NOTES ON COMMUTATIVE ALGEBRA

CHUNYI LI

Contents

1. Hilbert Bases Theorem and Noetherian Ring 2
1.1. Rings and subrings 2
1.2. Ideals and quotient rings 2
1.3. PID 3
1.4. Generators for ideals in $F[x, y]$ 4
1.5. Noetherian Ring 7
1.6. Hilbert Bases Theorem 8
2. Ideals and Primary Decomposition 10
2.1. Prime ideals 10
2.2. Maximal ideals 11
2.3. Primary ideal 13
3. Modules and Integral extensions 17
3.1. Modules 17
3.2. Cayley-Hamilton Theorem 18
3.3. Integral and Finite Extensions 21
3.4. Tower Laws 23
4. The Nullstellensatz 25
4.1. Ideals and Varieties 25
4.2. Weak Nullstellensatz 26
4.3. Maximal Ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ 27
4.4. Nullstellensatz 28
4.5. Varieties in \mathbb{C}^{n} 30
4.6. Irreducible Varieties 30
5. Primary Decomposition 34
5.1. Associated primes 34
6. Localisation and Normalisation 38
6.1. Ring of fractions 38
6.2. Localisation and local rings 39
6.3. Nakayama Lemma 40
6.4. Normalisation 41
[^0]
1. Hilbert Bases Theorem and Noetherian Ring

1.1. Rings and subrings. We collect some definitions/notations from previous modules.

Definition 1.1. A Ring $R=(R,+, \cdot)$ is a set R equipped with two operations (addition and multiplication) satisfying the following axioms:
(a) $(R,+)$ is an abelian group;
(b) ($R, \cdot)$ is associative and distributive with respect to addition;

ALL ring in this module will be commutative, i.e.,
(a) $\forall x, y \in R, x y=y x$;
(b) $\exists 1_{R}$ s.t. $\forall x \in R, 1_{R} x=x$.

In this module, a ring is commutative with (multiplicative) identity, unless stated otherwise.
By the first axiom, the ring R has an 'additional identity' 0_{R}. By the second axiom, we have $0_{R} \cdot x=0$ for any $x \in R$.

Example 1.2. Examples of rings:
(a) Zero ring: $R=(0)$ the only ring such that $0_{R}=1_{R}$.
(b) \mathbb{Z} : ring of integers; \mathbb{Q} : rational numbers; \mathbb{R} : real numbers; \mathbb{C} : complex numbers.
(c) Polynomial Rings: Let R be a ring, we define the polynomial ring over R as

$$
R[x]:=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid n \in \mathbb{N}, a_{i} \in R\right\} .
$$

The set $R[x]$ has natural addition and multiplication operations.
Definition 1.3. A subring S (of R) is a subset of R when
(a) $\left(S,+{ }_{R}, \cdot{ }_{R}\right)$ is a ring (closed under operation);
(b) $1_{S}=1_{R} \in S$.

Exercise 1.4. (a) $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$;

(b) $R \subset R[x]$;
(c) $\left\{0_{R}\right\}$ is a subset of the ring R. Though $\left\{0_{R}\right\}$ is a zero ring itself, it is NOT a subring of R when R is non-zero.

1.2. Ideals and quotient rings.

Definition 1.5. A ring morphism $\phi: R \rightarrow S$ is a map (from the set R to the set S) such that:
(a) Compatible with addition: $\phi\left(r_{1}+r_{2}\right)=\phi\left(r_{1}\right)+\phi\left(r_{2}\right)$;
(b) Compatible with multiplication: $\phi\left(r_{1} r_{2}\right)=\phi\left(r_{1}\right) \phi\left(r_{2}\right)$;
(c) $\phi\left(\operatorname{Id}_{R}\right)=\operatorname{Id}_{S}$.

Definition 1.6. Let R be a ring. An ideal $I \triangleleft R$ is a subset of R such that
(a) $(I,+)$ is a subgroup of $(R,+)$, i.e., $\forall x, y \in I$, we have $x-y \in I$;
(b) $\forall r \in R$ and $x \in I$, we have $r x \in I$.

Proper ideal: $I \neq R$.

Proposition and Definition 1.7. Let I be an ideal in R, we define

$$
R / I:=\left\{a_{I} \mid a \in R\right\} / \sim \text {, where } a+I \sim a^{\prime}+I \Longleftrightarrow a-a^{\prime} \in I .
$$

We define two operations for elements in R / I as follows:

$$
\begin{array}{r}
\left(+_{R}\right):(a+I)+_{R}(b+I):=(a+b)+I \\
(\cdot R):(a+I) \cdot R(b+I):=(a b)+I \tag{2}
\end{array}
$$

Then $\left(R / I,+{ }_{R},{ }_{R}\right)$ is a ring.
Example 1.8. Let R be a ring, then $\{0\}$ and R are always ideals in R.
Observation: $1_{R} \in I \Longrightarrow \forall x \in R, I \ni 1_{R} x=x$. Hence $I=R$.
Definition 1.9. An element a is a unit if $\exists b \in R$ s.t. $a b=1_{R}$.
The inverse of a unit r is unique, we denoted as r^{-1}.
Definition 1.10. A ring R is a field if

- it is not a zero ring;
- every non-zero element is a unit.

Lemma 1.11. A field F has exactly two ideals, namely, (0) and F.
Example 1.12. Fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.
1.3. PID.

Definition 1.13. An element a is called a zero-divisor if $\exists 0 \neq b \in R$ s.t. $a b=0$. A ring R is called a domain if it has no non-zero divisor.
Example 1.14. A field is a domain. A finite domain is a field. The ring of integers \mathbb{Z} is a domain.
Let R be a domain, then $R[x]$ is a domain.
The ring $\mathbb{Z} / 6 \mathbb{Z}=\{\underline{0}, \underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{5}\}$ is not a domain.
Proposition and Definition 1.15. Let A be a subset of R, we define the subset

$$
\langle A\rangle:=\left\{\sum_{f \in A} r_{f} f \mid r_{f} \in R, \text { where only finitely many } r_{f} \text { is non-zero }\right\} .
$$

Then $\langle A\rangle$ is the minimum ideal that contains the subset A, in other words, if I is an ideal in R such that $I \supseteq A$, then $I \supseteq\langle A\rangle$.

An ideal is principally generated if $\exists f \in R$ such that $I=\langle f\rangle$.
An ideal is finitely generated if $\exists f_{1}, f_{2}, \ldots, f_{m} \in R$ such that $I=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$.
Example 1.16. Ideals in a field $F:\langle 0\rangle$ and $\langle 1\rangle=F$.
Definition 1.17. A ring R is a principal ideal domain (PID) if

- R is a domain;
- every ideal in R is principally generated.

Example 1.18. (a) A field is a PID.
(b) The ring of integers \mathbb{Z} is a PID.
(c) Let F be a field, then $F[x]$ is a PID.

We give a proof for the case of $F[x]$ with a 'trick' which will appear later.
Proof. Let I be an ideal in $F[x]$. If $I=\langle 0\rangle$, then it is automatically principally generated by 0 .
Let $f(x)$ be a non-zero element in I with the minimum degree. We write $f(x)$ term-wisely as

$$
f(x)=a_{n} x^{n}+\ldots,
$$

for some $a_{n} \in F$ and $\operatorname{deg} f(x)=n$.
Suppose $I \neq\langle f(x)\rangle$, then we may let $g(x)$ be an element in $I \backslash\langle f(x)\rangle$ with the minimum degree. We write

$$
g(x)=b_{m} x^{m}+\ldots,
$$

for some $b_{m} \in F$ and $\operatorname{deg} g(x)=m$.
Note that $g(x) \in I$, by the minimum assumption on $\operatorname{deg} f(x)$, we have $m \geq n$.
Let

$$
\tilde{g}(x):=g(x)-a_{n}^{-1} b_{m} x^{m-n} f(x)
$$

Here a_{n}^{-1} exists as F is a field. The element $a_{n}^{-1} b_{m} x^{m-n}$ is in $F[x]$.
Note that $f(x) \in I$ and $g(x) \in I \backslash\langle f(x)\rangle$, we have

$$
\tilde{g}(x) \in I \backslash\langle f(x)\rangle
$$

Note that the leading terms in $g(x)$ and $a_{n}^{-1} b_{m} x^{m-n} f(x)$ cancel out, so we have

$$
\operatorname{deg} \tilde{g}(x)<\operatorname{deg} g(x)
$$

This contradicts to the minimum assumption on $\operatorname{deg} g(x)$ among all elements in $I \backslash\langle f(x)\rangle$.
Therefore, we must have $I=\langle f(x)\rangle$.

1.4. Generators for ideals in $F[x, y]$.

Example 1.19. Let F be a field, consider the ring $F[x, y]$ and the ideal

$$
I:=\langle x, y\rangle=\{f(x, y) \mid f(0,0)=0\} .
$$

We claim that I can NOT be generated by one element.
Proof. Suppose $I=\langle f(x, y)\rangle$, then we have $x=f(x, y) h(x, y)$ and $y=f(x, y) g(x, y)$. Note that $x=f(x, y) h(x, y)$ implies that $f(x, y)$ has no variable y. Therefore, $f(x, y)$ must be a constant function, $0 \neq f(x, y) \equiv f_{0} \in F$. But then $I=F[x, y]$, which is a contradiction.

Example 1.20. Let F be a field, consider the ring $F[x, y]$ and the ideal

$$
I:=\left\langle x^{2}, x y, y^{2}\right\rangle=\left\{\sum_{i+j \geq 2} a_{i j} x^{i} y^{j} \mid a_{i j} \in F\right\}
$$

We claim that I can NOT be generated by two elements.

Proof. Suppose $I=\langle f, g\rangle$ for some

$$
\begin{aligned}
& f(x, y)=f_{20} x^{2}+f_{11} x y+f_{02} y^{2}+f_{3}(x, y), \\
& g(x, y)=g_{20} x^{2}+g_{11} x y+g_{02} y^{2}+g_{3}(x, y),
\end{aligned}
$$

where $f_{i j}, g_{i j} \in F$, the polynoimials $f_{3}(x, y)$ and $g_{3}(x, y)$ only have terms with degree ≥ 3.
Since $x^{2}, x y, y^{2} \in I=\langle f, g\rangle$, we must have

$$
\left\{\begin{aligned}
x^{2} & =a_{1}(x, y) f(x, y)+b_{1}(x, y) g(x, y) \\
x y & =a_{2}(x, y) f(x, y)+b_{2}(x, y) g(x, y) \\
y^{2} & =a_{3}(x, y) f(x, y)+b_{3}(x, y) g(x, y)
\end{aligned}\right.
$$

for some $a_{i}(x, y), b_{i}(x, y) \in F[x, y]$.
Compare the degree 2 terms on both hand sides of the equations, we have

$$
\left\{\begin{array}{l}
x^{2}=a_{1}(0,0)\left(f_{20} x^{2}+f_{11} x y+f_{02} y^{2}\right)+b_{1}(0,0)\left(g_{20} x^{2}+g_{11} x y+g_{02} y^{2}\right) \\
x y=a_{2}(0,0)\left(f_{20} x^{2}+f_{11} x y+f_{02} y^{2}\right)+b_{2}(0,0)\left(g_{20} x^{2}+g_{11} x y+g_{02} y^{2}\right) \\
y^{2}=a_{3}(0,0)\left(f_{20} x^{2}+f_{11} x y+f_{02} y^{2}\right)+b_{3}(0,0)\left(g_{20} x^{2}+g_{11} x y+g_{02} y^{2}\right)
\end{array}\right.
$$

Note that the coefficients for $x^{2}, x y$ and y^{2} must be the same on both hand sides, hence

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a_{1}(0,0) & b_{1}(0,0) \\
a_{2}(0,0) & b_{2}(0,0) \\
a_{3}(0,0) & b_{3}(0,0)
\end{array}\right)\left(\begin{array}{lll}
f_{20} & f_{11} & f_{02} \\
g_{20} & g_{11} & g_{02}
\end{array}\right)
$$

as a product of matrices with coefficients in F. Note that the matrices on the right hand side are 3×2 and 2×3, both of which has rank at most 2 . Their product has rank at most 2 . We get the contradiction as the the 3×3 identity matrix has rank 3 .

There is no bound for the number of generators for an arbitrary ideal in $F[x, y]$.
Example 1.21. Let F be a field, the ideal $I=\left\langle x^{n}, x^{n-1} y, \ldots, y^{n}\right\rangle$ in $F[x, y]$ can NOT be generated by n elements.
Theorem 1.22 (Hilbert Bases Theorem 'Toy Case'). Let F be a field and I be an ideal in $F[x, y]$, then I is finitely generated.

Convention: We think $F[x, y]$ as the polynomial ring $(F[x])[y]$ with variable y and coefficient in $F[x]$. For every element $f \in(F[x])[y]$, we can write

$$
f(x, y)=f_{n}(x) y^{n}+f_{n-1}(x) y^{n-1}+\cdots+f_{0}(x)
$$

for some $f_{i}(x) \in F[x]$ in a unique way, where $f_{n}(x) \neq 0$. We denote the y-degree of $f(x, y)$ as $\operatorname{Deg}_{y} f(x, y)=n$.
Proof. If $I=(0)$, then we are done.
Otherwise, let $F_{1}(x, y)$ be a non-zero element in I with the minimum degree Deg_{y}. We write

$$
F_{1}(x, y)=f_{1}(x) y^{n_{1}}+\ldots
$$

where $\operatorname{Deg}_{y} F_{1}(x, y)=n_{1}$ and $f_{1}(x) \in F[x]$ is the leading coefficient.

If $I=\left\langle F_{1}(x, y)\right\rangle$, then we are done.
Otherwise, let $F_{2}(x, y)$ be a non-zero element in $I \backslash\left\langle F_{1}(x, y)\right\rangle$ with the minimum degree Deg_{y}. We write

$$
F_{2}(x, y)=f_{2}(x) y^{n_{2}}+\ldots,
$$

where $\operatorname{Deg}_{y} F_{2}(x, y)=n_{2}$ and $f_{2}(x) \in F[x]$ is the leading coefficient.
By the minimum assumption on $\operatorname{Deg}_{y} F_{1}(x, y)$ among all non-zero elements in I, we have $n_{2} \geq$ n_{1}.

Suppose $f_{2}(x) \in\left\langle f_{1}(x)\right\rangle$ in $F[x]$, then we can write $f_{2}=r_{1}(x) f_{1}(x)$ for some $r_{1}(x) \in F[x]$.
Let

$$
\tilde{F}_{2}(x, y):=F_{2}(x, y)-r_{1}(x) y^{n_{2}-n_{1}} F_{1}(x, y),
$$

, then by the same argument as that in Example 1.18, we have $\operatorname{Deg}_{y} \tilde{F}_{2}(x, y)<\operatorname{Deg}_{y} F_{2}(x, y)$ and $\tilde{F}_{2}(x, y) \in I \backslash\left\langle F_{1}(x, y)\right\rangle$. This contradicts the minimum assumption on $\operatorname{Deg}_{y} F_{2}(x, y)$ among all elements in $I \backslash\left\langle F_{1}(x, y)\right\rangle$. Therefore $f_{2}(x) \notin\left\langle f_{1}(x)\right\rangle$ in $F[x]$, in other words,

$$
\left\langle f_{1}(x)\right\rangle \subsetneq\left\langle f_{1}(x), f_{2}(x)\right\rangle .
$$

If $I=\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$, then we are done.
Otherwise, let $F_{3}(x, y)$ be a non-zero element in $I \backslash\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$ with the minimum degree Deg_{y}. We write

$$
F_{3}(x, y)=f_{3}(x) y^{n_{3}}+\ldots,
$$

where $\operatorname{Deg}_{y} F_{3}(x, y)=n_{3}$ and $f_{3}(x) \in F[x]$ is the leading coefficient.
By the minimum assumption on $\operatorname{Deg}_{y} F_{2}(x, y)$ among all elements in $I \backslash\left\langle F_{1}(x, y)\right\rangle$, we have $n_{3} \geq n_{2}$.

