an ideal in R/I . We may consider the ideal (check!)

J̃ := {r ∈ R|r + I ∈ J}.
Since R is Noetherian, the ideal J̃ = 〈f1, . . . , fm〉 for some f1, . . . , fm ∈ R.

For any r + I ∈ J , since r ∈ J̃ , we have r =
∑
rifi for some ri ∈ R. Therefore,

r + I =
∑

(ri + I)(fi + I),

. The ideal J is finitely generated. �

Example 1.29. Let R be field or PID, then R[x1, . . . , xn]/I is Noetherian for any ideal I in
R[x1, . . . , xn].

If R is Noetherian, then the formal power series ring

R[[x]] := a0 + a1x+ a2x
2 + . . . anx

n + . . . |ai ∈ R
is Noetherian.

Example 1.30. The following rings are not Noetherian:
(a) Polynomial ring with infinitely many variables F [x1, . . . , xn, . . . ].
(b) F [x, xy, xy2, . . . , xyn, . . . ].
(c) R = {real-valued continuous function from R→ R}.
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2. IDEALS AND PRIMARY DECOMPOSITION

2.1. Prime ideals. There are two equivalent definitions for a prime number in the ring of integers:

Definition 2.1. Let R be a domain, an element p is called irreducible, if
• it is not a unit nor zero;
• if p = xy, then x or y is a unit.

Definition 2.2. Let R be a ring, an element p is called prime, if
• it is not a unit nor zero;
• if p|xy, then p|x or p|y.

These two definitions are the same when the ring is a so-called UFD.

Definition 2.3. A domainR is called a unique factorization domain (UFD), if for every non-zero,
non-unit element r ∈ R, r can be written as a product of irreducible elements, uniquely up to order
and units.

In other words, if r = p1p2 . . . , ps = q1 . . . qt for some pi, qj irreducible, then t = s and there
exists a bijective map σ : {1, . . . , s} ←→ {1, . . . , t} such that pi = qσ(i)ui for some units ui.

Example 2.4. Here are some examples of UFD:
• The ring of integers Z is a UFD.
• A PID is a UFD.
• Let R be a UFD, then R[x] is also a UFD.

Lemma 2.5. A prime element in a domain is irreducible. An irreducible element in a UFD is
prime.

Proof. Let p be a prime element in a domain. Suppose p = xy, then p|x or p|y.
WLOG, p|x =⇒ x = pa =⇒ p = pay =⇒ p(1 − ay) = 0. Since there is no non-zero

divisor in a domain, we have ay = 1. Therefore, y is a unit.
Let p be an irreducible element in a UFD. Suppose p|xy, then rp = xy for some r ∈ R. We

may consider the prime decomposition for r, x and y:

r = q1 . . . , qm;x = p1 . . . pt; y = s1 . . . sl.

Since rp = xy, the collection q1, . . . , qm, p is the same as p1, . . . , pt, s1 . . . , sl up to orders and
units. Hence, p|x or p|y. �

In general, the condition in the first definition is strictly ‘weaker’ than that in the second defini-
tion.

Example 2.6. Consider the number 3 in the ring Z[
√
−5] := {a + b

√
−5|a, b ∈ Z}, then 3 is

irreducible but NOT prime.

Instead of thinking about prime decomposition for elements in a ring, a more meaningful task is
to considering decomposition for ideals.

Definition 2.7. An ideal P ⊂ R is called prime, if
• P 6= R;
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• if xy ∈ P , then x ∈ P or y ∈ P .

We denote the set of all prime ideals of R by SpecR, and call it the spectrum of R.

Example 2.8. SpecZ = {(0), 〈p〉|p is a prime number}.
Let F be a field, then SpecF = {(0)}.

Proposition 2.9. An ideal P is prime ⇐⇒ R/P is a domain.

Proof.

An ideal P is prime

⇐⇒ for any a, b /∈ P , ab /∈ P
⇐⇒ for any a, b /∈ P , (a+ P )(b+ P ) 6= P

⇐⇒ for any a+ P, b+ P 6= 0 + P in R/P , (a+ P )(b+ P ) 6= 0 + P in R/P

⇐⇒ R/P is a domain.

�

Example 2.10. The ideal 〈3〉 is NOT prime in the ring Z[
√
−5].

The ideal 〈3, 1+
√
−5〉 contains all elements of the form 3a+ b+ b

√
−5 in Z[

√
−5]. Therefore,

Z[
√
−5]/〈3, 1 +

√
−5〉 ' {0, 1, 2} ' Z/3Z. By Proposition 2.9, 〈3, 1 +

√
−5〉 is prime.

Definition 2.11. Let I and J be two ideals in R, we define their product as:

IJ := 〈xy|x ∈ I, y ∈ J〉

Exercise 2.12. Check: 〈3〉 = 〈3, 1 +
√
−5〉〈3, 1−

√
−5〉.

2.2. Maximal ideals.

Definition 2.13. An ideal I ⊂ R is called maximal, if

(a) I 6= R;
(b) there is no proper ideal J s.t I ( J ( R.

We denote the set of all maximal ideals of R by max-SpecR.

Example 2.14. A field F has a unique maximum ideal (0).

Proposition 2.15. Let I be an ideal of R,
then I is maximal ⇐⇒ R/I is a field.

Lemma 2.16. Let I be an ideal inR. Denote the natural quotient ring homomorphism by π : R→
R/I . There is a one-to-one correspondence:

ψ : {ideal in R/I} ←→ {ideal of R containing I} : ψ−1.

Here for every ideal J in R/I the map ψ is defined as ψ(J) := π−1(J). For every ideal J̃ of R
containing I , the map ψ−1 is defined as ψ−1(J̃) := π(J̃).
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Proof of Proposition 2.15. The ideal I is maximal.
⇐⇒ The set {ideal of R containing I} has exactly two elements, namely, I and R.
⇐⇒ The ring R/I has exactly two ideals.
⇐⇒ The ring R/I is a field. �

Corollary 2.17. A maximal ideal is prime.

Proof. I / R is maximal =⇒ R/I is a field =⇒ R/I is a domain =⇒ I is prime. �

The existence of a maximal ideal is equivalent to the Zorn’s Lemma.
Axiom:(Zorn’s Lemma) Let S be a non-emplty, partially ordered set with the property that

“Any chain U1 < U2 < · · · < Un < . . . has at least one maximal element in S.”
Then S has at least one maximal element.

Proposition 2.18. Let I /R be a proper ideal of R, then there exists a maximal ideal m containing
I .

Proof. Let S be the set

{proper ideals of R which contains I}.

with inclusion as partially order. As I ∈ S, S is not empty.
For any chain of elements in S:

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . . . .

Let Ĩ = ∪Ij , then Ĩ is an ideal containing I . Since 1 /∈ Ij for any j, 1 /∈ Ĩ as well. Ĩ is a proper
ideal of R, therefore an element in S.

By Zorn’s lemma, S has a maximal element, which is a maximal ideal containing I . �

Remark 2.19. The Zorn’s Lemma is equivalent to several other logical statements, including:
Axiom of Choice and Well-Ordering Principal. It also has some highly anti-intuitive implications,
such as Banach-Tarski Paradox. A reference for more details is the blog: https://plato.stanford.edu/entries/axiom-
choice/

Example 2.20. maxSpec(Z) = {〈p〉|p is a prime number}.
By Example 2.10, 〈3, 1 +

√
−5〉 is a maximal ideal in Z[

√
−5].

Most important example: let F be a field and a1, . . . , an ∈ F , then

〈x1 − a1, . . . , xn − an〉

is a maximal ideal in F [x1, . . . , xn].

Theorem (First Ring Isomorphism Theorem). Let φ : R → S be a ring homomorphism, then
kerφ is an ideal in R. Moreover, the homomorphism φ induces a ring isomorphism:

φ̃ : R/ kerφ ∼= imφ.

Proof. For any element x, y ∈ kerφ and r ∈ R, we have φ(x ± y) = φ(x) ± φ(y) = 0 and
φ(xr) = φ(x)φ(r) = 0. Hence kerφ is an ideal.
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We define the map φ̃ as φ̃(r+kerφ) := φ(r). The map φ̃ is well-defined: for any pair r+kerφ ∼
r′ + kerφ, we have φ(r) = φ(r) − φ(r − r′)) = φ(r′). It is straitforward to check φ̃ is a ring
homomorphism.

The map φ̃ is injective: φ(r) = 0 =⇒ r + kerφ ∼ 0 + kerφ.
The map φ̃ is surjective onto imφ by definition. �

To show that 〈x1 − a1, . . . , xn − an〉 is a maximal ideal in F [x1, . . . , xn], we may consider the
following map:

φa1,...,an : F [x1, . . . , xn]→ F : f(x1, . . . , xn) 7→ f(a1, . . . , an).

The map φa1,...,an is a ring homomorphism with kernel generated by x1 − a1, . . . , xn − an. By
Proposition 2.15 and RIT, the ideal 〈x1 − a1, . . . , xn − an〉 is maximal.

2.3. Primary ideal. Naively, we would like to express every ideal I in R as:

I = P e11 . . . P emm

for some prime ideals Pi in R and powers em ∈ Z≥0.
Consider the example I = 〈x2, y〉 in the ring F [x, y]. Suppose I admits such a decomposition,

then for every prime factor Pi, we have
I ⊆ Pi.

Since x2 ∈ Pi and Pi is prime, x ∈ Pi. Therefore, 〈x, y ⊆ Pi. We must have Pi = 〈x, y〉.
However, it is not hard to check that

〈x, y〉 ) 〈x2, y〉 ) 〈x2, xy, y2〉 = 〈x, y〉2.

It is therefore impossible to have a naive prime decomposition theorem for every ideal in the
ring. We should include more ideals as ‘prime’ factors.

Definition 2.21. Let R be a ring. An ideal Q of R is called primary if:

• Q 6= R;
• fg ∈ Q =⇒ f ∈ Q or gm ∈ Q for some m ∈ Z≥1.

Definition 2.22. Let I be an ideal in a ring R, the radical of I is
√
I := {f ∈ R|fm ∈ I for some m ∈ N}.

Note that the radical of an ideal is an ideal.
For ∀f, g ∈

√
I and x ∈ R, suppose fm, gn ∈ I for some m,n > 0. Then

(f − g)m+n ∈ I; (xf)m ∈ I.

Lemma 2.23. If Q is primary, then
√
Q is a prime ideal.

Proof. Suppose fg ∈
√
Q, then (fg)m ∈ Q for some m > 0. Then fm or gm ∈

√
Q. So fmn or

gmn ∈ Q. Hence, f or g ∈ Q. �
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Example 2.24. The ideal Q = 〈27〉 is a primary in Z.
If 27|nm, then 27|n or 3|m =⇒ 27|m3.
The ideal 〈3〉 is NOT primary in Z[

√
−5].

The ideal 〈2〉 is primary in Z[
√
−5]!

The deal I = 〈xy, y2〉 in F [x, y] has radical
√
I = 〈y〉. But it is NOT primary.

Lemma 2.25. Let R be a Noetherian ring and I be a proper ideal. Suppose I is NOT primary,
then

I = J1 ∩ J2
for some J1, J2 6= I .

Proof. By Lemma 2.16 and Proposition 1.28, we may assume that I = (0)!
Let f and g be two elements such that fg = 0, f 6= 0 and gm 6= 0 for any m.
Consider the chain of ideals:

Jk := {r ∈ R|rgk = 0}.
Note that Jk ⊆ Jk+1 is an ascending chain of ideals. SinceR is Noetherian, ∃k0 such that Jk = Jk1
for all k > k0.

Claim: (0) = 〈f〉 ∩ 〈gk0〉.
Let r be an element in both ideals, then

r = fr1 = gk0r2

for some r1, r2 ∈ R. Timing g on the equality, we have

gr = gfr1 = 0 = gk0+1r2.

Therefore, r2 ∈ Jk0+1 = Jk0 . We have r = gk0r2 = 0. �

Definition 2.26. Let I be a proper ideal in a ring R. A primary decomposition of I is an expres-
sion

I = Q1 ∩ · · · ∩Qr
with each Qi primary.

The decomposition is called irredundant if I 6= ∩i 6=jQj for any j, and is called minimal if r
is as small as possible.

Theorem 2.27. Let I /R be a proper ideal in a Noetherian ring. Then I admits a primary decom-
position.

Proof. Suppose there is an ideal I that does NOT admits a primary decomposition, then I is not
primary itself and by Lemma 2.25,

I = J1 ∩ J2
for some I ( J1, J2. At least one of these two factors does NOT admits a primary decomposition,
since otherwise I admits a primary decomposition. WLOG, we may assume J1 does not admits a
primary decomposition and denote it by I2.

Repeat this procedure for I2 and so on, we get a strictly ascending chain of proper ideals that
does NOT admits a primary decomposition. This contradicts the Noetherian assumption on R. �
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Remark 2.28. The Noetherian assumption is essential here. Consider the example of ring R =
{real-valued continuous functions on R}. Then the ideal 〈sinx〉 does NOT have a primary decom-
position.

A prime ideal P is NOT decomposible: suppose P = I ∩ J for some I 6= P , J 6= P , then we
may choose x ∈ I \ J and y ∈ J \ I . The product xy will violates the primality of P .

Example 2.29. Let I = 〈xy, x− yz〉 be an ideal in C[x, y, z]. Find the primary decomposition of
I .

Solution. Note that xy ∈ I , we claim that x 6∈ I and ym 6∈ I for any m ≥ 1.
If x ∈ I , then

x = xyF1(x, y, z) + (x− yz)F2(x, y, z)

for some F1, F2 ∈ C[x, y, z]. We may substitute x = yz, then we have

yz = y2zF1 + 0,

which is impossible. Therefore, x 6∈ I .
If f(y) ∈ I , then

f(y) = xyF1(x, y, z) + (x− yz)F2(x, y, z)

for some F1, F2 ∈ C[x, y, z]. We may substitute x = z = 0, then we have

(3) f(y) = 0,

which is impossible. Therefore, f(y) 6∈ I for any 0 6= f(y) ∈ C[x, y, z].
Following the argument in Lemma 2.25, we let

Jm := {F (x, y, z)|ymF (x, y, z) ∈ I}.
It is easy to see that I ⊂ J1 and x ∈ J1, therefore, J1 ⊃ 〈I, x〉 = 〈x, yz〉.

Note that J2 = {F |yF ∈ J1}, we have z ∈ J2. Hence J2 ⊃ 〈J1, z〉 ⊃ 〈x, z〉. We claim:

Jm = 〈x, z〉.
Let F (x, y, z) be an element in Jm for some m ≥ 2. Then we may write

F = xG1(x, y, z) + zG2(x, y, z) + f(y)

for some G1, G2 ∈ C[x, y, z] and f(y) ∈ C[y]. Since Jm ⊃ 〈x, z〉, we have f(y) ∈ Jm. In
particular, we have

ymf(y) ∈ I.
By (3), f(y) = 0.

By the argument as that in Lemma 2.25, we have

I = 〈xy, x− yz, x〉 ∩ 〈xy, x− yz, y2〉 = 〈x, yz〉 ∩ 〈y2, x− yz〉.
The first factor has an ‘obvious’ primary decomposition as 〈x, y〉 ∩ 〈x, z〉.
We claim that the second factor 〈y2, x− yz〉 is primary.

Lemma 2.30. Let φ : R → S be a ring homomorphism and Q be a primary ideal in S. Then
φ−1(Q) is primary in R.
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Proof. Easy exercise. �

Consider the ring homomorphism

φ : C[x, y, z]→ C[y, z]
x 7→ yz

y 7→ y

z 7→ z

Then φ−1(〈y2〉) = 〈y2, x− yz〉. Note that C[y, z] is a UFD, the ideal 〈y2〉 is primary. By Lemma
2.30, 〈y2, x− yz〉 is primary.

Note that 〈y2, x− yz〉 ⊂ 〈x, y〉, the ideal I have a primary decomposition:

I = 〈x, z〉 ∩ 〈y2, x− yz〉.
�
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3. MODULES AND INTEGRAL EXTENSIONS

3.1. Modules.

Definition 3.1. Let R be a ring, an R-module M is an abelian group (M,+) with a multiplication
map

R×M →M : (r,m) 7→ rm,

such that ∀m,n ∈M and r, r′ ∈ R
(a) r(m± n) = rm± rn
(b) (r + r′)m = rm+ r′m
(c) (rr′)m = r(r′m)
(d) 1Rm = m

Example 3.2. For a field k, the definition of a module is the same as a vector space over the field.
In particular, if M is of finite dimension, then M ' k⊕n.

An ideal I is an R-module by definition.

Definition 3.3. A subset N ⊆ M of an R-module is an R-submodule if (N,+) is an abelian
subgroup of M and ∀r ∈ R,n ∈ N , one has rn ∈ N .

The quotient module M/N is constructed as equivalence classes of elements m ∈ M modulo
N . In other words, the coset

M/N = {m+N |m ∈M}/ ∼,
where m1 +N ∼ m2 +N ⇐⇒ m1 −m2 ∈ N , has a well-defined R-module structure:

R×M/N →M/N : f(m+N) := fm+N.

Example 3.4. Let I be an ideal of R, then both I and R/I are R-modules.

Definition 3.5. A map φ :M → N is an R-module homomorphism if ∀f, g ∈ R,m, n ∈M :

φ(fm+ gn) = fφ(m) + gφ(n).

Proposition 3.6. Let φ :M → N be an R-module homomorphism, then
(a) kerφ and imφ are both R-modules;
(b) M/ kerφ ' imφ.

Definition 3.7. Let M and N be two R-module. Their direct sum M ⊕N is defined as

M ⊕N := {(m,n)|m ∈M,n ∈ N}
R× (M ⊕N)→M ⊕N

r(m,n) 7→ (rm, rn).

Notation: M⊕r =M ⊕ · · · ⊕M for r times.

Definition 3.8. Let M be an R-module, and let A = {ma} be a subset of M . The set A generates
a submodule 〈A〉M in M :

{m ∈M |m =
∑
ma∈A

rama for some ra ∈ R, only finitely many ra 6= 0}.
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In other words, the module 〈A〉M is the minimum R-submodule in M containing A.
We say that A generates M as an R-module if 〈A〉M = M . The module M is called finitely

generated if there is a finite generating set for M .

Definition 3.9. Let M be an R-module, a subset A ⊂M is called a basis if
(a) A generates M as an R-module;
(b) A is linear independent, i.e., ∀e1, . . . , en ∈ A,

r1e1 + . . . rnen = 0 ⇐⇒ r1 = · · · = rn = 0.

An R-module is called free if it has a basis. The cardinality of a basis (independent of the
choice of basis) is called the rank of the module.

Example 3.10. Let M be a free R-module of rank n, then

M ∼= R⊕n

as an R-module.
In particular, if I = 〈f〉 is a principally generated ideal in a domain R, then {f} is a basis for I

as an R-module, and
I ∼= R

as an R-module.
When R is a field, then every R-module/vector space has a basis.
When R is not a field, let I be a non-zero, non-proper ideal of R, then R/I is an R-module

generated by 1 + I . But it is NOT free.

Theorem 3.11. Let R be a PID, M be a finitely generated R-module, then

M ∼= R⊕n ⊕R/Pn1
1 ⊕ · · · ⊕R/P

ns
s

for some maximal ideals Pi and positive integers ni, n.