Suppose $f_{3}(x) \in\left\langle f_{1}(x), f_{2}(x)\right\rangle$ in $F[x]$, then we can write $f_{2}=r_{1}(x) f_{1}(x)+r_{2}(x) f_{2}(x)$ for some $r_{i}(x) \in F[x]$.

Let

$$
\tilde{F}_{3}(x, y):=F_{3}(x, y)-r_{1}(x) y^{n_{3}-n_{1}} F_{1}(x, y)-r_{2}(x) y^{n_{3}-n_{2}} F_{2}(x, y),
$$

then by the same argument as that in Example 1.18, we have $\operatorname{Deg}_{y} \tilde{F}_{3}(x, y)<\operatorname{Deg}_{y} F_{3}(x, y)$ and $\tilde{F}_{3}(x, y) \in I \backslash\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$. This contradicts the minimum assumption on $\operatorname{Deg}_{y} F_{3}(x, y)$ among all elements in $I \backslash\left\langle F_{1}(x, y), F_{2}(x, y)\right\rangle$.

Therefore $f_{3}(x) \notin\left\langle f_{1}(x), f_{2}(x)\right\rangle$ in $F[x]$, in other words,

$$
\left\langle f_{1}(x), f_{2}(x)\right\rangle \subsetneq\left\langle f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle .
$$

Suppose the ideal I is not finitely generated, then we can continue this procedure to an ascending chain of ideals:

$$
\left\langle F_{1}\right\rangle \subsetneq\left\langle F_{1}, F_{2}\right\rangle \subsetneq\left\langle F_{1}, F_{2}, F_{3}\right\rangle \subsetneq \ldots\left\langle F_{1}, F_{2}, \ldots, F_{m}\right\rangle \subsetneq \ldots
$$

such that $F_{m}(x, y)$ is with minimum Deg_{y} among all elements in $I \backslash\left\langle F_{1}, \ldots, F_{m-1}\right\rangle$.
Write $F_{m}(x, y)=f_{m}(x) y^{n_{m}}+\ldots$.
By the 'Cancellation Technic', we get an ascending chain of ideals:

$$
\left\langle f_{1}(x)\right\rangle \subsetneq\left\langle f_{1}(x), f_{2}(x)\right\rangle \subsetneq\left\langle f_{1}(x), f_{2}(x), f_{3}(x)\right\rangle \subsetneq \ldots\left\langle f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right\rangle \subsetneq \ldots
$$

in $F[x]$.

Note that $F[x]$ is a PID by Example 1.18, we have

$$
\left\langle f_{1}, \ldots, f_{m}\right\rangle=\left\langle h_{m}(x)\right\rangle
$$

for some $h_{m}(x) \in F[x]$.
Note that $\left\langle h_{m-1}(x)\right\rangle \subsetneq\left\langle h_{m}(x)\right\rangle$, we have $h_{m-1}(x)=h_{m}(x) g_{m}(x)$ for non-unit polynomial $g_{m}(x)$. In particular, $\operatorname{deg} g_{m}(x) \geq 1$.

Therefore, we have the chain

$$
\operatorname{deg} h_{1}>\operatorname{deg} h_{2}>\cdots>\operatorname{deg} h_{m}>\ldots
$$

This is a contradiction as $\operatorname{deg} h_{t} \in \mathbb{Z}_{\geq 0}$ for every non-zero polynomial h_{t}. Hence I is finitely generated with at most $1+\operatorname{deg} f_{1}(x)$ generators.
Example 1.23. Let $I=\{f(x, y) \mid f(0,0)=f(0,1)=f(1,0)=0\}$. Find a set of generators for I according to the procedure as that in the proof.

Note that I is indeed an ideal: $\forall f, g \in I$ and $h \in F[x, y]$, we have

$$
\begin{array}{r}
(f \pm g)(a, b)=f(a, b) \pm g(a, b)=0 \\
(f h)(a, b)=f(a, b) g(a, b)=0
\end{array}
$$

for any $(a, b)=(0,0),(0,1)$ or $(1,0)$. Therefore, $f \pm g, f h \in I$.
To find generators for I, we first search element with $\mathrm{Deg}_{y}=0$. In particular, if $f(x)=0$ for $x=0$ and 1 , then we have $x(x-1) \mid f(x)$. We may choose $F_{1}(x, y)=x(x-1)$ with $\mathrm{Deg}_{y}=0$ and leading coefficient $f_{1}(x)=x(x-1)$.

In the last paragraph, we have also shown that any element in $I \backslash\langle x(x-1)\rangle$ has $\operatorname{Deg}_{y} \geq 1$. To search F_{2}, we may write it as $f_{2}(x) y+r(x)$. By the proof of Theorem 1.22 , we may assume that $\operatorname{deg} f_{2}(x) \leq 1$ and $f_{2}(x) \mid f_{1}(x)$. This helps us to find $F_{2}(x, y)=x y$ 'quickly'.

By the proof of Theorem 1.22, there is at most one extra generator, and its leading coefficient has degree strictly smaller than 1. It is easy to figure out that $y+r(x) \notin I$ for any $r(x) \in F[x]$, therefore, the third generator has $\operatorname{Deg}_{y} \geq 2$!

We may choose $F_{3}(x, y)=y^{2}-y$, with $\operatorname{Deg}_{y} F_{3}=2$ and leading coefficient 1 . By the proof of Theorem 1.22, the ideal $I=\langle x(x-1), x y, y(y-1)\rangle$.

1.5. Noetherian Ring.

Definition 1.24. A ring R is called Noetherian if every ideal I in R can be finitely generated.
Definition 1.25. Let R be a ring. We say that (the set of ideals of) R has the ascending chain condition (a.c.c.) if every chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m} \subseteq \cdots
$$

eventually stops, in other words, there exists k such that $I_{k}=I_{k+1}=I_{k+2}=\ldots$.
In other words, R has a.c.c. if it has no strictly ascending chain of ideals:

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \cdots \subsetneq I_{m} \subsetneq \ldots
$$

Proposition 1.26. A ring R is Noetherian if and only if R has a.c.c..

Proof. ' \Longleftarrow ': Let I be an ideal in R, suppose I is not finitely generated.
There exists $f_{1} \in I$.
As I is not finitely generated, $I \neq\left\langle f_{1}\right\rangle$. There exists $f_{2} \in I \backslash\left\langle f_{1}\right\rangle$, in other words, $\left\langle f_{1}\right\rangle \subsetneq$ $\left\langle f_{1}, f_{2}\right\rangle$.

As I is not finitely generated, $I \neq\left\langle f_{1}, f_{2}\right\rangle$. There exists $f_{3} \in I \backslash\left\langle f_{1}, f_{2}\right\rangle$, in other words, $\left\langle f_{1}\right\rangle \subsetneq\left\langle f_{1}, f_{2}\right\rangle \subsetneq\left\langle f_{1}, f_{2}, f_{3}\right\rangle$.

We may carry on this procedure and get a strictly asceding chain of ideals:

$$
\left\langle f_{1}\right\rangle \subsetneq\left\langle f_{1}, f_{2}\right\rangle \subsetneq \cdots \subsetneq\left\langle f_{1}, \ldots, f_{m}\right\rangle \subsetneq \ldots
$$

This contradicts to the a.c.c. on R.
' \Longrightarrow ': Let

$$
I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m} \subseteq \ldots
$$

be an ascending chain of ideals in R.
Take $J=\cup_{m=1}^{+\infty} I_{m}$, we claim that J is an ideal:

- $\forall x, y \in J$, we have $x, y \in I_{k}$ for some k large enough, therefore $x \pm y \in I_{j} \subseteq J$.
- $\forall r \in R$, we have $x r \in I_{k} \subseteq J$.

By the Noetherian assumption on R, the ideal J is finitely generated, namely,

$$
J=\left\langle f_{1}, \ldots, f_{t}\right\rangle
$$

for some $f_{1}, \ldots, f_{t} \in R$. Note that $f_{i} \in I_{m_{i}}$ for some $m_{i} \in \mathbb{Z}_{\geq 1}$, we may take $k:=\max \left\{m_{1}, \ldots, m_{t}\right\}$, then $f_{1}, \ldots, f_{t} \in I_{k}$.

Therefore,

$$
J=\left\langle f_{1}, \ldots, f_{t}\right\rangle \subseteq I_{k} \subseteq I_{k+1} \subseteq \cdots \subseteq J
$$

Hence, $I_{k}=I_{k+1}=\ldots$, in other words, R has a.c.c..

1.6. Hilbert Bases Theorem.

Theorem 1.27 (Hilbert Bases Theorem). Let R be a Noetherian ring, then $R[x]$ is Noetherian.
Proof. Let I be an ideal in $R[x]$, suppose I is NOT finitely generated, we have an ascending chain of ideals in $R[x]$:

$$
\left\langle F_{1}(x)\right\rangle \subsetneq\left\langle F_{1}(x), F_{2}(x)\right\rangle \subsetneq \cdots \subsetneq\left\langle F_{1}(x), \ldots, F_{m}(x)\right\rangle \subsetneq \ldots,
$$

where $F_{m}(x)$ is with the minimum degree among all elements in $I \backslash\left\langle F_{1}(x), \ldots, F_{m-1}(x)\right\rangle$. We write

$$
F_{m}(x)=f_{m} x^{n_{m}}+\ldots,
$$

where $\operatorname{Deg} F_{m}=n_{m}$ and $f_{m} \in R$ is the leading coefficient of $F_{m}(x)$. By the minimum assumption on degree of F_{i} 's, we have

$$
n_{1} \leq n_{2} \leq \cdots \leq n_{m} \leq \ldots
$$

Suppose $f_{m} \in\left\langle f_{1}, \ldots, f_{m-1}\right\rangle$, then we have

$$
f_{m}=r_{1} f_{1}+\cdots+r_{m-1} f_{m-1}
$$

for some $r_{1}, \ldots, r_{m-1} \in R$. We may consider

$$
\tilde{F}_{m}(x):=F(x)-r_{1} x^{n_{m}-n_{1}} F_{1}(x)-\cdots-r_{m-1} x^{n_{m}-n_{m-1}} F_{m-1}(x) .
$$

By a formal check, we have

- $\operatorname{deg} \tilde{F}_{m}(x)<\operatorname{deg} F_{m}(x)$;
- $\tilde{F}_{m}(x) \in I \backslash\left\langle F_{1}(x), \ldots, F_{m-1}(x)\right\rangle$.

This contradicts the minimum assumption on $\operatorname{deg} F_{m}(x)$ among all elements in $I \backslash\left\langle F_{1}(x), \ldots, F_{m-1}(x)\right\rangle$.
Therefore, $f_{m} \notin\left\langle f_{1}, \ldots, f_{m-1}\right\rangle$. We have a strictly ascending chain of ideals

$$
\left\langle f_{1}\right\rangle \subsetneq\left\langle f_{1}, f_{2}\right\rangle \subsetneq \cdots \subsetneq\left\langle f_{1}, \ldots, f_{m}\right\rangle \subsetneq \ldots
$$

This contradicts to the fact that R has a.c.c.(by Proposition 1.26).
Proposition 1.28. Let R be a Noetherian ring and I be an ideal in R. Then R / I is Noetherian.
Proof. Let J be an ideal in R / I. We may consider the ideal (check!)

$$
\tilde{J}:=\{r \in R \mid r+I \in J\} .
$$

Since R is Noetherian, the ideal $\tilde{J}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ for some $f_{1}, \ldots, f_{m} \in R$.
For any $r+I \in J$, since $r \in \tilde{J}$, we have $r=\sum r_{i} f_{i}$ for some $r_{i} \in R$. Therefore,

$$
r+I=\sum\left(r_{i}+I\right)\left(f_{i}+I\right)
$$

. The ideal J is finitely generated.
Example 1.29. Let R be field or PID, then $R\left[x_{1}, \ldots, x_{n}\right] / I$ is Noetherian for any ideal I in $R\left[x_{1}, \ldots, x_{n}\right]$.

If R is Noetherian, then the formal power series ring

$$
R[[x]]:=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}+\ldots \mid a_{i} \in R
$$

is Noetherian.
Example 1.30. The following rings are not Noetherian:
(a) Polynomial ring with infinitely many variables $F\left[x_{1}, \ldots, x_{n}, \ldots\right]$.
(b) $F\left[x, x y, x y^{2}, \ldots, x y^{n}, \ldots\right]$.
(c) $R=\{$ real-valued continuous function from $\mathbb{R} \rightarrow \mathbb{R}\}$.

2. IdEals and Primary Decomposition

2.1. Prime ideals. There are two equivalent definitions for a prime number in the ring of integers:

Definition 2.1. Let R be a domain, an element p is called irreducible, if

- it is not a unit nor zero;
- if $p=x y$, then x or y is a unit.

Definition 2.2. Let R be a ring, an element p is called prime, if

- it is not a unit nor zero;
- if $p \mid x y$, then $p \mid x$ or $p \mid y$.

These two definitions are the same when the ring is a so-called UFD.
Definition 2.3. A domain R is called a unique factorization domain (UFD), if for every non-zero, non-unit element $r \in R, r$ can be written as a product of irreducible elements, uniquely up to order and units.

In other words, if $r=p_{1} p_{2} \ldots, p_{s}=q_{1} \ldots q_{t}$ for some p_{i}, q_{j} irreducible, then $t=s$ and there exists a bijective map $\sigma:\{1, \ldots, s\} \longleftrightarrow\{1, \ldots, t\}$ such that $p_{i}=q_{\sigma(i)} u_{i}$ for some units u_{i}.

Example 2.4. Here are some examples of UFD:

- The ring of integers \mathbb{Z} is a UFD.
- A PID is a UFD.
- Let R be a UFD, then $R[x]$ is also a UFD.

Lemma 2.5. A prime element in a domain is irreducible. An irreducible element in a UFD is prime.

Proof. Let p be a prime element in a domain. Suppose $p=x y$, then $p \mid x$ or $p \mid y$.
WLOG, $p \mid x \Longrightarrow x=p a \Longrightarrow p=p a y \Longrightarrow p(1-a y)=0$. Since there is no non-zero divisor in a domain, we have $a y=1$. Therefore, y is a unit.

Let p be an irreducible element in a UFD. Suppose $p \mid x y$, then $r p=x y$ for some $r \in R$. We may consider the prime decomposition for r, x and y :

$$
r=q_{1} \ldots, q_{m} ; x=p_{1} \ldots p_{t} ; y=s_{1} \ldots s_{l} .
$$

Since $r p=x y$, the collection q_{1}, \ldots, q_{m}, p is the same as $p_{1}, \ldots, p_{t}, s_{1} \ldots, s_{l}$ up to orders and units. Hence, $p \mid x$ or $p \mid y$.

In general, the condition in the first definition is strictly 'weaker' than that in the second definition.

Example 2.6. Consider the number 3 in the ring $\mathbb{Z}[\sqrt{-5}]:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$, then 3 is irreducible but NOT prime.

Instead of thinking about prime decomposition for elements in a ring, a more meaningful task is to considering decomposition for ideals.
Definition 2.7. An ideal $P \subset R$ is called prime, if

- $P \neq R$;
- if $x y \in P$, then $x \in P$ or $y \in P$.