Example 3.12. The ideal 〈x, y〉 in F [x, y] is NOT a free F [x, y]-module.
Let M = Z[12 ] := {

n
2m |m,n ∈ Z} be a Z-module, then M is NOT finitely generated. M does

NOT have a basis.

3.2. Cayley-Hamilton Theorem. Cayley-Hamilton for vector spaces over a field:
Let A be a n× n matrix with coefficients in k, its characteristic polynomial is:

pA(x) = det(x Idn−A).
Then pA(A) = 0.

Example 3.13. Let A =

(
1 2
3 4

)
, then pA(x) = (x− 1)(x− 4)− 2× 3 = x2 − 5x− 2.(

1 2
3 4

)2

− 5

(
1 2
3 4

)
− 2

(
1 0
0 1

)
=

(
7 10
15 22

)
−
(
5 10
15 20

)
−
(
2 0
0 2

)
= 0
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Definition 3.14. Let M be a n× n matrixm11 m12 . . . m1n

. . . . . . . . . . . .
mn1 mn2 . . . mnn


with coefficients in R, then the determinant of M is

detM :=
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

miσ(i) ∈ R

The characteristic polynomial pA(x) is

xn − trace(A)xn−1 + · · ·+ (−1)n detA.

Theorem 3.15. Let R be a ring, A be a n × n matrix with coefficients in R, its characteristic
polynomial is:

pA(x) = det(x Idn−A).

Then pA(A) = 0.

Remark 3.16. Recall how did one prove the following statement in linear algebra:

Let B be a n× n matrix with coefficient in k, suppose ∃v 6= 0, s.t. Bv = 0. Then detB = 0.

Proof. Let C be the adjoint of B: C = [Cij ] such that

Cij = (−1)i+j det B̂ji.

Here B̂ij is the (n − 1) × (n − 1) matrix by taking off the ith-column and jth-row from B. We
have BC = CB = detBIn.

Hence 0 = CBv = detBv for a non-zero v, and therefore detB = 0. �

Proof. Note that R[A] is a commutative ring. Consider the n × n matrix B with coefficient in
R[A]:

B =


A− a11In −a21In . . . −an1In
−a12In A− a22In . . . −an2In
. . . . . . . . . . . .

−a1nIn −a2nIn . . . A− annIn


The statement is to show detB = 0. Consider the adjoint of B: C = [Cij ] such that

Cij = (−1)i+j det B̂ji.

Here B̂ij is the (n − 1) × (n − 1) matrix by taking off ith-column and jth-row from B. We
have BC = CB = detBIn. Let ei = (0, . . . , 1, . . . , 0)T with 1 at the i-th position. Then for
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∀a ≤ i ≤ n,

Aei = a1ie1 + · · ·+ anien

=⇒ (A− aii)ei − a1ie1 − · · · − anien = 0

=⇒ Biiei +Bi1e1 + · · ·+Binen = 0

=⇒
n∑
j=1

Bijej = 0

Let v = (e1, e2, . . . , en)
T , then Bv = 0. Therefore CBv = 0 and (CB)v = 0 (Here the

product of B on v is not the product of matrix with vector, but composing the action of A on ei).
We may conclude that for ∀1 ≤ i ≤ n: detBei = 0. Therefore, detB = 0. �

Theorem 3.17. Let M be a finitely generated R-module with n generators, φ : M → M be an
endomorphism. Suppose φ(M) ⊆ IM for some ideal of R, then φ satisfies a relation:

φn + a1φ
n−1 + · · ·+ an = 0,

for some am ∈ Im for 1 ≤ m ≤ n.

Proof. Let (e1, . . . , en) be a set of generators, then

φ(ej) = r1je1 + r2je2 + · · ·+ rnjen

for some rij ∈ I .
Let A be the n × n matrix (rij), and pA(x) = xn + a1x

n−1 + · · · + an, then the coefficient
aj ∈ Ij .

By Theorem 3.15,
An + a1A

n−1 + · · ·+ an = 0.

Hence true for φ. �

Here few more explanations for the last sentence in the proof:
For any element m ∈M , m can be written as

m = b1e1 + · · ·+ bnen.

Note that these bj’s are not unique, but this is the only difference between a finitely generated
module and a free module. Let 

c1
c2
. . .
cn

 = A


b1
b2
. . .
bn



then φ(m) = c1e1 + · · ·+ cnen =
[
e1 e2 . . . en

] 
c1
c2
. . .
cn

 =
[
e1 e2 . . . en

]
A


b1
b2
. . .
bn

.
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(φn + a1φn−1 + · · ·+ an)m

=
[
e1 e2 . . . en

]
(An + a1A

n−1 + · · ·+ anId)


b1
b2
. . .
bn

 = 0.

3.3. Integral and Finite Extensions. An algebraic number is a complex number which is a root
of a non-zero polynomial in Z[x]. The set of all algebraic numbers is denoted as Q in this notes.

‘Well-known facts’: Q is a field. For an algebraic number α ∈ Q, there exists a minimal
polynomial f(x) ∈ Z[x] of α such that:

if g(α) = 0 and g(x) ∈ Z[x], then g(x) = f(x)h(x) for some h(x) ∈ Z[x].
As for an integer n, its minimal polynomial is just x − n. As for a rational number m

n , where
gcd(m,n) = 1, its minimal polynomial is nx−m. For a rational number q, it is not hard to figure
out that q is an integer if and only if it is a root of monic polynomial in Z[x], i.e., its minimal
polynomial is monic.

The concept of being an integral element can be generalized to all algebraic numbers.

Definition 3.18. A number α ∈ Q is called an algebraic integer, if f(α) = 0 for some monic
polynomial f(x) ∈ Z[x].

Example 3.19. All integers are algebraic integers. Given positive integers m and n, the number
n
√
m is an algebraic integer.

Without a general theory for integral elements, it is usually very hard to tell whether a given
number is an algebraic integer or not, say,

√
2+ 3
√
3. In this section, we apply the Cayley-Hamilton

theorem to set up some basic theories of integral and finite algebra. This will allow us to describe
several properties of algebraic integers that are not trivial at a first glance.

Definition 3.20. Let R be a ring. A ring S is called an R-algebra if there is a ring homomorphism
φ : R→ S.

Note that this makes S into an R-module.

In practice, we may always assume that R is a subring of S.

Definition 3.21. Let R be a ring and S be an R-algebra. An element s ∈ S is integral over R if
there is a monic polynomial

f(y) = yn + a1y
n−1 + · · ·+ an ∈ R[y]

such that f(s) = 0.
If all elements of S are integral over R, then S is said to be integral over R.

Example 3.22. (a) Let R = C and S = C[x], then an element in S is integral over R if and
only if it is a constant function.

(b) Let R = Z and S = C, a number if integral over Z if and only if it is an algebraic integer.
(c) Let R = C[x2] and S = C[x], then x is integral over R.
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Definition 3.23. Let S be an R algebra, we say that S is a finite R-algebra(or finite over R) if it is
finitely generated as an R-module.

Example 3.24. (a) C[x] is NOT finite over C.
(b) C[x] is finite over C[x2].

Proposition 3.25. Let S be a finite R algebra, then S is integral over R.

Proof. For any element s ∈ S, we may consider

φs : S → S : m 7→ sm.

Apply Cayley-Hamilton Theorem 3.17 for R, S, φs and I = R. Then there exists a1, . . . , an ∈ R
such that

φns + a1φ
n−1
s + · · ·+ an = 0.

In particular, the homomorphism on the left hand side maps 1 to 0. That is

sn + a1s
n−1 + . . . an = 0.

Hence s is integral over R. Since this holds for any s ∈ S, S is integral over R. �

Example 3.26. (a) t5 + t3 + 1 satisfy the equation x4 + f1(t
4)x3 + f2(t

4)x2 + f3(t
4)x +

fr(t
4) = 0 for some fi(t) ∈ C[t].

(b) 1 + 3
√
2 + 3
√
4 is an algebraic integer.

Definition 3.27. Let S be a ring and R ⊆ S be a subring. Let s1, . . . , sm be elements of S, then
we write R[s1, s2 . . . , sm] for the smallest subring of S containing R and s1, s2 . . . , sm.

We say that S is finitely generated over R if ∃ s1, . . . , sm such that R[s1, s2, . . . , sm] = S.
In particular, every element of R[s1, s2 . . . , sm] can be written as a polynomial in s1, s2 . . . , sm

with coefficients in R.

R[s1, . . . , sm] = {f(s1, . . . , sm|f(x1, . . . , xm) ∈ R[x1, . . . , xm]}.
By the definition,

R[s1, . . . , sm−1][sm] = R[s1, . . . , sm−1, sm].

Proposition 3.28. Let S be an R-algebra with R ⊆ S. Let s ∈ S. The followings statements are
equivelant.

(a) The element s is integral over R.
(b) Then the subring R[s] is finite over R.
(c) There exists an R-subalgebra R̃ ⊂ S such that R̃ is finite over R and R[s] ⊂ R̃

Proof. ‘a =⇒ b’: Since the element s is integral over R, there exists a monic polynomial f(x)
such that

f(s) = sn + a1x
n−1 + · · ·+ an−1s+ an = 0.

Claim: R[s] as an R-module is generated by sn−1, . . . , s, 1.
For any element g(s) ∈ R[s], since f(x) is a monic polynomial,

g(x) = f(x)h(x) + r(x)

for some deg r(x) < deg f(x). Therefore, g(s) = r(s) which is r1sn−1 + . . . rn−1s+ rn.
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‘b =⇒ c’: Let R̃ = R[s].
‘c =⇒ a’: Corollary 3.25. �

3.4. Tower Laws.

Lemma 3.29. Let R ⊆ S ⊆ S′ be rings, such that S′ is finite over S and S is finite over R. Then
S′ finite over R.

Proof. Let S′ be generated by a1, . . . , an as an S-module; S be generated by b1, . . . , bm as an
R-module.

Then for any m ∈ S′:
m = s1a1 + . . . snan for some s1 . . . , sn ∈ S

= (r11b1 + · · ·+ r1mbm)a1 + · · ·+ (rn1b1 + · · ·+ rnmbm)an for some aij ∈ R

=
∑

rijaibj .

Therefore, S′ is generated by {aibj} as an R-module. �

Corollary 3.30. Let R ⊆ S be rings, s1, . . . , sm ∈ S be integral over R. Then R[s1, . . . , sm] is
finite over R.

Proof. Consider the extension of rings:

R ⊆ R[s1] ⊆ R[s1, s2] ⊆ · · · ⊆ R[s1, s2, . . . , sm].
For each extension, as sl is integral over S[s1, . . . , sl−1], by Proposition 3.28, R[s1, . . . , sl] is

finite over R[s1, . . . , sl−1]. By Lemma 3.29, R[s1, s2, . . . , sm] is finite over R. �

Definition 3.31. Let R ⊆ S be rings, the integral closure of R in S is

R = {s ∈ S|s is integral over R}

Corollary 3.32. Let R ⊆ S be rings, then R is a subring of S.

Proof. For any s1, s2 ∈ S, the ring R[s1, s2] is integral over R. In particular, s1 ± s2 and s1s2 are
integral over R, therefore they are both in R. �

Proposition 3.33. Let R ⊆ S ⊆ S′ be rings such that S′ integral over S and S integral over R.
Then S′ is integral over R.

Proof. ∀b ∈ S′, since b is integral over S, there exist a1, . . . , an ∈ S such that

bn + a1b
n−1 + · · ·+ an = 0.

This implies b is integral over R[a1, . . . , an].
By Proposition 3.28, R[a1, . . . , an][b] is finite over R[a1, . . . , an].
Since a1, . . . , an are all integral over R, by Corollary 3.30, R[a1, . . . , an] is finite over R.
We may consider the tower

R ⊆ R[a1, . . . , an] ⊆ R[a1, . . . , an][b],
by Lemma 3.29, R[a1, . . . , an][b] is finite over R, by Corollary 3.25, R[a1, . . . , an][b] is integral
over R, therefore b is integral over R and S′ is integral over R. �
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Example 3.34. The number 5

√√
17+
√
5

2 + 7
√
6 is an algebraic integer.

The golden ration number
√
5−1
2 satisfies the equation x2 + x − 1 = 0. The number

√
17−1
2

satisfies the equation x2 + x− 4 = 0. Both numbers are algebraic integers.

As Z ⊂ Z[
√
17−1
2 ,

√
5−1
2 , 7
√
6] ⊂ Z[

√
17−1
2 ,

√
5−1
2 , 7
√
6,

5

√√
17+
√
5

2 ] is a chain of integral exten-

sions, therefore 5

√√
17+
√
5

2 + 7
√
6 is integral over Z, in other words, an algebraic integer.

Corollary 3.35. Let R ⊆ S ⊆ T be rings such that S is integral over R. Then R = S in T . In
particular, R = (R) in T .

Proof. Consider R ⊆ S ⊆ S, by Proposition 3.33, S is integral over R, therefore, S ⊇ R. �

Definition 3.36. Let S be an R-algebra. We say that R is integrally closed in S if R = R in S.

Proposition 3.37. Let S be an integral domain. Suppose S is integral over R, then
R is a field ⇐⇒ S is a field.

Proof. ‘ =⇒ ’: For ∀0 6= x ∈ S,

xn + a1x
n−1 + · · ·+ an = 0

for some ai ∈ R. We may assume that an 6= 0 since otherwise we may cancel x as S is a domain.
Since R is a field,

x(−a−1n (xn−1 + a1x
n−2 + . . . an−1)) = 1.

Therefore, x is invertible and S is a field.
‘⇐=’: For ∀0 6= x ∈ R, x−1 ∈ S and is integral over R, we have

x−n + a1x
−n+1 + · · ·+ an = 0

for some ai ∈ R. Therefore,

x−1 = a1 + a2x+ · · ·+ anx
n−1 ∈ R.

And R is a field. �
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4. THE NULLSTELLENSATZ

4.1. Ideals and Varieties.

Definition 4.1. Let k be a field. Let I be an ideal in k[x1, . . . , xn]. The variety of I is the set

V (I) := {(a1, . . . , an) ∈ kn|f(a1, . . . , an) = 0 for any f ∈ I}.
Let k be a field. Let I be an ideal in k[x1, . . . , xn]. By Hilbert Bases Theorem: Theorem 1.27,

I = 〈f1, . . . , fm〉 for some fi ∈ k[x1, . . . , xn].
Lemma 4.2. Adopt the notation as above, we have V (I) = {(a1, . . . , an) ∈ kn|fi(a1, . . . , an) =
0 for all fi’s}.
Proof. The ‘⊆’ direction is by definition.

As for the ‘⊇’ direction: For every f ∈ I , f = h1f1 + . . . hmfm for some hi ∈ k[x1, . . . , xn].
If fi(a1, . . . , an) = 0 for all fi’s, then

f(a1, . . . , an) = h1(a1, . . . , an)f1(a1, . . . , an) + . . . hm(a1, . . . , an)fm(a1, . . . , an) = 0.

Therefore, the point (a1, . . . , an) ∈ V (I). �

Example 4.3. (a) Let I = (0), then V (I) = kn.
(b) Let I = k[x1, x2, . . . , xn], then V (I) = φ.
(c) Let I = 〈xy, x− yz〉 in k[x, y, z], then V (I) = {(x, y, z)|x = y = 0 or x = z = 0}.

This implies that f(y) is not in the ideal I .
(d) Let I = 〈x2 + x− 2〉, then V (I) = {−2, 1}.

Therefore, x24 − 1 is not in the ideal I .

Definition 4.4. Let X ⊆ kn be a subset, the ideal of X is

I(X) := {f ∈ k[x1, . . . , xn]|f(x) = 0,∀x ∈ X}.

Lemma 4.5. (a) I(X) is a radical ideal in k[x1, . . . , xn], in other words, I(X) =
√
I(X).

(b) Let I be an ideal in k[x1, . . . , xn], then

V (I) = V (
√
I).

Proof. a): For any elements f, g ∈ I(X), h ∈ k[x1, . . . , xn] and x ∈ X , we have

(f ± g)(x) = f(x)± g(x) = 0; (fh)(x) = f(x)h(x) = 0.

Therefore, I(X) is an ideal.
It is obvious that I(X) ⊂

√
I(X).

Let f ∈ k[x1, . . . , xn] such that fm ∈ I(X) for some m ∈ N. Then for any x ∈ X ,

fm(x) = 0 =⇒ f(x) = 0.

Therefore,
√
I(X) = I(X).

b): Let f ∈
√
I , then fm ∈ I for some m ∈ N. For any x ∈ V (I),

fm(x) = 0 =⇒ f(x) = 0.

Therefore, x ∈ V (
√
I) and V (I) = V (

√
I). �
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Example 4.6. (a) Let I = 〈x2〉 in k[x], then V (I) = {0} and I(V (I)) = 〈x〉.
(b) Let I = 〈xy, x− yz〉 in k[x, y, z], then V (I) = {(x, y, z)|x = y = 0 or x = z = 0} and

I(V (I)) = 〈x, yz〉.
(c) I(φ) = k[x1, . . . , xn]; I(kn) = (0).

4.2. Weak Nullstellensatz.

Theorem 4.7. Let k ⊂ K be fields with K = k[s1, . . . , sn] for some s1 . . . , sn ∈ K. Then the
field K is finite/integral/algebraic over k.

Remark 4.8. An element s is algebraic over a field F if and only if it is integral over F .
By Corollary 3.25 and 3.30, the statements that ‘K is finite/integral/algebraic over k’ are all

equivalent.

Proof of Theorem 4.7. We prove by induction on the number of generators n.
When n = 1, since k[s1] = K is a field, the generator s1 has an inverse

1

s1
= ans

n
1 + · · ·+ a0

for some ai ∈ k. Therefore, the element s1 is algebraic/integral over k. By Proposition 3.28, k[s1]
is finite over k.

Assume the statement holds for n−1 generators case, we consider the case whenK = k[s1, . . . , sn].
CASE I: The generator sn is algebraic/integral over k.
By Proposition 3.28, the ring k[sn] is integral over k. By Proposition 3.37, the ring k[sn] is a

field. Consider the tower of fields extensions:

k ⊂ k[sn] ⊂ (k[sn])[s1, . . . , sn−1] = K.

By induction, K = (k[sn])[s1, . . . , sn−1] is finite over k[sn]. By the argument for the one genera-
tor case, k[sn] is finite over k. By Tower Law Lemma 3.29, K is finite over k.

CASE II: The generator sn is NOT algebraic over k. We will show that this would finally lead
to a contradiction!

Step 1: The smallest subfield in K containing k[sn] is

F = {f(sn)(g(sn))−1|f(x), g(x) ∈ F [x]}.
Since sn is assumed to be non-algebraic, one may check that F is isomorphic to the rational func-
tion field with coefficient in k.

Step 2: Note that K = F [s1, . . . , sn−1], by induction, K is integral over F .
Since each si is integral over F , there exists Aij ∈ F such that

sni
i +Ai1s

ni−1
i + · · ·+Aini = 0.

By Step 1, eachAij =
Pij(sn)
Qij(sn)

for somePij(x), Qij(x) ∈ k[x]. LetQ(x) :=
∏

1≤i≤n
∏

1≤j≤ni
Qij(x).