We denote the set of all prime ideals of R by $\operatorname{Spec} R$, and call it the spectrum of R.
Example 2.8. $\operatorname{Spec} \mathbb{Z}=\{(0),\langle p\rangle \mid p$ is a prime number $\}$.
Let F be a field, then $\operatorname{Spec} F=\{(0)\}$.
Proposition 2.9. An ideal P is prime $\Longleftrightarrow R / P$ is a domain.

Proof.

$$
\begin{aligned}
& \text { An ideal } P \text { is prime } \\
\Longleftrightarrow & \text { for any } a, b \notin P, a b \notin P \\
\Longleftrightarrow & \text { for any } a, b \notin P,(a+P)(b+P) \neq P \\
\Longleftrightarrow & \text { for any } a+P, b+P \neq 0+P \text { in } R / P,(a+P)(b+P) \neq 0+P \text { in } R / P \\
\Longleftrightarrow & R / P \text { is a domain. }
\end{aligned}
$$

Example 2.10. The ideal $\langle 3\rangle$ is NOT prime in the ring $\mathbb{Z}[\sqrt{-5}]$.
The ideal $\langle 3,1+\sqrt{-5}\rangle$ contains all elements of the form $3 a+b+b \sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$. Therefore, $\mathbb{Z}[\sqrt{-5}] /\langle 3,1+\sqrt{-5}\rangle \simeq\{\underline{0}, \underline{1}, \underline{2}\} \simeq \mathbb{Z} / 3 \mathbb{Z}$. By Proposition 2.9, $\langle 3,1+\sqrt{-5}\rangle$ is prime.

Definition 2.11. Let I and J be two ideals in R, we define their product as:

$$
I J:=\langle x y \mid x \in I, y \in J\rangle
$$

Exercise 2.12. Check: $\langle 3\rangle=\langle 3,1+\sqrt{-5}\rangle\langle 3,1-\sqrt{-5}\rangle$.

2.2. Maximal ideals.

Definition 2.13. An ideal $I \subset R$ is called maximal, if
(a) $I \neq R$;
(b) there is no proper ideal J s.t $I \subsetneq J \subsetneq R$.

We denote the set of all maximal ideals of R by max-Spec R.
Example 2.14. A field F has a unique maximum ideal (0).
Proposition 2.15. Let I be an ideal of R, then I is maximal $\Longleftrightarrow R / I$ is a field.
Lemma 2.16. Let I be an ideal in R. Denote the natural quotient ring homomorphism by $\pi: R \rightarrow$ R / I. There is a one-to-one correspondence:

$$
\psi:\{\text { ideal in } R / I\} \longleftrightarrow\{\text { ideal of } R \text { containing } I\}: \psi^{-1}
$$

Here for every ideal J in R / I the map ψ is defined as $\psi(J):=\pi^{-1}(J)$. For every ideal \tilde{J} of R containing I, the map ψ^{-1} is defined as $\psi^{-1}(\tilde{J}):=\pi(\tilde{J})$.

Proof of Proposition 2.15. The ideal I is maximal.
\Longleftrightarrow The set \{ideal of R containing $I\}$ has exactly two elements, namely, I and R.
\Longleftrightarrow The ring R / I has exactly two ideals.
\Longleftrightarrow The ring R / I is a field.
Corollary 2.17. A maximal ideal is prime.
Proof. $I \triangleleft R$ is maximal $\Longrightarrow R / I$ is a field $\Longrightarrow R / I$ is a domain $\Longrightarrow I$ is prime.
The existence of a maximal ideal is equivalent to the Zorn's Lemma.
Axiom:(Zorn's Lemma) Let \mathcal{S} be a non-emplty, partially ordered set with the property that
"Any chain $U_{1}<U_{2}<\cdots<U_{n}<\ldots$ has at least one maximal element in \mathcal{S}."
Then \mathcal{S} has at least one maximal element.
Proposition 2.18. Let $I \triangleleft R$ be a proper ideal of R, then there exists a maximal ideal \mathfrak{m} containing I.

Proof. Let \mathcal{S} be the set
\{proper ideals of R which contains I.
with inclusion as partially order. As $I \in \mathcal{S}, \mathcal{S}$ is not empty.
For any chain of elements in \mathcal{S} :

$$
I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots
$$

Let $\tilde{I}=\cup I_{j}$, then \tilde{I} is an ideal containing I. Since $1 \notin I_{j}$ for any $j, 1 \notin \tilde{I}$ as well. \tilde{I} is a proper ideal of R, therefore an element in \mathcal{S}.

By Zorn's lemma, S has a maximal element, which is a maximal ideal containing I.
Remark 2.19. The Zorn's Lemma is equivalent to several other logical statements, including: Axiom of Choice and Well-Ordering Principal. It also has some highly anti-intuitive implications, such as Banach-Tarski Paradox. A reference for more details is the blog: https://plato.stanford.edu/entries/axiomchoice/

Example 2.20. $\max \operatorname{Spec}(\mathbb{Z})=\{\langle p\rangle \mid p$ is a prime number $\}$.
By Example 2.10, $\langle 3,1+\sqrt{-5}\rangle$ is a maximal ideal in $\mathbb{Z}[\sqrt{-5}]$.
Most important example: let F be a field and $a_{1}, \ldots, a_{n} \in F$, then

$$
\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle
$$

is a maximal ideal in $F\left[x_{1}, \ldots, x_{n}\right]$.
Theorem (First Ring Isomorphism Theorem). Let $\phi: R \rightarrow S$ be a ring homomorphism, then $\operatorname{ker} \phi$ is an ideal in R. Moreover, the homomorphism ϕ induces a ring isomorphism:

$$
\tilde{\phi}: R / \operatorname{ker} \phi \cong \operatorname{im} \phi
$$

Proof. For any element $x, y \in \operatorname{ker} \phi$ and $r \in R$, we have $\phi(x \pm y)=\phi(x) \pm \phi(y)=0$ and $\phi(x r)=\phi(x) \phi(r)=0$. Hence $\operatorname{ker} \phi$ is an ideal.

We define the map $\tilde{\phi}$ as $\tilde{\phi}(r+\operatorname{ker} \phi):=\phi(r)$. The map $\tilde{\phi}$ is well-defined: for any pair $r+\operatorname{ker} \phi \sim$ $r^{\prime}+\operatorname{ker} \phi$, we have $\left.\phi(r)=\phi(r)-\phi\left(r-r^{\prime}\right)\right)=\phi\left(r^{\prime}\right)$. It is straitforward to check $\tilde{\phi}$ is a ring homomorphism.

The map $\tilde{\phi}$ is injective: $\phi(r)=0 \Longrightarrow r+\operatorname{ker} \phi \sim 0+\operatorname{ker} \phi$.
The map $\tilde{\phi}$ is surjective onto $\operatorname{im} \phi$ by definition.
To show that $\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ is a maximal ideal in $F\left[x_{1}, \ldots, x_{n}\right]$, we may consider the following map:

$$
\phi_{a_{1}, \ldots, a_{n}}: F\left[x_{1}, \ldots, x_{n}\right] \rightarrow F: f\left(x_{1}, \ldots, x_{n}\right) \mapsto f\left(a_{1}, \ldots, a_{n}\right) .
$$

The map $\phi_{a_{1}, \ldots, a_{n}}$ is a ring homomorphism with kernel generated by $x_{1}-a_{1}, \ldots, x_{n}-a_{n}$. By Proposition 2.15 and RIT, the ideal $\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ is maximal.
2.3. Primary ideal. Naively, we would like to express every ideal I in R as:

$$
I=P_{1}^{e_{1}} \ldots P_{m}^{e_{m}}
$$

for some prime ideals P_{i} in R and powers $e_{m} \in \mathbb{Z}_{\geq 0}$.
Consider the example $I=\left\langle x^{2}, y\right\rangle$ in the ring $F[x, y]$. Suppose I admits such a decomposition, then for every prime factor P_{i}, we have

$$
I \subseteq P_{i} .
$$

Since $x^{2} \in P_{i}$ and P_{i} is prime, $x \in P_{i}$. Therefore, $\left\langle x, y \subseteq P_{i}\right.$. We must have $P_{i}=\langle x, y\rangle$.
However, it is not hard to check that

$$
\langle x, y\rangle \supsetneq\left\langle x^{2}, y\right\rangle \supsetneq\left\langle x^{2}, x y, y^{2}\right\rangle=\langle x, y\rangle^{2} .
$$

It is therefore impossible to have a naive prime decomposition theorem for every ideal in the ring. We should include more ideals as 'prime' factors.

Definition 2.21. Let R be a ring. An ideal Q of R is called primary if:

- $Q \neq R$;
- $f g \in Q \Longrightarrow f \in Q$ or $g^{m} \in Q$ for some $m \in \mathbb{Z}_{\geq 1}$.

Definition 2.22. Let I be an ideal in a ring R, the radical of I is

$$
\sqrt{I}:=\left\{f \in R \mid f^{m} \in I \text { for some } m \in \mathbb{N}\right\} .
$$

Note that the radical of an ideal is an ideal.
For $\forall f, g \in \sqrt{I}$ and $x \in R$, suppose $f^{m}, g^{n} \in I$ for some $m, n>0$. Then

$$
(f-g)^{m+n} \in I ;(x f)^{m} \in I .
$$

Lemma 2.23. If Q is primary, then \sqrt{Q} is a prime ideal.
Proof. Suppose $f g \in \sqrt{Q}$, then $(f g)^{m} \in Q$ for some $m>0$. Then f^{m} or $g^{m} \in \sqrt{Q}$. So $f^{m n}$ or $g^{m n} \in Q$. Hence, f or $g \in Q$.

Example 2.24. The ideal $Q=\langle 27\rangle$ is a primary in \mathbb{Z}.
If $27 \mid n m$, then $27 \mid n$ or $3|m \Longrightarrow 27| m^{3}$.
The ideal $\langle 3\rangle$ is NOT primary in $\mathbb{Z}[\sqrt{-5}]$.
The ideal $\langle 2\rangle$ is primary in $\mathbb{Z}[\sqrt{-5}]$!
The deal $I=\left\langle x y, y^{2}\right\rangle$ in $F[x, y]$ has radical $\sqrt{I}=\langle y\rangle$. But it is NOT primary.
Lemma 2.25. Let R be a Noetherian ring and I be a proper ideal. Suppose I is NOT primary, then

$$
I=J_{1} \cap J_{2}
$$

for some $J_{1}, J_{2} \neq I$.
Proof. By Lemma 2.16 and Proposition 1.28, we may assume that $I=(0)$!
Let f and g be two elements such that $f g=0, f \neq 0$ and $g^{m} \neq 0$ for any m.
Consider the chain of ideals:

$$
J_{k}:=\left\{r \in R \mid r g^{k}=0\right\} .
$$

Note that $J_{k} \subseteq J_{k+1}$ is an ascending chain of ideals. Since R is Noetherian, $\exists k_{0}$ such that $J_{k}=J_{k_{1}}$ for all $k>k_{0}$.

Claim: (0) $=\langle f\rangle \cap\left\langle g^{k_{0}}\right\rangle$.
Let r be an element in both ideals, then

$$
r=f r_{1}=g^{k_{0}} r_{2}
$$

for some $r_{1}, r_{2} \in R$. Timing g on the equality, we have

$$
g r=g f r_{1}=0=g^{k_{0}+1} r_{2} .
$$

Therefore, $r_{2} \in J_{k_{0}+1}=J_{k_{0}}$. We have $r=g^{k_{0}} r_{2}=0$.
Definition 2.26. Let I be a proper ideal in a ring R. A primary decomposition of I is an expression

$$
I=Q_{1} \cap \cdots \cap Q_{r}
$$

with each Q_{i} primary.
The decomposition is called irredundant if $I \neq \cap_{i \neq j} Q_{j}$ for any j, and is called minimal if r is as small as possible.

Theorem 2.27. Let $I \triangleleft R$ be a proper ideal in a Noetherian ring. Then I admits a primary decomposition.

Proof. Suppose there is an ideal I that does NOT admits a primary decomposition, then I is not primary itself and by Lemma 2.25,

$$
I=J_{1} \cap J_{2}
$$

for some $I \subsetneq J_{1}, J_{2}$. At least one of these two factors does NOT admits a primary decomposition, since otherwise I admits a primary decomposition. WLOG, we may assume J_{1} does not admits a primary decomposition and denote it by I_{2}.

Repeat this procedure for I_{2} and so on, we get a strictly ascending chain of proper ideals that does NOT admits a primary decomposition. This contradicts the Noetherian assumption on R.

Remark 2.28. The Noetherian assumption is essential here. Consider the example of ring $R=$ $\{$ real-valued continuous functions on $\mathbb{R}\}$. Then the ideal $\langle\sin x\rangle$ does NOT have a primary decomposition.

A prime ideal P is NOT decomposible: suppose $P=I \cap J$ for some $I \neq P, J \neq P$, then we may choose $x \in I \backslash J$ and $y \in J \backslash I$. The product $x y$ will violates the primality of P.
Example 2.29. Let $I=\langle x y, x-y z\rangle$ be an ideal in $\mathbb{C}[x, y, z]$. Find the primary decomposition of I.

Solution. Note that $x y \in I$, we claim that $x \notin I$ and $y^{m} \notin I$ for any $m \geq 1$.
If $x \in I$, then

$$
x=x y F_{1}(x, y, z)+(x-y z) F_{2}(x, y, z)
$$

for some $F_{1}, F_{2} \in \mathbb{C}[x, y, z]$. We may substitute $x=y z$, then we have

$$
y z=y^{2} z F_{1}+0
$$

which is impossible. Therefore, $x \notin I$.
If $f(y) \in I$, then

$$
f(y)=x y F_{1}(x, y, z)+(x-y z) F_{2}(x, y, z)
$$

for some $F_{1}, F_{2} \in \mathbb{C}[x, y, z]$. We may substitute $x=z=0$, then we have

$$
\begin{equation*}
f(y)=0, \tag{3}
\end{equation*}
$$

which is impossible. Therefore, $f(y) \notin I$ for any $0 \neq f(y) \in \mathbb{C}[x, y, z]$.
Following the argument in Lemma 2.25, we let

$$
J_{m}:=\left\{F(x, y, z) \mid y^{m} F(x, y, z) \in I\right\} .
$$

It is easy to see that $I \subset J_{1}$ and $x \in J_{1}$, therefore, $J_{1} \supset\langle I, x\rangle=\langle x, y z\rangle$.
Note that $J_{2}=\left\{F \mid y F \in J_{1}\right\}$, we have $z \in J_{2}$. Hence $J_{2} \supset\left\langle J_{1}, z\right\rangle \supset\langle x, z\rangle$. We claim:

$$
J_{m}=\langle x, z\rangle
$$

Let $F(x, y, z)$ be an element in J_{m} for some $m \geq 2$. Then we may write

$$
F=x G_{1}(x, y, z)+z G_{2}(x, y, z)+f(y)
$$

for some $G_{1}, G_{2} \in \mathbb{C}[x, y, z]$ and $f(y) \in \mathbb{C}[y]$. Since $J_{m} \supset\langle x, z\rangle$, we have $f(y) \in J_{m}$. In particular, we have

$$
y^{m} f(y) \in I
$$

By (3), $f(y)=0$.
By the argument as that in Lemma 2.25, we have

$$
I=\langle x y, x-y z, x\rangle \cap\left\langle x y, x-y z, y^{2}\right\rangle=\langle x, y z\rangle \cap\left\langle y^{2}, x-y z\right\rangle .
$$

The first factor has an 'obvious' primary decomposition as $\langle x, y\rangle \cap\langle x, z\rangle$.
We claim that the second factor $\left\langle y^{2}, x-y z\right\rangle$ is primary.
Lemma 2.30. Let $\phi: R \rightarrow S$ be a ring homomorphism and Q be a primary ideal in S. Then $\phi^{-1}(Q)$ is primary in R.

Proof. Easy exercise.
Consider the ring homomorphism

$$
\begin{aligned}
\phi: \mathbb{C}[x, y, z] & \rightarrow \mathbb{C}[y, z] \\
x & \mapsto y z \\
y & \mapsto y \\
z & \mapsto z
\end{aligned}
$$

Then $\phi^{-1}\left(\left\langle y^{2}\right\rangle\right)=\left\langle y^{2}, x-y z\right\rangle$. Note that $\mathbb{C}[y, z]$ is a UFD, the ideal $\left\langle y^{2}\right\rangle$ is primary. By Lemma 2.30, $\left\langle y^{2}, x-y z\right\rangle$ is primary.

Note that $\left\langle y^{2}, x-y z\right\rangle \subset\langle x, y\rangle$, the ideal I have a primary decomposition:

$$
I=\langle x, z\rangle \cap\left\langle y^{2}, x-y z\right\rangle .
$$

3. Modules and Integral extensions

3.1. Modules.

Definition 3.1. Let R be a ring, an $\mathbf{R - m o d u l e} M$ is an abelian group $(M,+)$ with a multiplication map

$$
R \times M \rightarrow M:(r, m) \mapsto r m
$$

such that $\forall m, n \in M$ and $r, r^{\prime} \in R$
(a) $r(m \pm n)=r m \pm r n$
(b) $\left(r+r^{\prime}\right) m=r m+r^{\prime} m$
(c) $\left(r r^{\prime}\right) m=r\left(r^{\prime} m\right)$
(d) $1_{R} m=m$

Example 3.2. For a field k, the definition of a module is the same as a vector space over the field. In particular, if M is of finite dimension, then $M \simeq k^{\oplus n}$.

An ideal I is an R-module by definition.
Definition 3.3. A subset $N \subseteq M$ of an R-module is an \mathbf{R}-submodule if $(N,+)$ is an abelian subgroup of M and $\forall r \in R, n \in N$, one has $r n \in N$.

The quotient module M / N is constructed as equivalence classes of elements $m \in M$ modulo N. In other words, the coset

$$
M / N=\{m+N \mid m \in M\} / \sim
$$

where $m_{1}+N \sim m_{2}+N \Longleftrightarrow m_{1}-m_{2} \in N$, has a well-defined R-module structure:

$$
R \times M / N \rightarrow M / N: f(m+N):=f m+N
$$

Example 3.4. Let I be an ideal of R, then both I and R / I are R-modules.
Definition 3.5. A map $\phi: M \rightarrow N$ is an R-module homomorphism if $\forall f, g \in R, m, n \in M$:

$$
\phi(f m+g n)=f \phi(m)+g \phi(n)
$$

Proposition 3.6. Let $\phi: M \rightarrow N$ be an R-module homomorphism, then
(a) $\operatorname{ker} \phi$ and $\operatorname{im} \phi$ are both R-modules;
(b) $M / \operatorname{ker} \phi \simeq \operatorname{im} \phi$.

Definition 3.7. Let M and N be two R-module. Their direct sum $M \oplus N$ is defined as

$$
\begin{aligned}
M \oplus N & :=\{(m, n) \mid m \in M, n \in N\} \\
R \times(M \oplus N) & \rightarrow M \oplus N \\
r(m, n) & \mapsto(r m, r n)
\end{aligned}
$$

Notation: $M^{\oplus r}=M \oplus \cdots \oplus M$ for r times.
Definition 3.8. Let M be an R-module, and let $A=\left\{m_{a}\right\}$ be a subset of M. The set A generates a submodule $\langle A\rangle_{M}$ in M :

$$
\left\{m \in M \mid m=\sum_{m_{a} \in A} r_{a} m_{a} \text { for some } r_{a} \in R, \text { only finitely many } r_{a} \neq 0\right\}
$$

In other words, the module $\langle A\rangle_{M}$ is the minimum R-submodule in M containing A.
We say that A generates M as an R-module if $\langle A\rangle_{M}=M$. The module M is called finitely generated if there is a finite generating set for M.

Definition 3.9. Let M be an R-module, a subset $A \subset M$ is called a basis if
(a) A generates M as an R-module;
(b) A is linear independent, i.e., $\forall \mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in A$,

$$
r_{1} \mathbf{e}_{1}+\ldots r_{n} \mathbf{e}_{n}=0 \Longleftrightarrow r_{1}=\cdots=r_{n}=0 .
$$

An R-module is called free if it has a basis. The cardinality of a basis (independent of the choice of basis) is called the rank of the module.

Example 3.10. Let M be a free R-module of rank n, then

$$
M \cong R^{\oplus n}
$$

as an R-module.
In particular, if $I=\langle f\rangle$ is a principally generated ideal in a domain R, then $\{f\}$ is a basis for I as an R-module, and

$$
I \cong R
$$

as an R-module.
When R is a field, then every R-module/vector space has a basis.
When R is not a field, let I be a non-zero, non-proper ideal of R, then R / I is an R-module generated by $1+I$. But it is NOT free.
Theorem 3.11. Let R be a PID, M be a finitely generated R-module, then

$$
M \cong R^{\oplus n} \oplus R / P_{1}^{n_{1}} \oplus \cdots \oplus R / P_{s}^{n_{s}}
$$

for some maximal ideals P_{i} and positive integers n_{i}, n.
Example 3.12. The ideal $\langle x, y\rangle$ in $F[x, y]$ is NOT a free $F[x, y]$-module.
Let $M=\mathbb{Z}\left[\frac{1}{2}\right]:=\left\{\left.\frac{n}{2^{m}} \right\rvert\, m, n \in \mathbb{Z}\right\}$ be a \mathbb{Z}-module, then M is NOT finitely generated. M does NOT have a basis.
3.2. Cayley-Hamilton Theorem. Cayley-Hamilton for vector spaces over a field:

Let A be a $n \times n$ matrix with coefficients in k, its characteristic polynomial is:

$$
p_{A}(x)=\operatorname{det}\left(x \operatorname{Id}_{n}-A\right) .
$$

Then $p_{A}(A)=0$.
Example 3.13. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, then $p_{A}(x)=(x-1)(x-4)-2 \times 3=x^{2}-5 x-2$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{2}-5\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right)-\left(\begin{array}{cc}
5 & 10 \\
15 & 20
\end{array}\right)-\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=0
\end{aligned}
$$

Definition 3.14. Let M be a $n \times n$ matrix

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & \ldots & m_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
m_{n 1} & m_{n 2} & \ldots & m_{n n}
\end{array}\right]
$$

with coefficients in R, then the determinant of M is

$$
\operatorname{det} M:=\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} m_{i \sigma(i)} \in R
$$

The characteristic polynomial $p_{A}(x)$ is

$$
x^{n}-\operatorname{trace}(A) x^{n-1}+\cdots+(-1)^{n} \operatorname{det} A .
$$

Theorem 3.15. Let R be a ring, A be a $n \times n$ matrix with coefficients in R, its characteristic polynomial is:

$$
p_{A}(x)=\operatorname{det}\left(x \operatorname{Id}_{n}-A\right) .
$$

Then $p_{A}(A)=0$.
Remark 3.16. Recall how did one prove the following statement in linear algebra:
Let B be a $n \times n$ matrix with coefficient in k, suppose $\exists v \neq 0$, s.t. $B v=0$. Then $\operatorname{det} B=0$.
Proof. Let C be the adjoint of $B: C=\left[C_{i j}\right]$ such that

$$
C_{i j}=(-1)^{i+j} \operatorname{det} \hat{B}_{j i} .
$$

Here $\hat{B}_{i j}$ is the $(n-1) \times(n-1)$ matrix by taking off the i th-column and j th-row from B. We have $B C=C B=\operatorname{det} B I_{n}$.

Hence $0=C B v=\operatorname{det} B v$ for a non-zero v, and therefore $\operatorname{det} B=0$.
Proof. Note that $R[A]$ is a commutative ring. Consider the $n \times n$ matrix B with coefficient in $R[A]$:

$$
B=\left(\begin{array}{cccc}
A-a_{11} I_{n} & -a_{21} I_{n} & \ldots & -a_{n 1} I_{n} \\
-a_{12} I_{n} & A-a_{22} I_{n} & \ldots & -a_{n 2} I_{n} \\
\ldots & \ldots & \ldots & \ldots \\
-a_{1 n} I_{n} & -a_{2 n} I_{n} & \ldots & A-a_{n n} I_{n}
\end{array}\right)
$$

The statement is to show det $B=0$. Consider the adjoint of $B: C=\left[C_{i j}\right]$ such that

$$
C_{i j}=(-1)^{i+j} \operatorname{det} \hat{B}_{j i} .
$$

Here $\hat{B}_{i j}$ is the $(n-1) \times(n-1)$ matrix by taking off i th-column and j th-row from B. We have $B C=C B=\operatorname{det} B I_{n}$. Let $\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0)^{T}$ with 1 at the i-th position. Then for
$\forall a \leq i \leq n$,

$$
\begin{aligned}
& A \mathbf{e}_{i}=a_{1 i} \mathbf{e}_{1}+\cdots+a_{n i} \mathbf{e}_{n} \\
\Longrightarrow & \left(A-a_{i i} \mathbf{e}_{i}-a_{1 i} \mathbf{e}_{1}-\cdots-a_{n i} \mathbf{e}_{n}=0\right. \\
\Longrightarrow & B_{i i} \mathbf{e}_{i}+B_{i 1} \mathbf{e}_{1}+\cdots+B_{i n} \mathbf{e}_{n}=0 \\
\Longrightarrow & \sum_{j=1}^{n} B_{i j} \mathbf{e}_{j}=0
\end{aligned}
$$

Let $v=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)^{T}$, then $B v=0$. Therefore $C B v=0$ and $(C B) v=0$ (Here the product of B on v is not the product of matrix with vector, but composing the action of A on \mathbf{e}_{i}).

We may conclude that for $\forall 1 \leq i \leq n$: $\operatorname{det} B \mathbf{e}_{i}=0$. Therefore, $\operatorname{det} B=0$.
Theorem 3.17. Let M be a finitely generated R-module with n generators, $\phi: M \rightarrow M$ be an endomorphism. Suppose $\phi(M) \subseteq I M$ for some ideal of R, then ϕ satisfies a relation:

$$
\phi^{n}+a_{1} \phi^{n-1}+\cdots+a_{n}=0,
$$

for some $a_{m} \in I^{m}$ for $1 \leq m \leq n$.
Proof. Let $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$ be a set of generators, then

$$
\phi\left(\mathbf{e}_{j}\right)=r_{1 j} \mathbf{e}_{1}+r_{2 j} \mathbf{e}_{2}+\cdots+r_{n j} \mathbf{e}_{n}
$$

for some $r_{i j} \in I$.
Let A be the $n \times n$ matrix $\left(r_{i j}\right)$, and $p_{A}(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$, then the coefficient $a_{j} \in I^{j}$.

By Theorem 3.15,

$$
A^{n}+a_{1} A^{n-1}+\cdots+a_{n}=0
$$

Hence true for ϕ.
Here few more explanations for the last sentence in the proof:
For any element $m \in M, m$ can be written as

$$
m=b_{1} \mathbf{e}_{1}+\cdots+b_{n} \mathbf{e}_{n}
$$

Note that these b_{j} 's are not unique, but this is the only difference between a finitely generated module and a free module. Let

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\ldots \\
c_{n}
\end{array}\right]=A\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{n}
\end{array}\right]
$$

then $\phi(m)=c_{1} \mathbf{e}_{1}+\cdots+c_{n} \mathbf{e}_{n}=\left[\begin{array}{llll}\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{n}\end{array}\right]=\left[\begin{array}{llll}\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}\end{array}\right] A\left[\begin{array}{c}b_{1} \\ b_{2} \\ \ldots \\ b_{n}\end{array}\right]$.

$$
\begin{aligned}
& \left(\phi^{n}+a_{1} \phi_{n-1}+\cdots+a_{n}\right) m \\
= & {\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n}
\end{array}\right]\left(A^{n}+a_{1} A^{n-1}+\cdots+a_{n} I d\right)\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{n}
\end{array}\right]=0 . }
\end{aligned}
$$

3.3. Integral and Finite Extensions. An algebraic number is a complex number which is a root of a non-zero polynomial in $\mathbb{Z}[x]$. The set of all algebraic numbers is denoted as $\overline{\mathbb{Q}}$ in this notes.
'Well-known facts': $\overline{\mathbb{Q}}$ is a field. For an algebraic number $\alpha \in \overline{\mathbb{Q}}$, there exists a minimal polynomial $f(x) \in \mathbb{Z}[x]$ of α such that:
if $g(\alpha)=0$ and $g(x) \in \mathbb{Z}[x]$, then $g(x)=f(x) h(x)$ for some $h(x) \in \mathbb{Z}[x]$.
As for an integer n, its minimal polynomial is just $x-n$. As for a rational number $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, its minimal polynomial is $n x-m$. For a rational number q, it is not hard to figure out that q is an integer if and only if it is a root of monic polynomial in $\mathbb{Z}[x]$, i.e., its minimal polynomial is monic.

The concept of being an integral element can be generalized to all algebraic numbers.
Definition 3.18. A number $\alpha \in \overline{\mathbb{Q}}$ is called an algebraic integer, if $f(\alpha)=0$ for some monic polynomial $f(x) \in \mathbb{Z}[x]$.
Example 3.19. All integers are algebraic integers. Given positive integers m and n, the number $\sqrt[n]{m}$ is an algebraic integer.

Without a general theory for integral elements, it is usually very hard to tell whether a given number is an algebraic integer or not, say, $\sqrt{2}+\sqrt[3]{3}$. In this section, we apply the Cayley-Hamilton theorem to set up some basic theories of integral and finite algebra. This will allow us to describe several properties of algebraic integers that are not trivial at a first glance.
Definition 3.20. Let R be a ring. A ring S is called an R-algebra if there is a ring homomorphism $\phi: R \rightarrow S$.

Note that this makes S into an R-module.
In practice, we may always assume that R is a subring of S.
Definition 3.21. Let R be a ring and S be an R-algebra. An element $s \in S$ is integral over R if there is a monic polynomial

$$
f(y)=y^{n}+a_{1} y^{n-1}+\cdots+a_{n} \in R[y]
$$

such that $f(s)=0$.
If all elements of S are integral over R, then S is said to be integral over R.
Example 3.22. (a) Let $R=\mathbb{C}$ and $S=\mathbb{C}[x]$, then an element in S is integral over R if and only if it is a constant function.
(b) Let $R=\mathbb{Z}$ and $S=\mathbb{C}$, a number if integral over \mathbb{Z} if and only if it is an algebraic integer.
(c) Let $R=\mathbb{C}\left[x^{2}\right]$ and $S=\mathbb{C}[x]$, then x is integral over R.

Definition 3.23. Let S be an R algebra, we say that S is a finite R-algebra(or finite over R) if it is finitely generated as an R-module.
Example 3.24. (a) $\mathbb{C}[x]$ is NOT finite over \mathbb{C}.
(b) $\mathbb{C}[x]$ is finite over $\mathbb{C}\left[x^{2}\right]$.