Then s1, . . . , sn−1 are also integral over k[sn−1, (Q(sn))
−1]. By Proposition 3.37, k[sn−1, (Q(sn))

−1]
must be a field.

Step 3: We show that there exists an element in k[sn] that does not have an inverse in k[sn, (Q(sn))
−1].
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When Q(x) is a constant function, then k[sn, (Q(sn))
−1] = k[sn] ' k[x] is NOT a field.

WhenQ(x) is not a constant function, then inverse ofQ(sn)+1 is in k[sn, (Q(sn))
−1], hence of

the form f(sn)
(Q(sn))m

for some f(x) ∈ k[x] andm ∈ Z≥0. Therefore, (Q(sn))
m = (Q(sn)+1)f(sn).

Since sn is not algebraic over F , we must have

(Q(x))m = (Q(x) + 1)f(x).

This is NOT possible since gcd(Q(x), Q(x) + 1) = 1.
We get the contradiction for Case II. Hence the generator sn must be algebraic over k. �

4.3. Maximal Ideals in C[x1, . . . , xn]. Let k be a field, recall from Example 2.20 that for any
a1, . . . , an ∈ k, the ideal

ma1,...,an := 〈x1 − a1, . . . , xn − an〉
is a maximal ideal in k[x1, . . . , xn]. When the field F is algebraically closed, we proved that every
maximal ideal in k[x1, . . . , xn] is of this form.

Theorem 4.9. Let k be an algebraically closed field, then every maximal ideal m = in k[x1, . . . , xn]
is of the form

〈x1 − a1, . . . , xn − an〉,
for some a1, . . . , an ∈ k.

Remark 4.10. A field F is algebraically closed, if and only if for every field extension F ⊂ K
and every element s algebraic over F , we have s ∈ F .

For example, the complex number field is algebraic closed

Proof of Theorem. By Proposition 2.15, k[x1, . . . , xn]/m is a field. Consider the field extension

k ⊂ k[x1 +m, . . . , xn +m].

By Theorem 4.7, k[x1 + m, . . . , xn + m] is algebraic over k. Since k is algebraically closed,
k = k[x1 +m, . . . , xn +m]. Therefore, for each xi +m, we have

xi +m = ai +m

for some ai ∈ k. Therefore, m ⊇ 〈x1 − a1, . . . , xn − an〉 which is already a maximal ideal. They
must be the same. �

Theorem 4.11. Let k be an algebraically closed field. Let I be an ideal in k[x1, . . . , xn] such that
V (I) = φ, then I = k[x1, . . . , xn].

Proof. Suppose I is a proper ideal, by Proposition 2.18, I ⊂ m for some maximal ideal m. By
Theorem 4.9, V = (m) = (a1, . . . , an) for some a1, . . . , an ∈ k. By Lemma 4.20, V (I) ⊃ V (m)
and is not empty.

We get the contradiction. The ideal is therefore not proper. �

Remark 4.12. Both results fail without the algebraically closed assumption.

Example 4.13. What is the ideal I = 〈xy, x4 + y5, x2 + y2 + 1〉 in R[x, y]?
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Consider the ideal J = 〈xy, x4 + y5, x2 + y2 + 1〉 in C[x, y]. Its variety is

V (〈xy, x4+y5, x2+y2+1〉) = {xy = x4+y5 = 0 = x2+y2+1} = {x = y = 0 = x2+y2+1} = φ.

By Theorem 4.11, J = C[x, y], in particular, 1 ∈ J . In other words,

1 = xyf(x, y) + (x4 + y5)g(x, y) + (x2 + y2 + 1)h(x, y)

for some f, g, h ∈ C[x, y]. By taking the conjugates on both sides, we have

1 = xyf(x, y) + (x4 + y5)g(x, y) + (x2 + y2 + 1)h(x, y).

Therefore,

1 = xy

(
f + f

2

)
(x, y) + (x4 + y5)

(
g + g

2

)
(x, y) + (x2 + y2 + 1)

(
h+ h

2

)
(x, y).

Here the polynomials
(
f+f
2

)
(x, y) (g, h respectively) are all with real coefficients. Therefore they

are all in R[x, y]. Hence 1 ∈ I . We have I = R[x, y].

4.4. Nullstellensatz.

Theorem 4.14. Let k be an algebraically closed field, I an ideal in k[x1, . . . , xn]. Let f ∈
k[x1, . . . , xn] such that f(V (I)) = 0. Then f t ∈ I for some t ∈ Z≥1.

Proof. By Hilbert bases theorem, the ideal I = 〈f1, . . . , fm〉 for some fi ∈ k[x1, . . . , xn]. We
consider the ideal

J := 〈f1, . . . , fm, yf − 1〉
in the ring k[x1, . . . , xn, y].

The variety of J is

V (J) = {(a1, . . . , an, b) ∈ kn+1|fi(a1, . . . , an) = 0 for every i; f(a1, . . . , an)b = 1}
= {(a1, . . . , an, b) ∈ kn+1|(a1, . . . , an) ∈ V (I); f(a1, . . . , an)b = 1}
= {(a1, . . . , an, b) ∈ kn+1|(a1, . . . , an) ∈ V (I); 0b = 1} = φ.

By Theorem 4.11, J = k[x1, . . . , xn, y]. In particular, 1 ∈ J :

1 = h1f1 + · · ·+ hmfm + g(yf − 1),

for some h1, . . . , hm, g ∈ k[x1, . . . , xn, y].
Substitute y = 1

f , we have

1 = h1(x1, . . . , xn,
1

f
)f1(x1, . . . , xn) + · · ·+ hm(x1, . . . , xn,

1

f
)fm(x1, . . . , xn),

which is an equality of elements in k(x1, . . . , xn), the rational function field of k[x1, . . . , xn].
Note that there exists an t large enough such that

hi(x1, . . . , xn,
1

f
) =

Hi(x1, . . . , xn)

f t
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for every i and some Hi(x1, . . . , xn) ∈ k[x1, . . . , xn]. Therefore,

f t = H1(x1, . . . , xn)f1(x1, . . . , xn) + · · ·+Hm(x1, . . . , xn)fm(x1, . . . , xn) ∈ I.

�

Corollary 4.15. Let k be an algebraically closed field, J be an ideal in k[x1, . . . , xn]. Then
I(V (J)) =

√
J .

Proof.

f ∈
√
J ⇐⇒ f t ∈ J for some t ⇐⇒ f(V (J)) = 0 ⇐⇒ f ∈ I(V (J)).

�

Example 4.16. Let I = 〈x2y3, (x2 + y2)3 − 4x2y2〉 in C[x, y], then I is primary.

Solution. We first compute the radical of I . The variety of I is

V (I) = {(x, y)|x2y3 = (x2 + y2)3 − 4x2y2 = 0}.

Note that x2y3 = 0 implies x = 0 or y = 0. If x = 0, then by the second equation, we have y = 0.
If y = 0, then by the second equation, we have x = 0. Therefore, V (I) = {(0, 0)}.

The ideal I({(0, 0)}) = {f(x, y)|f(0, 0) = 0} = 〈x, y〉. By Corollary 4.15, the radical
√
I =

I(V (I)) = 〈x, y〉, which is a maximal ideal. The I is primary by the following lemma. �

Lemma 4.17. Let I be an ideal in R such that
√
I is maximal, then I is primary.

Proof. Since I ⊆
√
I which is proper, the ideal I is also proper.

Let fg ∈ I , if g 6∈
√
I , then since R/

√
I is field, the element g +

√
I is a unit in R/

√
I . In

particular, m+ gr = 1 for some m ∈
√
I and r ∈ R.

Suppose mn ∈ I , as 1 = (m + gr)n = mn + sg for some s, we have f = fmn + sfg ∈ I .
Therefore, the ideal I is primary. �

Example 4.18. Let I = 〈x2y3, (x2 + y2)2 − x3 + 3xy2〉 in C[x, y], what is the radical of I? Is I
primary?

Solution. The variety of I is {(0, 0)} ∪ {(1, 0)}.
The ideal I({(0, 0)} ∪ {(1, 0)}) contains y and x(x − 1). We claim that I(V (I)) is generated

by these two elements.
Note that for every f(x, y) ∈ C[x, y], we have f(x, y) = yg(x, y) + h(x) for some g(x, y) ∈

C[x, y] and h(x) ∈ C[x]. If f ∈ I({(0, 0)} ∪ {(1, 0)}), then h(0) = h(1) = 0. Hence, x(x −
1)|h(x). In particular, f ∈ 〈x(x− 1), y〉. Therefore,

√
I = I(V (I)) = 〈x(x− 1), y〉.

This is not a prime ideal: x(x− 1) ∈
√
I but x, x− 1 6∈

√
I . Therefore, I is not primary. �
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4.5. Varieties in Cn.

Proposition 4.19. There is a one-to-one correspondence:

V : {radical ideals in C[x1, . . . , xn]} ←→ {varieties in Cn}.

Proof. Let J be a radical ideal in C[x1, . . . , xn], by 0-satz, I(V (J)) =
√
J = J .

Let X = V (J) be a variety, by Lemma 4.5 b), X = V (
√
J). By 0-satz, V (I(X)) =

V (I(V (J))) = V (
√
J) = X . �

Lemma 4.20. Let X and Y be subspaces in kn, A and B be subsets in k[x1, . . . , xn], and I , J be
ideals in k[x1, . . . , xn]. Then

(a) If X ⊂ Y ⊂ kn, then I(X) ⊃ I(Y ).
If A ⊂ B ⊂ k[x1, . . . , xn], then V (A) ⊃ V (B).