Proposition 3.25. Let S be a finite R algebra, then S is integral over R.
Proof. For any element $s \in S$, we may consider

$$
\phi_{s}: S \rightarrow S: m \mapsto s m .
$$

Apply Cayley-Hamilton Theorem 3.17 for R, S, ϕ_{s} and $I=R$. Then there exists $a_{1}, \ldots, a_{n} \in R$ such that

$$
\phi_{s}^{n}+a_{1} \phi_{s}^{n-1}+\cdots+a_{n}=0 .
$$

In particular, the homomorphism on the left hand side maps 1 to 0 . That is

$$
s^{n}+a_{1} s^{n-1}+\ldots a_{n}=0
$$

Hence s is integral over R. Since this holds for any $s \in S, S$ is integral over R.
Example 3.26. (a) $t^{5}+t^{3}+1$ satisfy the equation $x^{4}+f_{1}\left(t^{4}\right) x^{3}+f_{2}\left(t^{4}\right) x^{2}+f_{3}\left(t^{4}\right) x+$ $f_{r}\left(t^{4}\right)=0$ for some $f_{i}(t) \in \mathbb{C}[t]$.
(b) $1+\sqrt[3]{2}+\sqrt[3]{4}$ is an algebraic integer.

Definition 3.27. Let S be a ring and $R \subseteq S$ be a subring. Let s_{1}, \ldots, s_{m} be elements of S, then we write $R\left[s_{1}, s_{2} \ldots, s_{m}\right]$ for the smallest subring of S containing R and $s_{1}, s_{2} \ldots, s_{m}$.

We say that S is finitely generated over R if $\exists s_{1}, \ldots, s_{m}$ such that $R\left[s_{1}, s_{2}, \ldots, s_{m}\right]=S$.
In particular, every element of $R\left[s_{1}, s_{2} \ldots, s_{m}\right]$ can be written as a polynomial in $s_{1}, s_{2} \ldots, s_{m}$ with coefficients in R.

$$
R\left[s_{1}, \ldots, s_{m}\right]=\left\{f\left(s_{1}, \ldots, s_{m} \mid f\left(x_{1}, \ldots, x_{m}\right) \in R\left[x_{1}, \ldots, x_{m}\right]\right\} .\right.
$$

By the definition,

$$
R\left[s_{1}, \ldots, s_{m-1}\right]\left[s_{m}\right]=R\left[s_{1}, \ldots, s_{m-1}, s_{m}\right] .
$$

Proposition 3.28. Let S be an R-algebra with $R \subseteq S$. Let $s \in S$. The followings statements are equivelant.
(a) The element s is integral over R.
(b) Then the subring $R[s]$ is finite over R.
(c) There exists an R-subalgebra $\tilde{R} \subset S$ such that \tilde{R} is finite over R and $R[s] \subset \tilde{R}$

Proof. ' $\mathbf{a} \Longrightarrow \mathrm{b}$ ': Since the element s is integral over R, there exists a monic polynomial $f(x)$ such that

$$
f(s)=s^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} s+a_{n}=0
$$

Claim: $R[s]$ as an R-module is generated by $s^{n-1}, \ldots, s, 1$.
For any element $g(s) \in R[s]$, since $f(x)$ is a monic polynomial,

$$
g(x)=f(x) h(x)+r(x)
$$

for some $\operatorname{deg} r(x)<\operatorname{deg} f(x)$. Therefore, $g(s)=r(s)$ which is $r_{1} s^{n-1}+\ldots r_{n-1} s+r_{n}$.
' $\mathrm{b} \Longrightarrow \mathrm{c}$ ': Let $\tilde{R}=R[s]$.
' $\mathrm{c} \Longrightarrow \mathrm{a}$ ': Corollary 3.25.

3.4. Tower Laws.

Lemma 3.29. Let $R \subseteq S \subseteq S^{\prime}$ be rings, such that S^{\prime} is finite over S and S is finite over R. Then S^{\prime} finite over R.

Proof. Let S^{\prime} be generated by a_{1}, \ldots, a_{n} as an S-module; S be generated by b_{1}, \ldots, b_{m} as an R-module.

Then for any $m \in S^{\prime}$:

$$
\begin{array}{rlrl}
m & =s_{1} a_{1}+\ldots s_{n} a_{n} & \text { for some } s_{1} \ldots, s_{n} \in S \\
& =\left(r_{11} b_{1}+\cdots+r_{1 m} b_{m}\right) a_{1}+\cdots+\left(r_{n 1} b_{1}+\cdots+r_{n m} b_{m}\right) a_{n} & \text { for some } a_{i j} \in R \\
& =\sum r_{i j} a_{i} b_{j} & &
\end{array}
$$

Therefore, S^{\prime} is generated by $\left\{a_{i} b_{j}\right\}$ as an R-module.
Corollary 3.30. Let $R \subseteq S$ be rings, $s_{1}, \ldots, s_{m} \in S$ be integral over R. Then $R\left[s_{1}, \ldots, s_{m}\right]$ is finite over R.

Proof. Consider the extension of rings:

$$
R \subseteq R\left[s_{1}\right] \subseteq R\left[s_{1}, s_{2}\right] \subseteq \cdots \subseteq R\left[s_{1}, s_{2}, \ldots, s_{m}\right]
$$

For each extension, as s_{l} is integral over $S\left[s_{1}, \ldots, s_{l-1}\right]$, by Proposition $3.28, R\left[s_{1}, \ldots, s_{l}\right]$ is finite over $R\left[s_{1}, \ldots, s_{l-1}\right]$. By Lemma $3.29, R\left[s_{1}, s_{2}, \ldots, s_{m}\right]$ is finite over R.

Definition 3.31. Let $R \subseteq S$ be rings, the integral closure of R in S is

$$
\bar{R}=\{s \in S \mid s \text { is integral over } R\}
$$

Corollary 3.32. Let $R \subseteq S$ be rings, then \bar{R} is a subring of S.
Proof. For any $s_{1}, s_{2} \in S$, the ring $R\left[s_{1}, s_{2}\right]$ is integral over R. In particular, $s_{1} \pm s_{2}$ and $s_{1} s_{2}$ are integral over R, therefore they are both in \bar{R}.

Proposition 3.33. Let $R \subseteq S \subseteq S^{\prime}$ be rings such that S^{\prime} integral over S and S integral over R. Then S^{\prime} is integral over R.

Proof. $\forall b \in S^{\prime}$, since b is integral over S, there exist $a_{1}, \ldots, a_{n} \in S$ such that

$$
b^{n}+a_{1} b^{n-1}+\cdots+a_{n}=0
$$

This implies b is integral over $R\left[a_{1}, \ldots, a_{n}\right]$.
By Proposition 3.28, $R\left[a_{1}, \ldots, a_{n}\right][b]$ is finite over $R\left[a_{1}, \ldots, a_{n}\right]$.
Since a_{1}, \ldots, a_{n} are all integral over R, by Corollary $3.30, R\left[a_{1}, \ldots, a_{n}\right]$ is finite over R.
We may consider the tower

$$
R \subseteq R\left[a_{1}, \ldots, a_{n}\right] \subseteq R\left[a_{1}, \ldots, a_{n}\right][b]
$$

by Lemma 3.29, $R\left[a_{1}, \ldots, a_{n}\right][b]$ is finite over R, by Corollary $3.25, R\left[a_{1}, \ldots, a_{n}\right][b]$ is integral over R, therefore b is integral over R and S^{\prime} is integral over R.

Example 3.34. The number $\sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}}+\sqrt[7]{6}$ is an algebraic integer.
The golden ration number $\frac{\sqrt{5}-1}{2}$ satisfies the equation $x^{2}+x-1=0$. The number $\frac{\sqrt{17}-1}{2}$ satisfies the equation $x^{2}+x-4=0$. Both numbers are algebraic integers.

As $\mathbb{Z} \subset \mathbb{Z}\left[\frac{\sqrt{17}-1}{2}, \frac{\sqrt{5}-1}{2}, \sqrt[7]{6}\right] \subset \mathbb{Z}\left[\frac{\sqrt{17}-1}{2}, \frac{\sqrt{5}-1}{2}, \sqrt[7]{6}, \sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}}\right]$ is a chain of integral extensions, therefore $\sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}}+\sqrt[7]{6}$ is integral over \mathbb{Z}, in other words, an algebraic integer.

Corollary 3.35. Let $R \subseteq S \subseteq T$ be rings such that S is integral over R. Then $\bar{R}=\bar{S}$ in T. In particular, $\bar{R}=\overline{(\bar{R})}$ in T.

Proof. Consider $R \subseteq S \subseteq \bar{S}$, by Proposition 3.33, \bar{S} is integral over R, therefore, $\bar{S} \supseteq \bar{R}$.
Definition 3.36. Let S be an R-algebra. We say that R is integrally closed in S if $R=\bar{R}$ in S.
Proposition 3.37. Let S be an integral domain. Suppose S is integral over R, then R is a field $\Longleftrightarrow S$ is a field.
Proof. ' \Longrightarrow ': For $\forall 0 \neq x \in S$,

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

for some $a_{i} \in R$. We may assume that $a_{n} \neq 0$ since otherwise we may cancel x as S is a domain.
Since R is a field,

$$
x\left(-a_{n}^{-1}\left(x^{n-1}+a_{1} x^{n-2}+\ldots a_{n-1}\right)\right)=1 .
$$

Therefore, x is invertible and S is a field.
' \Longleftarrow ': For $\forall 0 \neq x \in R, x^{-1} \in S$ and is integral over R, we have

$$
x^{-n}+a_{1} x^{-n+1}+\cdots+a_{n}=0
$$

for some $a_{i} \in R$. Therefore,

$$
x^{-1}=a_{1}+a_{2} x+\cdots+a_{n} x^{n-1} \in R .
$$

And R is a field.

4. The Nullstellensatz

4.1. Ideals and Varieties.

Definition 4.1. Let k be a field. Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. The variety of I is the set

$$
V(I):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for any } f \in I\right\} .
$$

Let k be a field. Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. By Hilbert Bases Theorem: Theorem 1.27, $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ for some $f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$.
Lemma 4.2. Adopt the notation as above, we have $V(I)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=\right.$ 0 for all f_{i} 's $\}$.

Proof. The ' \subseteq ' direction is by definition.
As for the ' \supseteq ' direction: For every $f \in I, f=h_{1} f_{1}+\ldots h_{m} f_{m}$ for some $h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$.
If $f_{i}\left(a_{1}, \ldots, a_{n}\right)=0$ for all f_{i} 's, then

$$
f\left(a_{1}, \ldots, a_{n}\right)=h_{1}\left(a_{1}, \ldots, a_{n}\right) f_{1}\left(a_{1}, \ldots, a_{n}\right)+\ldots h_{m}\left(a_{1}, \ldots, a_{n}\right) f_{m}\left(a_{1}, \ldots, a_{n}\right)=0
$$

Therefore, the point $\left(a_{1}, \ldots, a_{n}\right) \in V(I)$.
Example 4.3. (a) Let $I=(0)$, then $V(I)=k^{n}$.
(b) Let $I=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then $V(I)=\phi$.
(c) Let $I=\langle x y, x-y z\rangle$ in $k[x, y, z]$, then $V(I)=\{(x, y, z) \mid x=y=0$ or $x=z=0\}$.

This implies that $f(y)$ is not in the ideal I.
(d) Let $I=\left\langle x^{2}+x-2\right\rangle$, then $V(I)=\{-2,1\}$.

Therefore, $x^{24}-1$ is not in the ideal I.
Definition 4.4. Let $X \subseteq k^{n}$ be a subset, the ideal of X is

$$
I(X):=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(x)=0, \forall x \in X\right\} .
$$

Lemma 4.5. (a) $I(X)$ is a radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, in other words, $I(X)=\sqrt{I(X)}$.
(b) Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
V(I)=V(\sqrt{I}) .
$$

Proof. a): For any elements $f, g \in I(X), h \in k\left[x_{1}, \ldots, x_{n}\right]$ and $x \in X$, we have

$$
(f \pm g)(x)=f(x) \pm g(x)=0 ;(f h)(x)=f(x) h(x)=0 .
$$

Therefore, $I(X)$ is an ideal.
It is obvious that $I(X) \subset \sqrt{I(X)}$.
Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $f^{m} \in I(X)$ for some $m \in \mathbb{N}$. Then for any $x \in X$,

$$
f^{m}(x)=0 \Longrightarrow f(x)=0 .
$$

Therefore, $\sqrt{I(X)}=I(X)$.
b): Let $f \in \sqrt{I}$, then $f^{m} \in I$ for some $m \in \mathbb{N}$. For any $x \in V(I)$,

$$
f^{m}(x)=0 \Longrightarrow f(x)=0
$$

Therefore, $x \in V(\sqrt{I})$ and $V(I)=V(\sqrt{I})$.

Example 4.6. (a) Let $I=\left\langle x^{2}\right\rangle$ in $k[x]$, then $V(I)=\{0\}$ and $I(V(I))=\langle x\rangle$.
(b) Let $I=\langle x y, x-y z\rangle$ in $k[x, y, z]$, then $V(I)=\{(x, y, z) \mid x=y=0$ or $x=z=0\}$ and $I(V(I))=\langle x, y z\rangle$.
(c) $I(\phi)=k\left[x_{1}, \ldots, x_{n}\right] ; I\left(k^{n}\right)=(0)$.

4.2. Weak Nullstellensatz.

Theorem 4.7. Let $k \subset K$ be fields with $K=k\left[s_{1}, \ldots, s_{n}\right]$ for some $s_{1} \ldots, s_{n} \in K$. Then the field K is finite/integral/algebraic over k.

Remark 4.8. An element s is algebraic over a field F if and only if it is integral over F.
By Corollary 3.25 and 3.30, the statements that ' K is finite/integral/algebraic over k ' are all equivalent.

Proof of Theorem 4.7. We prove by induction on the number of generators n.
When $n=1$, since $k\left[s_{1}\right]=K$ is a field, the generator s_{1} has an inverse

$$
\frac{1}{s_{1}}=a_{n} s_{1}^{n}+\cdots+a_{0}
$$

for some $a_{i} \in k$. Therefore, the element s_{1} is algebraic/integral over k. By Proposition 3.28, $k\left[s_{1}\right]$ is finite over k.

Assume the statement holds for $n-1$ generators case, we consider the case when $K=k\left[s_{1}, \ldots, s_{n}\right]$.
CASE I: The generator s_{n} is algebraic/integral over k.
By Proposition 3.28, the ring $k\left[s_{n}\right]$ is integral over k. By Proposition 3.37, the ring $k\left[s_{n}\right]$ is a field. Consider the tower of fields extensions:

$$
k \subset k\left[s_{n}\right] \subset\left(k\left[s_{n}\right]\right)\left[s_{1}, \ldots, s_{n-1}\right]=K
$$

By induction, $K=\left(k\left[s_{n}\right]\right)\left[s_{1}, \ldots, s_{n-1}\right]$ is finite over $k\left[s_{n}\right]$. By the argument for the one generator case, $k\left[s_{n}\right]$ is finite over k. By Tower Law Lemma 3.29, K is finite over k.

CASE II: The generator s_{n} is NOT algebraic over k. We will show that this would finally lead to a contradiction!

Step 1: The smallest subfield in K containing $k\left[s_{n}\right]$ is

$$
F=\left\{f\left(s_{n}\right)\left(g\left(s_{n}\right)\right)^{-1} \mid f(x), g(x) \in F[x]\right\} .
$$

Since s_{n} is assumed to be non-algebraic, one may check that F is isomorphic to the rational function field with coefficient in k.

Step 2: Note that $K=F\left[s_{1}, \ldots, s_{n-1}\right]$, by induction, K is integral over F.
Since each s_{i} is integral over F, there exists $A_{i j} \in F$ such that

$$
s_{i}^{n_{i}}+A_{i 1} s_{i}^{n_{i}-1}+\cdots+A_{i n_{i}}=0 .
$$

By Step 1, each $A_{i j}=\frac{P_{i j}\left(s_{n}\right)}{Q_{i j}\left(s_{n}\right)}$ for some $P_{i j}(x), Q_{i j}(x) \in k[x]$. Let $Q(x):=\prod_{1 \leq i \leq n} \prod_{1 \leq j \leq n_{i}} Q_{i j}(x)$. Then s_{1}, \ldots, s_{n-1} are also integral over $k\left[s_{n-1},\left(Q\left(s_{n}\right)\right)^{-1}\right]$. By Proposition 3.37, $k\left[s_{n-1},\left(Q\left(s_{n}\right)\right)^{-1}\right]$ must be a field.