(b) I(X ∪ Y ) = I(X) ∩ I(Y );
V (I ∩ J) = V (IJ) = V (I) ∪ V (J);
V (I + J) = V (I) ∩ V (J).

Proof. a): For ∀f ∈ I(Y ), f(x) = 0 for any x ∈ Y therefore any x ∈ X . Hence, f ∈ I(X).
b): By a), I(X ∪ Y ) ⊂ I(X) ∩ I(Y ). For any f ∈ I(X) ∩ I(Y ) and any x ∈ X ∪ Y , since x

is either on X or Y , f(x) is always 0.
Let x ∈ V (I1 ∩ I2), suppose x /∈ V (I1) ∪ V (I2), then ∃f1 ∈ I1 and f2 ∈ I2 such that

f1(x), f2(x) 6= 0. In particular, (f1f2)(x) 6= 0. But f1f2 ∈ I1 ∩ I2, and we get the contradiction.
The rest one is easy. �

In particular, the intersection and union of varieties are varieties.
More relations (NOT examinable):

√
I is a prime ideal ⇐⇒ V (I) is irreducible;

√
I is a maximum ideal ⇐⇒ V (I) is a point;

dimC[x1, . . . , xn]/I = Dimension of V (I);

A maximum ideal m containing I ←→ A point Pm on V (I);

m/m2 = Cotangent space at Pm.

4.6. Irreducible Varieties.

Definition 4.21. An variety X is called irreducible if it is non-empty and is NOT the union of two
proper varieties, i.e.,

if X = X1 ∪X2 for some varieties X1 and X2, then either X1 or X2 is X .

Proposition 4.22. Let X be a variety in Cn, then
X is irreducible ⇐⇒ I(X) is prime.

Proof. ‘ =⇒ ’: For ∀fg ∈ I(X),

X = V (I(X)) ⊆ V (fg) = V (f) ∪ V (g)

=⇒ X = V (I(X)) = (V (I(X)) ∩ V (f)) ∪ (V (I(X)) ∩ V (g)) = V (I + 〈f〉) ∪ V (I + 〈g〉)
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As X is irreducible, either V (I(X)) ∩ V (f)) or (V (I(X)) ∩ V (g) is X . Therefore, either X is
contained in either V (f) or V (g). Hence, f or g ∈ I(X).

‘⇐=’: Let X = X1 ∪X2 = V (J1) ∪ V (J2) for some Ji =
√
Ji. Then I(X) = J1 ∩ J2.

Since I(X) is prime, either J1 or J2 = I . �

Example 4.23. Let the whole space be C2:

(a) X = {(0, 0)} is irreducible;
(b) X = {(0, 0)} ∪ {(1, 0)} is not irreducible;
(c) X = {x = 0} ∪ {y = 0} is not irreducible;
(d) X = C2;
(e) X = {(t2, t3)|t ∈ C};

Corollary 4.24. Let X be an irreducible variety in Cn. If X ⊆ X1 ∪ · · · ∪Xn for some varieties
X1, . . . , Xn, then X ⊆ Xi for some i.

Proof. Note that X = (X ∩X1) ∪ (X ∩X2) ∪ · · · ∪ (X ∩Xn). By Lemma 4.20, the set X ∩X1

and (X ∩ X2) ∪ · · · ∪ (X ∩ Xn) are both varieties in Cn. Since X is irreducible, X = X ∩ X1

or X = (X ∩X2) ∪ · · · ∪ (X ∩Xn). By induction on the numbers of varieties, X = X ∩Xi for
some i. �

Proposition 4.25. Let X be a variety in Cn, then X has a decomposition

X = X1 ∪ · · · ∪Xm

with each Xi an irreducible variety.
By omitting some terms if necessary, one can arrange the expression such that Xi 6⊆ Xj for any

i 6= j. Then this expression is unique up to renumbering the components.
Each Xi is called an irreducible component of X .

Proof. By Theorem 2.27, the ideal I(X) admits a primary decomposition in C[x1, . . . , xn]. We
may write

I(X) = Q1 ∩ · · · ∩Qn
with each Qi primary.

By taking V on both sides, Proposition 4.19, and Lemma 4.20, we have

X = V (I(X)) = V (Q1 ∩ · · · ∩Qm)
= V (Q1) ∪ · · · ∪ V (Qm)

= V (
√
Q1) ∪ · · · ∪ V (

√
Qm) = X1 ∪ · · · ∪Xm

By Lemma 2.23, each ideal
√
Qi is prime. By Proposition 4.22, each variety Xi is irreducible.

As for the uniqueness, let

X = X1 ∪ · · · ∪Xm = Y1 ∪ . . . Yt
be two irredundant irreducible decompositions, in other words, allXi, Yj’s are irreducible varieties,
Xi 6⊆ Xj , and Yi 6⊆ Yj for any i 6= j.
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Then for every i, we have Xi ⊆ Y1 ∪ . . . Yt. By Corollary 4.24, Xi ⊆ Yj for some j. Since
Yj ⊆ X1 ∪ · · · ∪ Xm, by Corollary 4.24, Yj ⊆ Xk for some k. Hence, Xi ⊆ Yj ⊆ Xk. As
Xi 6⊆ Xk for any i 6= k, we must have i = k and Xi = Yj .

Therefore, {X1, . . . , Xm} = {Y1, . . . , Yt}. �

Example 4.26. Let f(x, y) and g(x, y) be two polynomials with coefficient in C such that gcd(f, g) =
1. Then the equation f(x, y) = g(x, y) = 0 has only finitely many solutions.

Proof. By Lemma 4.2 and Proposition 4.25,

{(a, b) ∈ C2|f(a, b) = g(a, b) = 0}
=V (〈f(x, y), g(x, y)〉)
=X1 ∪X2 ∪ · · · ∪Xm

for some irreducible varieties X1, . . . , Xm.

V (〈f, g〉) ⊇ Xi

=⇒ f(x) = g(x) = 0 for every point x ∈ Xi.

=⇒ f, g ∈ I(Xi) (I(Xi) is a prime ideal).

Suppose I(Xi) = 〈h〉 for some h 6= 0, then gcd(f, g) 6= 1. Therefore, each prime ideal I(Xi) is
NOT principally generated.

Lemma 4.27. Let P be a prime ideal in C[x, y]. Suppose P 6= 〈h(x, y)〉 for any h(x, y), then P
is a maximal ideal.

Proof. Let F1(x, y) be a non-zero element in P with the minimum degree Degy. As P is a prime
ideal, we may assume F1(x, y) is irreducible. We write

F1(x, y) = f1(x)y
n1 + . . . ,

where DegyF1(x, y) = n1 and f1(x) ∈ F [x] is the leading coefficient.
Let F2(x, y) be with the minimum degree Degy among all elements in P \ 〈F1(x, y)〉, which is

non-empty by the condition in the lemma. We write

F2(x, y) = f2(x)y
n2 + . . . ,

where DegyF2(x, y) = n2 and f2(x) ∈ F [x] is the leading coefficient.
Let

F̃2(x, y) := f1(x)F2(x, y)− f2(x)yn2−n1F1(x, y),

, then
• DegyF̃2 <DegF2;
• F̃2 ∈ P .

By the minimum assumption on DegyF2(x, y) among all elements in P \ 〈F1(x, y)〉, we must
have

F̃2 ∈ 〈F1〉 =⇒ f1(x)F2 ∈ 〈F1〉 =⇒ f1(x)F2(x, y) = H(x, y)F1(x, y)
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for some H(x, y) ∈ C[x, y]. Since F1(x, y) is irreducible and can divide f1(x), it must be x − a
for some a ∈ C. Therefore, P 3 x− a.

Repeat the same argument for (C[y])[x] by viewing x as the main variable, we have P 3 y − b
for some b ∈ C. Therefore, P = 〈x− a, y − b〉. �

Back to the proof of the example, by the lemma, we have

V (〈f, g〉) = {(a1, b1)} ∪ . . . {(am, bm)}.
�

Example 4.28. Let f1, f2, f3 be different irreducible polynomials in C[x, y, z] such that fi 6∈
〈fj , fk〉. Then V (〈f, f2, f3〉) needs NOT to be finite. For example, xz− y2, yz−x3 and z2−x2y.
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5. PRIMARY DECOMPOSITION

5.1. Associated primes.

Definition 5.1. Let M be an R-module, and m ∈M . The annihilator of m is the set:

ann(m) := {r ∈ R|rm = 0}.

Definition 5.2. Let M be an R-module. An ideal P / R is called an associated prime of M if P
is a prime ideal and P = ann(m) for some m ∈M \ {0}.

The assassin ass(M) is the set of associated primes of an R-module M .

Remark 5.3. The annihilator ann(m) is always an ideal, but it needs not to be prime.
The annihilator ann(r) is the whole ring if and only if r = 0.

Example 5.4. (a) Let R = F be a field and M be a finite dimensional vector space. Then
ann(v) = (0) for every non-zero vector v. In particular, ass(M ) is {(0)}.

(b) Let R be an integral domain, and M = I be an ideal as an R-module then ann(r) = (0)
for every non-zero r. In particular, ass(M ) is {(0)}.

(c) R = Z and M = Z/6Z, then ass(M ) is {〈2〉, 〈3〉}.

Let X be a variety in Cn with an irreducible decomposition

X = X1 ∪ · · · ∪Xm

such that Xi 6⊆ Xj for any i 6= j.
Let R = C[x1, . . . , xn] and M = R/I(X) be an R-module. We claim that Ass(R/I) ⊇

{I(X1), . . . , I(Xm)}. We only need to prove the I(X1) case for example.
Since the decomposition is irredundant, by Corollary 4.24,

X ) X2 ∪X3 · · · ∪Xm.

By Proposition 4.19, there exists

f ∈ I(X2 ∪X3 · · · ∪Xm) \ I(X) 6= φ.

We compute the annihilator of f + I(X):

ann(f + I(X)) = {g|g(f + I(X)) = 0 + I(X)}
= {g|gf ∈ I(X)} = {g|gf(x) = 0, ∀x ∈ X}
= {g|gf(x) = 0, ∀x ∈ I(X1)}
= {g|(gf)m ∈ I(X1)} = {g|gf ∈ I(X1)} = I(X1).

Therefore, I(X1) ∈Ass(R/I(X)).

Lemma 5.5. Let M be a non-zero module over a Noetherian ring R, then ass(M) 6= φ.

Proof. Let S := {ann(m)|m ∈M \ {0}}. Then S is non-empty since M is non-zero.
Every ideal in S is proper as 1 /∈ ann(m). Since R is Noetherian, S has a maximal element

ann(m).
Claim: ann(m) is a prime ideal.
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Proof for the claim: Let fg ∈ann(m), then fgm = 0. If f 6∈ann(m) which is iff fm 6= 0, then
we may consider ann(fm) ∈ S. Note that

• ann(fm) ⊃ann(m);
• g ∈ann(fm).

By the maximum assumption on I , we must have ann(m) =ann(fm). Therefore, g ∈ann(fm) =ann(m).
The ideal ann(m) is by definition prime. �

In particular, ass(M) is non-empty. �

Proposition 5.6. Let Q be a primary ideal in a Noetherian ring R, then

ass(R/Q) = {
√
Q}.

Proof. Let r ∈ R \ Q. If s(r + Q) = 0 + Q for some s ∈ R, then rs ∈ Q. Since r /∈ Q and Q
primary, the element s must be in

√
Q. Therefore,

Q ⊆ ann(r) ⊆
√
Q.

As the radical of a prime ideal is itself, if ann(r) is prime, it can only be
√
Q. Hence, ass(R/Q) ⊂

{
√
Q}. By Lemma 5.5, ass(R/Q) = {

√
Q}. �

Lemma 5.7. Let φ :M → N be an injectiveR-mod homomorphism, then ann(m) = ann(φ(m)).
In particular,

ass(M) ⊆ ass(N).

Proof. a ∈ ann(m) ⇐⇒ am = 0 ⇐⇒ φ(am) = 0 ⇐⇒ aφ(m) = 0 ⇐⇒ a ∈
ann(φ(m)). �

Lemma 5.8. Let M1, . . . ,Ms be R-modules, then

ass(⊕si=1Mi) = ∪si=1ass(Mi).

Proof. Since Mi is a submodule of ⊕si=1Mi, ‘⊇’ holds.
Suppose a prime P = ann((m1, . . . ,ms)) is not in any ass(Mi).
Then P $ ann(mi) and P = ∩si=1ann(mi). Contradict the fact that P is irreducible. �

Definition 5.9. An ideal Q is called P-primary if Q is primary and
√
Q = P .

Lemma 5.10. Let Q1 and Q2 be two primary ideals such that
√
Q1 =

√
Q2, then Q1 ∩ Q2 is

primary.

Proof. Let fg ∈ Q1 ∩Q2, then either g ∈
√
Q1 =

√
Q2, or f ∈ Q1 ∩Q2. �

Corollary 5.11. Let R be a Noetherian ring and I = Q1 ∩ · · · ∩ Qr be a minimum primary
decomposition. Then

√
Qi 6=

√
Qj when i 6= j.

Theorem 5.12. LetR be a Noetherian ring and I = Q1∩Q2∩· · ·∩Qr be a primary decomposition.
Then

ass(R/I) ⊆ {
√
Q1, . . . ,

√
Qr}.

If the decomposition is irredundant, then the above is an equality. In particular, an irredundant
decomposition with

√
Qi 6=

√
Qj for i 6= j is minimal.
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Proof. Consider the module M := ⊕ri=1R/Qi, by Proposition 5.6 and Lemma 5.8,

ass(M) = {
√
Q1, . . . ,

√
Qr}.

Consider the R-mod homomorphism:

φ : R→M

r 7→ (r +Q1, . . . , r +Qr).

The ideal I is the kernel. Therefore, φ induces an injective morphism from R/I to M . By Lemma
5.7, ass(R/I) ⊆ {

√
Q1, . . . ,

√
Qr}.

If the decomposition is irredundant, then I $
⋂
i 6=j Qi = Ji for any 1 ≤ j ≤ r.

The image φ(Ji/I) is not 0 in M . By Lemma 5.5, ass(φ(Ji/I)) is non-empty. Note that
the image φ(Ji/I) is contained in the component R/Qi, by Lemma 5.7 and Proposition 5.6,
ass(Ji/I) = {

√
Qi}.

By Lemma 5.7 again,

{
√
Q1, . . . ,

√
Qr} = ∪iass(Ji/I) ⊆ ass(R/I) ⊆ {

√
Q1, . . . ,

√
Qr}.

�

Theorem 5.13. Let I be a proper ideal in a Noetherian ring R. Let P be a minimal prime ideal in
Ass(R/I), in other words, P 6⊇ P ′ for any other P ′ ∈ Ass(R/I). Then for any minimal primary
decomposition of I = Q1 ∩ · · · ∩Qm, the factor Qi with

√
Qi = P is given as

{r ∈ R|rf ∈ I for some f /∈ P}.

In particular, the factor Qi does not rely on the decomposition.

Proof. ‘⊇’: If rf ∈ I ⊂ Qi for some f /∈ P , then since Qi is primary and f /∈
√
Qi = P , we

must have r ∈ Qi.
‘⊆’: By the condition in the statement, P 6⊇

√
Qj for any j 6= i. As the prime ideal P is radical,

P 6⊇ Qj for any j 6= i.
There exists fj ∈ Qj \ P for every j 6= i.
As P is a prime ideal, f := f1 . . . fi−1fi+1 . . . fm /∈ P . For every r ∈ Qi, we have rf ∈

Q1 ∩ · · · ∩Qi−1 ∩Qi+1 ∩ · · · ∩Qm ∩Qi = I . Hence, the ‘⊆’ part holds. �

Remark 5.14. In some examples that of I that Ass(R/I) has non-minimal prime ideals, there
could be more than one minimal primary decompositions for I . For example, let I = 〈xy, y2〉 in
C[x, y], then I has the following different minimal primary decompositions:

I = 〈y〉 ∩ 〈x2, xy, y2〉 = 〈y〉 ∩ 〈x3, xy, y2〉 = 〈y〉 ∩ 〈xm, xy, y2〉.

The non-minimal factor 〈x, y〉 in AssC[x, y]/I may appear in infinitely many different forms.

Example 5.15. Find a minimal primary decomposition for I = 〈20, x2 + 1〉 in Z[x]
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Note that the number 20 has an obvious factorization as 4×5, we may expect I = I4∩I5, where
I4 = 〈4, x2 + 1〉 and I5 = 〈5, x2 + 1〉. This is indeed that case since

I = {(x2 + 1)f(x) + 20ax+ 20b|f(x) ∈ Z[x], a, b ∈ Z};
I4 = {(x2 + 1)f(x) + 4ax+ 4b|f(x) ∈ Z[x], a, b ∈ Z};
I5 = {(x2 + 1)f(x) + 5ax+ 5b|f(x) ∈ Z[x], a, b ∈ Z}.

Moreover, the injective map Z[x]/I → Z[x]/I4⊕Z[x]/I5 must be also surjective since the number
of elements in the modules are both 400. By Lemma 5.8,

Ass(Z[x]/I) = Ass(Z[x]/I4) ∪Ass(Z[x]/I5).
We first show that I4 is primary:

4 ∈ I4 =⇒ 2 ∈
√
I4.

In particular, 2x ∈
√
I4. Since (x+ 1)2 − 2x ∈

√
I4, we have x+ 1 ∈

√
I4.

The ideal 〈2, x + 1〉 is maximal since Z[x]/〈2, x + 1〉 ' F2, which is a field. Therefore, I4 is
primary.

As for I5 = 〈5, x2 + 1〉, note that x2 + 1 ≡ (x + 2)(x − 2)(mod5), we have the following
isomorphisms as Z[x]-modules:

Z[x]/I5 ' F5[x]/〈x2+1〉 ' F5[x]/〈x+2〉⊕F5[x]/〈x− 2〉 ' Z[x]/〈5, x+2〉⊕Z[x]/〈5, x− 2〉.
Note that Z[x]/〈5, x + 2〉 ' Z[x]/〈5, x − 2〉 ' F5, which is a field. The ideals 〈5, x ± 2〉 are all
maximal. Therefore, Ass(Z[x]/I5) = {〈5, x− 2〉, 〈5, x+ 2〉}.

Combine the discussion on I4 and I5 together, we have

Ass(Z[x]/I) = {〈5, x− 2〉, 〈5, x+ 2〉, 〈2, x+ 1〉}.
The unique minimal primary decomposition of I is I = 〈5, x− 2〉 ∩ 〈5, x+ 2〉 ∩ 〈4, x2 + 1〉.
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6. LOCALISATION AND NORMALISATION

6.1. Ring of fractions.

Definition 6.1. Let R be a ring. A set U in R is called a multiplicatively closed set (m.c.s) if:
(a) 1 ∈ U ;
(b) f, g ∈ U =⇒ fg ∈ U.

Example 6.2. (a) Let f ∈ R, then U = {1, f, f2, . . . } is an m.c.s.
(b) Let P / R be a prime ideal, then R \ P is an m.c.s.
(c) Let R be an integral domain, then R \ (0) is an m.c.s.

Definition 6.3. Let R be a ring and U ⊆ R be an m.c.s., the ring of fractions of R with respect to
U is:

U−1R := { r
u
|r ∈ R, u ∈ U}/ ∼,

where ‘∼’ is the equivalence relation defined by:
r

u
∼ r′

u′
⇐⇒ ∃v ∈ U such that v(ru′ − r′u) = 0.