Step 3: We show that there exists an element in $k\left[s_{n}\right]$ that does not have an inverse in $k\left[s_{n},\left(Q\left(s_{n}\right)\right)^{-1}\right]$.

When $Q(x)$ is a constant function, then $k\left[s_{n},\left(Q\left(s_{n}\right)\right)^{-1}\right]=k\left[s_{n}\right] \simeq k[x]$ is NOT a field.
When $Q(x)$ is not a constant function, then inverse of $Q\left(s_{n}\right)+1$ is in $k\left[s_{n},\left(Q\left(s_{n}\right)\right)^{-1}\right]$, hence of the form $\frac{f\left(s_{n}\right)}{\left(Q\left(s_{n}\right)\right)^{m}}$ for some $f(x) \in k[x]$ and $m \in \mathbb{Z}_{\geq 0}$. Therefore, $\left(Q\left(s_{n}\right)\right)^{m}=\left(Q\left(s_{n}\right)+1\right) f\left(s_{n}\right)$. Since s_{n} is not algebraic over F, we must have

$$
(Q(x))^{m}=(Q(x)+1) f(x) .
$$

This is NOT possible since $\operatorname{gcd}(Q(x), Q(x)+1)=1$.
We get the contradiction for Case II. Hence the generator s_{n} must be algebraic over k.
4.3. Maximal Ideals in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let k be a field, recall from Example 2.20 that for any $a_{1}, \ldots, a_{n} \in k$, the ideal

$$
\mathfrak{m}_{a_{1}, \ldots, a_{n}}:=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle
$$

is a maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. When the field F is algebraically closed, we proved that every maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is of this form.
Theorem 4.9. Let k be an algebraically closed field, then every maximal ideal $\mathfrak{m}=$ in $k\left[x_{1}, \ldots, x_{n}\right]$ is of the form

$$
\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle
$$

for some $a_{1}, \ldots, a_{n} \in k$.
Remark 4.10. A field F is algebraically closed, if and only if for every field extension $F \subset K$ and every element s algebraic over F, we have $s \in F$.

For example, the complex number field is algebraic closed
Proof of Theorem. By Proposition 2.15, $k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{m}$ is a field. Consider the field extension

$$
k \subset k\left[x_{1}+\mathfrak{m}, \ldots, x_{n}+\mathfrak{m}\right] .
$$

By Theorem 4.7, $k\left[x_{1}+\mathfrak{m}, \ldots, x_{n}+\mathfrak{m}\right]$ is algebraic over k. Since k is algebraically closed, $k=k\left[x_{1}+\mathfrak{m}, \ldots, x_{n}+\mathfrak{m}\right]$. Therefore, for each $x_{i}+\mathfrak{m}$, we have

$$
x_{i}+\mathfrak{m}=a_{i}+\mathfrak{m}
$$

for some $a_{i} \in k$. Therefore, $\mathfrak{m} \supseteq\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ which is already a maximal ideal. They must be the same.

Theorem 4.11. Let k be an algebraically closed field. Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ such that $V(I)=\phi$, then $I=k\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Suppose I is a proper ideal, by Proposition 2.18, $I \subset \mathfrak{m}$ for some maximal ideal \mathfrak{m}. By Theorem 4.9, $V=(\mathfrak{m})=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in k$. By Lemma 4.20, $V(I) \supset V(\mathfrak{m})$ and is not empty.

We get the contradiction. The ideal is therefore not proper.
Remark 4.12. Both results fail without the algebraically closed assumption.
Example 4.13. What is the ideal $I=\left\langle x y, x^{4}+y^{5}, x^{2}+y^{2}+1\right\rangle$ in $\mathbb{R}[x, y]$?

Consider the ideal $J=\left\langle x y, x^{4}+y^{5}, x^{2}+y^{2}+1\right\rangle$ in $\mathbb{C}[x, y]$. Its variety is $V\left(\left\langle x y, x^{4}+y^{5}, x^{2}+y^{2}+1\right\rangle\right)=\left\{x y=x^{4}+y^{5}=0=x^{2}+y^{2}+1\right\}=\left\{x=y=0=x^{2}+y^{2}+1\right\}=\phi$.

By Theorem 4.11, $J=\mathbb{C}[x, y]$, in particular, $1 \in J$. In other words,

$$
1=x y f(x, y)+\left(x^{4}+y^{5}\right) g(x, y)+\left(x^{2}+y^{2}+1\right) h(x, y)
$$

for some $f, g, h \in \mathbb{C}[x, y]$. By taking the conjugates on both sides, we have

$$
1=x y \bar{f}(x, y)+\left(x^{4}+y^{5}\right) \bar{g}(x, y)+\left(x^{2}+y^{2}+1\right) \bar{h}(x, y) .
$$

Therefore,

$$
1=x y\left(\frac{f+\bar{f}}{2}\right)(x, y)+\left(x^{4}+y^{5}\right)\left(\frac{g+\bar{g}}{2}\right)(x, y)+\left(x^{2}+y^{2}+1\right)\left(\frac{h+\bar{h}}{2}\right)(x, y) .
$$

Here the polynomials $\left(\frac{f+\bar{f}}{2}\right)(x, y)(g, h$ respectively $)$ are all with real coefficients. Therefore they are all in $\mathbb{R}[x, y]$. Hence $1 \in I$. We have $I=\mathbb{R}[x, y]$.

4.4. Nullstellensatz.

Theorem 4.14. Let k be an algebraically closed field, I an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $f \in$ $k\left[x_{1}, \ldots, x_{n}\right]$ such that $f(V(I))=0$. Then $f^{t} \in I$ for some $t \in \mathbb{Z}_{\geq 1}$.
Proof. By Hilbert bases theorem, the ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ for some $f_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$. We consider the ideal

$$
J:=\left\langle f_{1}, \ldots, f_{m}, y f-1\right\rangle
$$

in the ring $k\left[x_{1}, \ldots, x_{n}, y\right]$.
The variety of J is

$$
\begin{aligned}
V(J) & =\left\{\left(a_{1}, \ldots, a_{n}, b\right) \in k^{n+1} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for every } i ; f\left(a_{1}, \ldots, a_{n}\right) b=1\right\} \\
& =\left\{\left(a_{1}, \ldots, a_{n}, b\right) \in k^{n+1} \mid\left(a_{1}, \ldots, a_{n}\right) \in V(I) ; f\left(a_{1}, \ldots, a_{n}\right) b=1\right\} \\
& =\left\{\left(a_{1}, \ldots, a_{n}, b\right) \in k^{n+1} \mid\left(a_{1}, \ldots, a_{n}\right) \in V(I) ; 0 b=1\right\}=\phi .
\end{aligned}
$$

By Theorem 4.11, $J=k\left[x_{1}, \ldots, x_{n}, y\right]$. In particular, $1 \in J$:

$$
1=h_{1} f_{1}+\cdots+h_{m} f_{m}+g(y f-1)
$$

for some $h_{1}, \ldots, h_{m}, g \in k\left[x_{1}, \ldots, x_{n}, y\right]$.
Substitute $y=\frac{1}{f}$, we have

$$
1=h_{1}\left(x_{1}, \ldots, x_{n}, \frac{1}{f}\right) f_{1}\left(x_{1}, \ldots, x_{n}\right)+\cdots+h_{m}\left(x_{1}, \ldots, x_{n}, \frac{1}{f}\right) f_{m}\left(x_{1}, \ldots, x_{n}\right),
$$

which is an equality of elements in $k\left(x_{1}, \ldots, x_{n}\right)$, the rational function field of $k\left[x_{1}, \ldots, x_{n}\right]$.
Note that there exists an t large enough such that

$$
h_{i}\left(x_{1}, \ldots, x_{n}, \frac{1}{f}\right)=\frac{H_{i}\left(x_{1}, \ldots, x_{n}\right)}{f^{t}}
$$

for every i and some $H_{i}\left(x_{1}, \ldots, x_{n}\right) \in k\left[x_{1}, \ldots, x_{n}\right]$. Therefore,

$$
f^{t}=H_{1}\left(x_{1}, \ldots, x_{n}\right) f_{1}\left(x_{1}, \ldots, x_{n}\right)+\cdots+H_{m}\left(x_{1}, \ldots, x_{n}\right) f_{m}\left(x_{1}, \ldots, x_{n}\right) \in I
$$

Corollary 4.15. Let k be an algebraically closed field, J be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then $I(V(J))=\sqrt{J}$.

Proof.

$$
f \in \sqrt{J} \Longleftrightarrow f^{t} \in J \text { for some } t \Longleftrightarrow f(V(J))=0 \Longleftrightarrow f \in I(V(J))
$$

Example 4.16. Let $I=\left\langle x^{2} y^{3},\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}\right\rangle$ in $\mathbb{C}[x, y]$, then I is primary.
Solution. We first compute the radical of I. The variety of I is

$$
V(I)=\left\{(x, y) \mid x^{2} y^{3}=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0\right\} .
$$

Note that $x^{2} y^{3}=0$ implies $x=0$ or $y=0$. If $x=0$, then by the second equation, we have $y=0$. If $y=0$, then by the second equation, we have $x=0$. Therefore, $V(I)=\{(0,0)\}$.

The ideal $I(\{(0,0)\})=\{f(x, y) \mid f(0,0)=0\}=\langle x, y\rangle$. By Corollary 4.15, the radical $\sqrt{I}=$ $I(V(I))=\langle x, y\rangle$, which is a maximal ideal. The I is primary by the following lemma.

Lemma 4.17. Let I be an ideal in R such that \sqrt{I} is maximal, then I is primary.
Proof. Since $I \subseteq \sqrt{I}$ which is proper, the ideal I is also proper.
Let $f g \in I$, if $g \notin \sqrt{I}$, then since R / \sqrt{I} is field, the element $g+\sqrt{I}$ is a unit in R / \sqrt{I}. In particular, $m+g r=1$ for some $m \in \sqrt{I}$ and $r \in R$.

Suppose $m^{n} \in I$, as $1=(m+g r)^{n}=m^{n}+s g$ for some s, we have $f=f m^{n}+s f g \in I$. Therefore, the ideal I is primary.
Example 4.18. Let $I=\left\langle x^{2} y^{3},\left(x^{2}+y^{2}\right)^{2}-x^{3}+3 x y^{2}\right\rangle$ in $\mathbb{C}[x, y]$, what is the radical of I ? Is I primary?

Solution. The variety of I is $\{(0,0)\} \cup\{(1,0)\}$.
The ideal $I(\{(0,0)\} \cup\{(1,0)\})$ contains y and $x(x-1)$. We claim that $I(V(I))$ is generated by these two elements.

Note that for every $f(x, y) \in \mathbb{C}[x, y]$, we have $f(x, y)=y g(x, y)+h(x)$ for some $g(x, y) \in$ $\mathbb{C}[x, y]$ and $h(x) \in \mathbb{C}[x]$. If $f \in I(\{(0,0)\} \cup\{(1,0)\})$, then $h(0)=h(1)=0$. Hence, $x(x-$ 1) $\mid h(x)$. In particular, $f \in\langle x(x-1), y\rangle$. Therefore,

$$
\sqrt{I}=I(V(I))=\langle x(x-1), y\rangle
$$

This is not a prime ideal: $x(x-1) \in \sqrt{I}$ but $x, x-1 \notin \sqrt{I}$. Therefore, I is not primary.

4.5. Varieties in \mathbb{C}^{n}.

Proposition 4.19. There is a one-to-one correspondence:

$$
V:\left\{\text { radical ideals in } \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\} \longleftrightarrow\left\{\text { varieties in } \mathbb{C}^{n}\right\}
$$

Proof. Let J be a radical ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, by 0 -satz, $I(V(J))=\sqrt{J}=J$.
Let $X=V(J)$ be a variety, by Lemma 4.5 b), $X=V(\sqrt{J})$. By 0 -satz, $V(I(X))=$ $V(I(V(J)))=V(\sqrt{J})=X$.
Lemma 4.20. Let X and Y be subspaces in k^{n}, A and B be subsets in $k\left[x_{1}, \ldots, x_{n}\right]$, and I, J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then
(a) If $X \subset Y \subset k^{n}$, then $I(X) \supset I(Y)$.

If $A \subset B \subset k\left[x_{1}, \ldots, x_{n}\right]$, then $V(A) \supset V(B)$.
(b) $I(X \cup Y)=I(X) \cap I(Y)$;
$V(I \cap J)=V(I J)=V(I) \cup V(J) ;$
$V(I+J)=V(I) \cap V(J)$.
Proof. a): For $\forall f \in I(Y), f(x)=0$ for any $x \in Y$ therefore any $x \in X$. Hence, $f \in I(X)$.
b): By a), $I(X \cup Y) \subset I(X) \cap I(Y)$. For any $f \in I(X) \cap I(Y)$ and any $x \in X \cup Y$, since x is either on X or $Y, f(x)$ is always 0 .

Let $x \in V\left(I_{1} \cap I_{2}\right)$, suppose $x \notin V\left(I_{1}\right) \cup V\left(I_{2}\right)$, then $\exists f_{1} \in I_{1}$ and $f_{2} \in I_{2}$ such that $f_{1}(x), f_{2}(x) \neq 0$. In particular, $\left(f_{1} f_{2}\right)(x) \neq 0$. But $f_{1} f_{2} \in I_{1} \cap I_{2}$, and we get the contradiction.

The rest one is easy.
In particular, the intersection and union of varieties are varieties.
More relations (NOT examinable):

$$
\begin{aligned}
\sqrt{I} \text { is a prime ideal } & \Longleftrightarrow & V(I) \text { is irreducible; } \\
\sqrt{I} \text { is a maximum ideal } & \Longleftrightarrow & V(I) \text { is a point; } \\
\operatorname{dim} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I & = & \text { Dimension of } V(I) ; \\
\text { A maximum ideal } \mathfrak{m} \text { containing } I & \longleftrightarrow & \text { A point } P_{\mathfrak{m}} \text { on } V(I) ; \\
\mathfrak{m} / \mathfrak{m}^{2} & = & \text { Cotangent space at } P_{\mathfrak{m}} .
\end{aligned}
$$

4.6. Irreducible Varieties.

Definition 4.21. An variety X is called irreducible if it is non-empty and is NOT the union of two proper varieties, i.e.,
if $X=X_{1} \cup X_{2}$ for some varieties X_{1} and X_{2}, then either X_{1} or X_{2} is X.
Proposition 4.22. Let X be a variety in \mathbb{C}^{n}, then
X is irreducible $\Longleftrightarrow I(X)$ is prime.
Proof. ' \Longrightarrow ': For $\forall f g \in I(X)$,

$$
\begin{aligned}
X & =V(I(X)) \subseteq V(f g)=V(f) \cup V(g) \\
\Longrightarrow X & =V(I(X)) \\
\Longrightarrow & =(V(I(X)) \cap V(f)) \cup(V(I(X)) \cap V(g))=V(I+\langle f\rangle) \cup V(I+\langle g\rangle)
\end{aligned}
$$

As X is irreducible, either $V(I(X)) \cap V(f))$ or $(V(I(X)) \cap V(g)$ is X. Therefore, either X is contained in either $V(f)$ or $V(g)$. Hence, f or $g \in I(X)$.
' \Longleftarrow ': Let $X=X_{1} \cup X_{2}=V\left(J_{1}\right) \cup V\left(J_{2}\right)$ for some $J_{i}=\sqrt{J_{i}}$. Then $I(X)=J_{1} \cap J_{2}$.
Since $I(X)$ is prime, either J_{1} or $J_{2}=I$.
Example 4.23. Let the whole space be \mathbb{C}^{2} :
(a) $X=\{(0,0)\}$ is irreducible;
(b) $X=\{(0,0)\} \cup\{(1,0)\}$ is not irreducible;
(c) $X=\{x=0\} \cup\{y=0\}$ is not irreducible;
(d) $X=\mathbb{C}^{2}$;
(e) $X=\left\{\left(t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\}$;

Corollary 4.24. Let X be an irreducible variety in \mathbb{C}^{n}. If $X \subseteq X_{1} \cup \cdots \cup X_{n}$ for some varieties X_{1}, \ldots, X_{n}, then $X \subseteq X_{i}$ for some i.