The arithmetic operations on U−1R are:
r1
u1
± r2
u2

=
r1u2 ± r2u1

u1u2
;
r1
u1
· r2
u2

=
r1r2
u1u2

.

Lemma 6.4. Adopt the notation as above:
(a) ‘∼’ is an equivalence relation;
(b) The operations on U−1R are well-defined and (U−1R,+, ·) is a ring;
(c) The map φ : R→ U−1R: r 7→ r

1 is a ring homomorphism.

Proof. We only check the equivalence relation:
• Reflexive: 1(ru− ru) = 0, therefore, ru ∼

r
u .

• Symmetric: suppose r
u ∼

r′

u′ , then ∃v s.t. v(ru′−r′u) = 0, which means v(r′u−ru′) = 0

and r′

u′ ∼
r
u .

• Transitivity, suppose r
u ∼

r′

u′ ∼
r′′

u′′ , then ∃v, v′ s.t. v(ru′ − r′u) = v′(r′u′′ − r′′u′) = 0.

v′u′′(v(ru′ − r′u)) + uv(v′(r′u′′ − r′′u′)) = 0.

Since U is m.c., vv′u′ ∈ U , we have r
u ∼

r′′

u′′ .
�

We make notations for some important ring of fractions.

Definition 6.5. Let R be a ring.
• Let f ∈ R and Uf := {1, f, f2, . . . , fm, . . . }. We denote Rf := R[ 1f ] = (Uf )

−1R.
• Let P be a prime ideal. We denote

RP := (R \ P )−1R
and call it the localisation of R at P .
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• Let R be an integral domain. We denote

Frac(R) := (R \ (0))−1R
and call it the field of fractions of R.

Here are some more concrete examples of ring of fractions:

Example 6.6. (a) Let R = Z, then Frac(Z) = Q.
The localisation of Z at 〈2〉 is

Z〈2〉 = {
a

b
|a, b ∈ Z, 2 - b} ⊂ Q.

The ring of fractions Z2 is Z2 = Z[12 ] = {
a
2m |a ∈ Z,m ∈ Z≥0} ⊂ Q.

(b) Let R = Z/6Z, we consider the ring of fractions: (Z/6Z)2. The set {ab |a ∈ Z/6Z, b ∈
{1, 2, 4}} has 18 elements. By definition of ‘∼’, ab ∼

0
1 if and only if a = 0 or 3. a

b ∼
1
1

if and only if a − b = 0 or 3. a
b ∼

2
1 if and only if a − 2b = 0 or 3. Therefore,

(Z/6Z)2 ' Z/3Z.

6.2. Localisation and local rings.

Definition 6.7. A ring is called local if it has a unique maximal ideal.

Example 6.8. (a) A field k is a local ring;
(b) k[x]/〈xm〉 is a local ring, but it is not an integral domain;
(c) Z, k[x] are not local rings.

Lemma 6.9. Let I be a proper ideal of R, then
The ideal I is the unique maximal ideal of R ⇐⇒ every element in R \ I is a unit.

Proof. ‘ =⇒ ’: For ∀r ∈ R \ I , if 〈r〉 is not the whole ring, by Proposition 2.18, ∃ a maximal ideal
J ⊃ 〈r〉 * I . This invalidates the uniqueness of I . Therefore, 〈r〉 = R and 1 ∈ 〈r〉, r is a unit.

‘⇐=’: For ∀J / R s.t. J * I , ∃x ∈ J \ I . x is a unit by assumption, therefore J = R. �

Proposition 6.10. Let P be a prime ideal of R, then PRP := PP := { ru |r ∈ P, u /∈ p} is the
unique maximal ideal in RP .

Proof. For any elements r
u ,

r′

u′ ∈ PRP , and a
b ∈ RP : r

u+
r′

u′ =
ur′+u′r
uu′ ∈ PRP ; ru

a
b = ra

ub ∈ PRP .
If 1 ∼ r

u , then ∃v /∈ P such that v(r − u) = 0 =⇒ vr = vu /∈ P as P is prime. Therefore,
r /∈ P and 1 /∈ PRP .

We have shown that PRP is a proper ideal in RP .
∀ ru ∈ RP \ PRP =⇒ r /∈ P =⇒ u

r ∈ RP =⇒ r
u is a unit in RP . By Lemma 6.9, PRP is

the unique maximal ideal in RP . �

Example 6.11. (a) The ring Z〈3〉 is a local ring with unique maximal ideal generated by 3
1 .

(b) The ring C[x]〈x〉 is a local ring consisting of all rational functions on C with no pole at
the origin. The ring has unique maximal ideal consisting of rational functions vanishing
at the origin.

(c) The ring C[x, y]〈x,y〉 is a local ring. It has infinitely many prime ideals: 〈ax+ by〉.
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6.3. Nakayama Lemma.

Lemma 6.12. LetR be a ring, I be an ideal, andM be a finitely generatedR-module. If IM =M ,
then ∃r ∈ R with

r ≡ 1(mod I)

such that rM = 0.

Picture from Google: middle of the mountain in Japan
Cayley+Hamilton→ Nakayama (中山正)

Proof. Consider φ : M → M , where φ is the identity morphism, then φ(M) ⊆ IM . Apply
Cayley-Hamilton for φ and I , then

id+a1 + a2 + · · ·+ an = 0

for some aj ∈ Ij , where n is the number of generators of M . Denote a = a1 + a2 + · · ·+ an ∈ I ,
then (id+a)m = 0 for any m, in other words, (1 + a)m = 0. �

Lemma 6.13. Let R be a local ring with maximal ideal m, and M a finitely generated R-module.
If M = mM , then M = 0.

Proof. By Lemma 6.12, ∃r /∈ m s.t. rM = 0. By Lemma 6.9, r is a unit. Therefore M = 0. �
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Lemma 6.14. Let R be a local ring with maximal ideal m, and M a finitely generated R-module.
Let a1, . . . , at be elements in M such that a1 + mM, . . . , at + mM spans M/mM as a vector
space over R/m.

Then a1, . . . , at generate M .

Proof. Let N be the submodule of M generated by a1, . . . , at. Since ai+mM spans M/mM , for
any element m ∈M ,

m+mM = r1(a1 +mM) + · · ·+ rt(at +mM)

for some ri ∈ R. Therefore, m = r1a1 + · · ·+ rtat + m̃ for some m ∈ mM . By the definition of
N , m+N = m̃+N . Therefore,

M/N = mM/N.

By Lemma 6.13, M/N = 0. �

Example 6.15. Consider the localization of C[x, y] at 〈x, y〉, the unique maximal ideal is m =
〈x, y〉.

Claim:m = 〈x+ y4, y + xy + x4y3〉 = I.

The quotient field C[x, y]〈x,y〉/m is isomorphic to C. Consider the module M = m, then

M/mM = m/m2 = 〈x, y〉/〈x2, xy, y2〉
is a C-vector space spanned by x + mM and y + mM as well as spanned by x + y4 + mM and
y + xy + x4y3 +mM .

By Lemma 6.14, x+ y4, y + xy + x4y3 spans the whole module M .

6.4. Normalisation.

Definition 6.16. Let R ⊆ S be rings. We say R is integrally closed in S if every element in S that
is integral over R is contained in R.

Definition 6.17. Let R be a domain, then we say R is an integrally closed domain or normal if
it is integrally closed in its field of fractions FracR. The integral closure of R in Frac(R) is called
the normalization of R.

Remark 6.18. Let R be an integral domain, then the normalisation of R is a normal ring.

Example 6.19. (a) A field F is normal: FracF = F .
(b) The ring of integers Z is normal.

Note that Frac(Z) = Q, ∀q ∈ Q, we may write q = gcd(a, b) = 1 for some a, b ∈ Z.
Suppose a

b is integral over Z, then(a
b

)n
+ · · ·+ an−1

a

b
+ an = 0,

for some a1, . . . , an ∈ Z. We have

an + a1a
n−1b+ · · ·+ anb

n = 0.

Note that an is the only term that cannot be divided by b, therefore, b = ±1. And a
b ∈ Z.

(c) By the same argument, a unique factorization domain (UFD) is normal.
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(d) Z[
√
5] is not normal.

As
√
5+1
2 ∈Frac(Z[

√
5]) = Q(

√
5), but it satisfies the equation φ2 − φ − 1 = 0 hence

is integral over Z.
The normalisation of Z[

√
5] is Z

[√
5+1
2

]
.

(e) R = C[t2, t3] is NOT normal: its normalization is C[t].
Note that Frac(C[t2, t3]) = Frac(C[t]) = C(t). The element t = t3

t2
∈ Frac(C[t2, t3])

satisfies the equation x2 − t2 = 0, but is not in C[t2, t3]. By definition C[t2, t3] is not
normal.

Moreover, since t ∈ R, we have C[t] ⊆ R. On the other hand, R ⊂ C[t] =⇒ R ⊆
C[t] in C(t). Since C[t] is normal by c), C[t] = C[t]. Hence, R = C[t].

Lemma 6.20. Let R be a normal ring, S be an m.c.s. not containg 0, then S−1R is normal.

Proof. Note that FracR ⊆ Frac(S−1R) ⊆ Frac(FracR) = FracR, we have FracR = Frac(S−1R).
Let t ∈ FracR be integral over S−1R, then

sn + a1s
n−1 + · · ·+ an = 0

for some ai = bi
ci
∈ S−1R, where bi ∈ R and ci ∈ S. Let c := c1c2 . . . cn ∈ S, then ct is integral

over R. Therefore, t = tc
c ∈ S

−1R. By definition, S−1R is normal. �
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