Proof. Note that $X=\left(X \cap X_{1}\right) \cup\left(X \cap X_{2}\right) \cup \cdots \cup\left(X \cap X_{n}\right)$. By Lemma 4.20, the set $X \cap X_{1}$ and $\left(X \cap X_{2}\right) \cup \cdots \cup\left(X \cap X_{n}\right)$ are both varieties in \mathbb{C}^{n}. Since X is irreducible, $X=X \cap X_{1}$ or $X=\left(X \cap X_{2}\right) \cup \cdots \cup\left(X \cap X_{n}\right)$. By induction on the numbers of varieties, $X=X \cap X_{i}$ for some i.

Proposition 4.25. Let X be a variety in \mathbb{C}^{n}, then X has a decomposition

$$
X=X_{1} \cup \cdots \cup X_{m}
$$

with each X_{i} an irreducible variety.
By omitting some terms if necessary, one can arrange the expression such that $X_{i} \nsubseteq X_{j}$ for any $i \neq j$. Then this expression is unique up to renumbering the components.

Each X_{i} is called an irreducible component of X.
Proof. By Theorem 2.27, the ideal $I(X)$ admits a primary decomposition in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. We may write

$$
I(X)=Q_{1} \cap \cdots \cap Q_{n}
$$

with each Q_{i} primary.
By taking V on both sides, Proposition 4.19, and Lemma 4.20, we have

$$
\begin{aligned}
X & =V(I(X))=V\left(Q_{1} \cap \cdots \cap Q_{m}\right) \\
& =V\left(Q_{1}\right) \cup \cdots \cup V\left(Q_{m}\right) \\
& =V\left(\sqrt{Q_{1}}\right) \cup \cdots \cup V\left(\sqrt{Q_{m}}\right)=X_{1} \cup \cdots \cup X_{m}
\end{aligned}
$$

By Lemma 2.23, each ideal $\sqrt{Q_{i}}$ is prime. By Proposition 4.22, each variety X_{i} is irreducible. As for the uniqueness, let

$$
X=X_{1} \cup \cdots \cup X_{m}=Y_{1} \cup \ldots Y_{t}
$$

be two irredundant irreducible decompositions, in other words, all X_{i}, Y_{j} 's are irreducible varieties, $X_{i} \nsubseteq X_{j}$, and $Y_{i} \nsubseteq Y_{j}$ for any $i \neq j$.

Then for every i, we have $X_{i} \subseteq Y_{1} \cup \ldots Y_{t}$. By Corollary 4.24, $X_{i} \subseteq Y_{j}$ for some j. Since $Y_{j} \subseteq X_{1} \cup \cdots \cup X_{m}$, by Corollary 4.24, $Y_{j} \subseteq X_{k}$ for some k. Hence, $X_{i} \subseteq Y_{j} \subseteq X_{k}$. As $X_{i} \nsubseteq X_{k}$ for any $i \neq k$, we must have $i=k$ and $X_{i}=Y_{j}$.

Therefore, $\left\{X_{1}, \ldots, X_{m}\right\}=\left\{Y_{1}, \ldots, Y_{t}\right\}$.
Example 4.26. Let $f(x, y)$ and $g(x, y)$ be two polynomials with coefficient in \mathbb{C} such that $\operatorname{gcd}(f, g)=$ 1. Then the equation $f(x, y)=g(x, y)=0$ has only finitely many solutions.

Proof. By Lemma 4.2 and Proposition 4.25,

$$
\begin{aligned}
& \left\{(a, b) \in \mathbb{C}^{2} \mid f(a, b)=g(a, b)=0\right\} \\
= & V(\langle f(x, y), g(x, y)\rangle) \\
= & X_{1} \cup X_{2} \cup \cdots \cup X_{m}
\end{aligned}
$$

for some irreducible varieties X_{1}, \ldots, X_{m}.

$$
\begin{aligned}
& V(\langle f, g\rangle) \supseteq X_{i} \\
\Longrightarrow & f(x)=g(x)=0 \text { for every point } x \in X_{i} . \\
\Longrightarrow & f, g \in I\left(X_{i}\right)\left(I\left(X_{i}\right) \text { is a prime ideal }\right) .
\end{aligned}
$$

Suppose $I\left(X_{i}\right)=\langle h\rangle$ for some $h \neq 0$, then $\operatorname{gcd}(f, g) \neq 1$. Therefore, each prime ideal $I\left(X_{i}\right)$ is NOT principally generated.

Lemma 4.27. Let P be a prime ideal in $\mathbb{C}[x, y]$. Suppose $P \neq\langle h(x, y)\rangle$ for any $h(x, y)$, then P is a maximal ideal.

Proof. Let $F_{1}(x, y)$ be a non-zero element in P with the minimum degree Deg_{y}. As P is a prime ideal, we may assume $F_{1}(x, y)$ is irreducible. We write

$$
F_{1}(x, y)=f_{1}(x) y^{n_{1}}+\ldots
$$

where $\operatorname{Deg}_{y} F_{1}(x, y)=n_{1}$ and $f_{1}(x) \in F[x]$ is the leading coefficient.
Let $F_{2}(x, y)$ be with the minimum degree Deg_{y} among all elements in $P \backslash\left\langle F_{1}(x, y)\right\rangle$, which is non-empty by the condition in the lemma. We write

$$
F_{2}(x, y)=f_{2}(x) y^{n_{2}}+\ldots,
$$

where $\operatorname{Deg}_{y} F_{2}(x, y)=n_{2}$ and $f_{2}(x) \in F[x]$ is the leading coefficient.
Let

$$
\tilde{F}_{2}(x, y):=f_{1}(x) F_{2}(x, y)-f_{2}(x) y^{n_{2}-n_{1}} F_{1}(x, y),
$$

, then

- $\operatorname{Deg}_{y} \tilde{F}_{2}<\operatorname{Deg} F_{2}$;
- $\tilde{F}_{2} \in P$.

By the minimum assumption on $\operatorname{Deg}_{y} F_{2}(x, y)$ among all elements in $P \backslash\left\langle F_{1}(x, y)\right\rangle$, we must have

$$
\tilde{F}_{2} \in\left\langle F_{1}\right\rangle \Longrightarrow f_{1}(x) F_{2} \in\left\langle F_{1}\right\rangle \Longrightarrow f_{1}(x) F_{2}(x, y)=H(x, y) F_{1}(x, y)
$$

for some $H(x, y) \in \mathbb{C}[x, y]$. Since $F_{1}(x, y)$ is irreducible and can divide $f_{1}(x)$, it must be $x-a$ for some $a \in \mathbb{C}$. Therefore, $P \ni x-a$.

Repeat the same argument for $(\mathbb{C}[y])[x]$ by viewing x as the main variable, we have $P \ni y-b$ for some $b \in \mathbb{C}$. Therefore, $P=\langle x-a, y-b\rangle$.

Back to the proof of the example, by the lemma, we have

$$
V(\langle f, g\rangle)=\left\{\left(a_{1}, b_{1}\right)\right\} \cup \ldots\left\{\left(a_{m}, b_{m}\right)\right\} .
$$

Example 4.28. Let f_{1}, f_{2}, f_{3} be different irreducible polynomials in $\mathbb{C}[x, y, z]$ such that $f_{i} \notin$ $\left\langle f_{j}, f_{k}\right\rangle$. Then $V\left(\left\langle f, f_{2}, f_{3}\right\rangle\right)$ needs NOT to be finite. For example, $x z-y^{2}, y z-x^{3}$ and $z^{2}-x^{2} y$.

5. PRIMARY DECOMPOSITION

5.1. Associated primes.

Definition 5.1. Let M be an R-module, and $m \in M$. The annihilator of m is the set:

$$
\operatorname{ann}(m):=\{r \in R \mid r m=0\} .
$$

Definition 5.2. Let M be an R-module. An ideal $P \triangleleft R$ is called an associated prime of M if P is a prime ideal and $P=\operatorname{ann}(m)$ for some $m \in M \backslash\{0\}$.

The assassin ass (M) is the set of associated primes of an R-module M.
Remark 5.3. The annihilator $\operatorname{ann}(m)$ is always an ideal, but it needs not to be prime.
The annihilator ann (r) is the whole ring if and only if $r=0$.
Example 5.4. (a) Let $R=F$ be a field and M be a finite dimensional vector space. Then $\operatorname{ann}(v)=(0)$ for every non-zero vector v. In particular, ass (M) is $\{(0)\}$.
(b) Let R be an integral domain, and $M=I$ be an ideal as an R-module then $\operatorname{ann}(r)=(0)$ for every non-zero r. In particular, ass (M) is $\{(0)\}$.
(c) $R=\mathbb{Z}$ and $M=\mathbb{Z} / 6 \mathbb{Z}$, then $\operatorname{ass}(M)$ is $\{\langle 2\rangle,\langle 3\rangle\}$.

Let X be a variety in \mathbb{C}^{n} with an irreducible decomposition

$$
X=X_{1} \cup \cdots \cup X_{m}
$$

such that $X_{i} \nsubseteq X_{j}$ for any $i \neq j$.
Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $M=R / I(X)$ be an R-module. We claim that $\operatorname{Ass}(R / I) \supseteq$ $\left\{I\left(X_{1}\right), \ldots, I\left(X_{m}\right)\right\}$. We only need to prove the $I\left(X_{1}\right)$ case for example.

Since the decomposition is irredundant, by Corollary 4.24,

$$
X \supsetneq X_{2} \cup X_{3} \cdots \cup X_{m} .
$$

By Proposition 4.19, there exists

$$
f \in I\left(X_{2} \cup X_{3} \cdots \cup X_{m}\right) \backslash I(X) \neq \phi .
$$

We compute the annihilator of $f+I(X)$:

$$
\begin{aligned}
\operatorname{ann}(f+I(X)) & =\{g \mid g(f+I(X))=0+I(X)\} \\
& =\{g \mid g f \in I(X)\}=\{g \mid g f(x)=0, \forall x \in X\} \\
& =\left\{g \mid g f(x)=0, \forall x \in I\left(X_{1}\right)\right\} \\
& =\left\{g \mid(g f)^{m} \in I\left(X_{1}\right)\right\}=\left\{g \mid g f \in I\left(X_{1}\right)\right\}=I\left(X_{1}\right) .
\end{aligned}
$$

Therefore, $I\left(X_{1}\right) \in \operatorname{Ass}(R / I(X))$.
Lemma 5.5. Let M be a non-zero module over a Noetherian ring R, then ass $(M) \neq \phi$.
Proof. Let $\mathcal{S}:=\{\operatorname{ann}(m) \mid m \in M \backslash\{0\}\}$. Then S is non-empty since M is non-zero.
Every ideal in S is proper as $1 \notin \operatorname{ann}(m)$. Since R is Noetherian, S has a maximal element ann (m).

Claim: $\operatorname{ann}(m)$ is a prime ideal.

Prooffor the claim: Let $f g \in \operatorname{ann}(m)$, then $f g m=0$. If $f \notin \operatorname{ann}(m)$ which is iff $f m \neq 0$, then we may consider $\operatorname{ann}(f m) \in \mathcal{S}$. Note that

- $\operatorname{ann}(f m) \supset \operatorname{ann}(m)$;
- $g \in \operatorname{ann}(f m)$.

By the maximum assumption on I, we must have $\operatorname{ann}(m)=\operatorname{ann}(f m)$. Therefore, $g \in \operatorname{ann}(f m)=\operatorname{ann}(m)$. The ideal $\operatorname{ann}(m)$ is by definition prime.

In particular, ass (M) is non-empty.
Proposition 5.6. Let Q be a primary ideal in a Noetherian ring R, then

$$
\operatorname{ass}(R / Q)=\{\sqrt{Q}\}
$$

Proof. Let $r \in R \backslash Q$. If $s(r+Q)=0+Q$ for some $s \in R$, then $r s \in Q$. Since $r \notin Q$ and Q primary, the element s must be in \sqrt{Q}. Therefore,

$$
Q \subseteq \operatorname{ann}(r) \subseteq \sqrt{Q}
$$

As the radical of a prime ideal is itself, if ann (r) is prime, it can only be \sqrt{Q}. Hence, ass $(R / Q) \subset$ $\{\sqrt{Q}\}$. By Lemma 5.5, ass $(R / Q)=\{\sqrt{Q}\}$.
Lemma 5.7. Let $\phi: M \rightarrow N$ be an injective R-mod homomorphism, then ann $(m)=\operatorname{ann}(\phi(m))$. In particular,

$$
\operatorname{ass}(M) \subseteq \operatorname{ass}(N) .
$$

Proof. $a \in \operatorname{ann}(m) \Longleftrightarrow a m=0 \Longleftrightarrow \phi(a m)=0 \Longleftrightarrow a \phi(m)=0 \Longleftrightarrow a \in$ ann $(\phi(m))$.
Lemma 5.8. Let M_{1}, \ldots, M_{s} be R-modules, then

$$
\operatorname{ass}\left(\oplus_{i=1}^{s} M_{i}\right)=\cup_{i=1}^{s} \operatorname{ass}\left(M_{i}\right) .
$$

Proof. Since M_{i} is a submodule of $\oplus_{i=1}^{s} M_{i}$, ' ${ }^{\prime}$ ' holds.
Suppose a prime $P=\operatorname{ann}\left(\left(m_{1}, \ldots, m_{s}\right)\right)$ is not in any ass $\left(M_{i}\right)$.
Then $P \varsubsetneqq \operatorname{ann}\left(m_{i}\right)$ and $P=\cap_{i=1}^{s} a n n\left(m_{i}\right)$. Contradict the fact that P is irreducible.
Definition 5.9. An ideal Q is called \mathbf{P}-primary if Q is primary and $\sqrt{Q}=P$.
Lemma 5.10. Let Q_{1} and Q_{2} be two primary ideals such that $\sqrt{Q_{1}}=\sqrt{Q_{2}}$, then $Q_{1} \cap Q_{2}$ is primary.
Proof. Let $f g \in Q_{1} \cap Q_{2}$, then either $g \in \sqrt{Q_{1}}=\sqrt{Q_{2}}$, or $f \in Q_{1} \cap Q_{2}$.
Corollary 5.11. Let R be a Noetherian ring and $I=Q_{1} \cap \cdots \cap Q_{r}$ be a minimum primary decomposition. Then $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}$ when $i \neq j$.

Theorem 5.12. Let R be a Noetherian ring and $I=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{r}$ be a primary decomposition. Then

$$
\operatorname{ass}(R / I) \subseteq\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\}
$$

If the decomposition is irredundant, then the above is an equality. In particular, an irredundant decomposition with $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}$ for $i \neq j$ is minimal.

Proof. Consider the module $M:=\oplus_{i=1}^{r} R / Q_{i}$, by Proposition 5.6 and Lemma 5.8,

$$
\operatorname{ass}(M)=\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\} .
$$

Consider the R-mod homomorphism:

$$
\begin{aligned}
\phi: R & \rightarrow M \\
r & \mapsto\left(r+Q_{1}, \ldots, r+Q_{r}\right) .
\end{aligned}
$$

The ideal I is the kernel. Therefore, ϕ induces an injective morphism from R / I to M. By Lemma 5.7, $\operatorname{ass}(R / I) \subseteq\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\}$.

If the decomposition is irredundant, then $I \varsubsetneqq \bigcap_{i \neq j} Q_{i}=J_{i}$ for any $1 \leq j \leq r$.
The image $\phi\left(J_{i} / I\right)$ is not 0 in M. By Lemma 5.5, ass $\left(\phi\left(J_{i} / I\right)\right)$ is non-empty. Note that the image $\phi\left(J_{i} / I\right)$ is contained in the component R / Q_{i}, by Lemma 5.7 and Proposition 5.6, $\operatorname{ass}\left(J_{i} / I\right)=\left\{\sqrt{Q_{i}}\right\}$.

By Lemma 5.7 again,

$$
\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\}=\cup_{i} \operatorname{ass}\left(J_{i} / I\right) \subseteq \operatorname{ass}(R / I) \subseteq\left\{\sqrt{Q_{1}}, \ldots, \sqrt{Q_{r}}\right\} .
$$

Theorem 5.13. Let I be a proper ideal in a Noetherian ring R. Let P be a minimal prime ideal in $\operatorname{Ass}(R / I)$, in other words, $P \nsupseteq P^{\prime}$ for any other $P^{\prime} \in \operatorname{Ass}(R / I)$. Then for any minimal primary decomposition of $I=Q_{1} \cap \cdots \cap Q_{m}$, the factor Q_{i} with $\sqrt{Q_{i}}=P$ is given as

$$
\{r \in R \mid r f \in I \text { for some } f \notin P\} \text {. }
$$

In particular, the factor Q_{i} does not rely on the decomposition.
Proof. ' \supseteq ’: If $r f \in I \subset Q_{i}$ for some $f \notin P$, then since Q_{i} is primary and $f \notin \sqrt{Q_{i}}=P$, we must have $r \in Q_{i}$.
' \subseteq ': By the condition in the statement, $P \nsupseteq \sqrt{Q_{j}}$ for any $j \neq i$. As the prime ideal P is radical, $P \nsupseteq Q_{j}$ for any $j \neq i$.

There exists $f_{j} \in Q_{j} \backslash P$ for every $j \neq i$.
As P is a prime ideal, $f:=f_{1} \ldots f_{i-1} f_{i+1} \ldots f_{m} \notin P$. For every $r \in Q_{i}$, we have $r f \in$ $Q_{1} \cap \cdots \cap Q_{i-1} \cap Q_{i+1} \cap \cdots \cap Q_{m} \cap Q_{i}=I$. Hence, the ' \subseteq ' part holds.

Remark 5.14. In some examples that of I that $\operatorname{Ass}(R / I)$ has non-minimal prime ideals, there could be more than one minimal primary decompositions for I. For example, let $I=\left\langle x y, y^{2}\right\rangle$ in $\mathbb{C}[x, y]$, then I has the following different minimal primary decompositions:

$$
I=\langle y\rangle \cap\left\langle x^{2}, x y, y^{2}\right\rangle=\langle y\rangle \cap\left\langle x^{3}, x y, y^{2}\right\rangle=\langle y\rangle \cap\left\langle x^{m}, x y, y^{2}\right\rangle .
$$

The non-minimal factor $\langle x, y\rangle$ in $\operatorname{Ass} \mathbb{C}[x, y] / I$ may appear in infinitely many different forms.
Example 5.15. Find a minimal primary decomposition for $I=\left\langle 20, x^{2}+1\right\rangle$ in $\mathbb{Z}[x]$

Note that the number 20 has an obvious factorization as 4×5, we may expect $I=I_{4} \cap I_{5}$, where $I_{4}=\left\langle 4, x^{2}+1\right\rangle$ and $I_{5}=\left\langle 5, x^{2}+1\right\rangle$. This is indeed that case since

$$
\begin{aligned}
I & =\left\{\left(x^{2}+1\right) f(x)+20 a x+20 b \mid f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z}\right\} ; \\
I_{4} & =\left\{\left(x^{2}+1\right) f(x)+4 a x+4 b \mid f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z}\right\} ; \\
I_{5} & =\left\{\left(x^{2}+1\right) f(x)+5 a x+5 b \mid f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z}\right\} .
\end{aligned}
$$

Moreover, the injective map $\mathbb{Z}[x] / I \rightarrow \mathbb{Z}[x] / I_{4} \oplus \mathbb{Z}[x] / I_{5}$ must be also surjective since the number of elements in the modules are both 400 . By Lemma 5.8,

$$
\operatorname{Ass}(\mathbb{Z}[x] / I)=\operatorname{Ass}\left(\mathbb{Z}[x] / I_{4}\right) \cup \operatorname{Ass}\left(\mathbb{Z}[x] / I_{5}\right)
$$

We first show that I_{4} is primary:

$$
4 \in I_{4} \Longrightarrow 2 \in \sqrt{I_{4}}
$$

In particular, $2 x \in \sqrt{I_{4}}$. Since $(x+1)^{2}-2 x \in \sqrt{I_{4}}$, we have $x+1 \in \sqrt{I_{4}}$.
The ideal $\langle 2, x+1\rangle$ is maximal since $\mathbb{Z}[x] /\langle 2, x+1\rangle \simeq \mathbb{F}_{2}$, which is a field. Therefore, I_{4} is primary.

As for $I_{5}=\left\langle 5, x^{2}+1\right\rangle$, note that $x^{2}+1 \equiv(x+2)(x-2)(\bmod 5)$, we have the following isomorphisms as $\mathbb{Z}[x]$-modules:
$\mathbb{Z}[x] / I_{5} \simeq \mathbb{F}_{5}[x] /\left\langle x^{2}+\underline{1}\right\rangle \simeq \mathbb{F}_{5}[x] /\langle x+2\rangle \oplus \mathbb{F}_{5}[x] /\langle x-2\rangle \simeq \mathbb{Z}[x] /\langle 5, x+2\rangle \oplus \mathbb{Z}[x] /\langle 5, x-2\rangle$.
Note that $\mathbb{Z}[x] /\langle 5, x+2\rangle \simeq \mathbb{Z}[x] /\langle 5, x-2\rangle \simeq \mathbb{F}_{5}$, which is a field. The ideals $\langle 5, x \pm 2\rangle$ are all maximal. Therefore, $\operatorname{Ass}\left(\mathbb{Z}[x] / I_{5}\right)=\{\langle 5, x-2\rangle,\langle 5, x+2\rangle\}$.

Combine the discussion on I_{4} and I_{5} together, we have

$$
\operatorname{Ass}(\mathbb{Z}[x] / I)=\{\langle 5, x-2\rangle,\langle 5, x+2\rangle,\langle 2, x+1\rangle\}
$$

The unique minimal primary decomposition of I is $I=\langle 5, x-2\rangle \cap\langle 5, x+2\rangle \cap\left\langle 4, x^{2}+1\right\rangle$.

6. LOCALISATION AND NORMALISATION

6.1. Ring of fractions.

Definition 6.1. Let R be a ring. A set U in R is called a multiplicatively closed set (m.c.s) if:
(a) $1 \in U$;
(b) $f, g \in U \Longrightarrow f g \in U$.

Example 6.2. (a) Let $f \in R$, then $U=\left\{1, f, f^{2}, \ldots\right\}$ is an m.c.s.
(b) Let $P \triangleleft R$ be a prime ideal, then $R \backslash P$ is an m.c.s.
(c) Let R be an integral domain, then $R \backslash(0)$ is an m.c.s.

Definition 6.3. Let R be a ring and $U \subseteq R$ be an m.c.s., the ring of fractions of R with respect to U is:

$$
U^{-1} R:=\left\{\left.\frac{r}{u} \right\rvert\, r \in R, u \in U\right\} / \sim,
$$

where ' \sim ' is the equivalence relation defined by:

$$
\frac{r}{u} \sim \frac{r^{\prime}}{u^{\prime}} \Longleftrightarrow \exists v \in U \text { such that } v\left(r u^{\prime}-r^{\prime} u\right)=0 .
$$

The arithmetic operations on $U^{-1} R$ are:

$$
\frac{r_{1}}{u_{1}} \pm \frac{r_{2}}{u_{2}}=\frac{r_{1} u_{2} \pm r_{2} u_{1}}{u_{1} u_{2}} ; \frac{r_{1}}{u_{1}} \cdot \frac{r_{2}}{u_{2}}=\frac{r_{1} r_{2}}{u_{1} u_{2}} .
$$

Lemma 6.4. Adopt the notation as above:
(a) ' \sim ' is an equivalence relation;
(b) The operations on $U^{-1} R$ are well-defined and $\left(U^{-1} R,+, \cdot\right)$ is a ring;
(c) The map $\phi: R \rightarrow U^{-1} R: r \mapsto \frac{r}{1}$ is a ring homomorphism.

Proof. We only check the equivalence relation:

- Reflexive: $1(r u-r u)=0$, therefore, $\frac{r}{u} \sim \frac{r}{u}$.
- Symmetric: suppose $\frac{r}{u} \sim \frac{r^{\prime}}{u^{\prime}}$, then $\exists v$ s.t. $v\left(r u^{\prime}-r^{\prime} u\right)=0$, which means $v\left(r^{\prime} u-r u^{\prime}\right)=0$ and $\frac{r^{\prime}}{u^{\prime}} \sim \frac{r}{u}$.
- Transitivity, suppose $\frac{r}{u} \sim \frac{r^{\prime}}{u^{\prime}} \sim \frac{r^{\prime \prime}}{u^{\prime \prime}}$, then $\exists v, v^{\prime}$ s.t. $v\left(r u^{\prime}-r^{\prime} u\right)=v^{\prime}\left(r^{\prime} u^{\prime \prime}-r^{\prime \prime} u^{\prime}\right)=0$.

$$
v^{\prime} u^{\prime \prime}\left(v\left(r u^{\prime}-r^{\prime} u\right)\right)+u v\left(v^{\prime}\left(r^{\prime} u^{\prime \prime}-r^{\prime \prime} u^{\prime}\right)\right)=0 .
$$

Since U is m.c., $v v^{\prime} u^{\prime} \in U$, we have $\frac{r}{u} \sim \frac{r^{\prime \prime}}{u^{\prime \prime}}$.

We make notations for some important ring of fractions.
Definition 6.5. Let R be a ring.

- Let $f \in R$ and $U_{f}:=\left\{1, f, f^{2}, \ldots, f^{m}, \ldots\right\}$. We denote $R_{f}:=R\left[\frac{1}{f}\right]=\left(U_{f}\right)^{-1} R$.
- Let P be a prime ideal. We denote

$$
R_{P}:=(R \backslash P)^{-1} R
$$

and call it the localisation of R at P.

- Let R be an integral domain. We denote

$$
\operatorname{Frac}(R):=(R \backslash(0))^{-1} R
$$

and call it the field of fractions of R.
Here are some more concrete examples of ring of fractions:
Example 6.6. (a) Let $R=\mathbb{Z}$, then $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$.
The localisation of \mathbb{Z} at $\langle 2\rangle$ is

$$
\mathbb{Z}_{\langle 2\rangle}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, 2 \nmid b\right\} \subset \mathbb{Q} .
$$

The ring of fractions \mathbb{Z}_{2} is $\mathbb{Z}_{2}=\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{a}{2^{m}} \right\rvert\, a \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}\right\} \subset \mathbb{Q}$.
(b) Let $R=\mathbb{Z} / 6 \mathbb{Z}$, we consider the ring of fractions: $(\mathbb{Z} / 6 \mathbb{Z})_{\underline{2}}$. The set $\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z} / 6 \mathbb{Z}, b \in\right.$ $\{\underline{1}, \underline{2}, \underline{4}\}\}$ has 18 elements. By definition of ' \sim ', $\frac{a}{b} \sim \frac{0}{1}$ if and only if $a=\underline{0}$ or $\underline{3} \cdot \frac{a}{b} \sim \frac{1}{1}$ if and only if $a-b=\underline{0}$ or $\underline{3}$. $\frac{a}{b} \sim \frac{2}{1}$ if and only if $a-2 b=\underline{0}$ or $\underline{3}$. Therefore, $(\mathbb{Z} / 6 \mathbb{Z})_{\underline{2}} \simeq \mathbb{Z} / 3 \mathbb{Z}$.

6.2. Localisation and local rings.

Definition 6.7. A ring is called local if it has a unique maximal ideal.
Example 6.8. (a) A field k is a local ring;
(b) $k[x] /\left\langle x^{m}\right\rangle$ is a local ring, but it is not an integral domain;
(c) $\mathbb{Z}, k[x]$ are not local rings.

Lemma 6.9. Let I be a proper ideal of R, then
The ideal I is the unique maximal ideal of $R \Longleftrightarrow$ every element in $R \backslash I$ is a unit.
Proof. ' \Longrightarrow ' $:$ For $\forall r \in R \backslash I$, if $\langle r\rangle$ is not the whole ring, by Proposition 2.18, ヨ a maximal ideal $J \supset\langle r\rangle \nsubseteq I$. This invalidates the uniqueness of I. Therefore, $\langle r\rangle=R$ and $1 \in\langle r\rangle, r$ is a unit.
' \Longleftarrow ': For $\forall J \triangleleft R$ s.t. $J \nsubseteq I, \exists x \in J \backslash I . x$ is a unit by assumption, therefore $J=R$.
Proposition 6.10. Let P be a prime ideal of R, then $P R_{P}:=P_{P}:=\left\{\left.\frac{r}{u} \right\rvert\, r \in P, u \notin p\right\}$ is the unique maximal ideal in R_{P}.
Proof. For any elements $\frac{r}{u}, \frac{r^{\prime}}{u^{\prime}} \in P R_{P}$, and $\frac{a}{b} \in R_{P}: \frac{r}{u}+\frac{r^{\prime}}{u^{\prime}}=\frac{u r^{\prime}+u^{\prime} r}{u u^{\prime}} \in P R_{P} ; \frac{r}{u} \frac{a}{b}=\frac{r a}{u b} \in P R_{P}$.
If $1 \sim \frac{r}{u}$, then $\exists v \notin P$ such that $v(r-u)=0 \Longrightarrow v r=v u \notin P$ as P is prime. Therefore, $r \notin P$ and $1 \notin P R_{P}$.

We have shown that $P R_{P}$ is a proper ideal in R_{P}.
$\forall \frac{r}{u} \in R_{P} \backslash P R_{P} \Longrightarrow r \notin P \Longrightarrow \frac{u}{r} \in R_{P} \Longrightarrow \frac{r}{u}$ is a unit in R_{P}. By Lemma 6.9, $P R_{P}$ is the unique maximal ideal in R_{P}.

Example 6.11. (a) The ring $\mathbb{Z}_{\langle 3\rangle}$ is a local ring with unique maximal ideal generated by $\frac{3}{1}$.
(b) The ring $\mathbb{C}[x]_{\langle x\rangle}$ is a local ring consisting of all rational functions on C with no pole at the origin. The ring has unique maximal ideal consisting of rational functions vanishing at the origin.
(c) The ring $\mathbb{C}[x, y]_{\langle x, y\rangle}$ is a local ring. It has infinitely many prime ideals: $\langle a x+b y\rangle$.

6．3．Nakayama Lemma．

Lemma 6．12．Let R be a ring，I be an ideal，and M be a finitely generated R－module．If $I M=M$ ， then $\exists r \in R$ with

$$
r \equiv 1(\bmod I)
$$

such that $r M=0$ ．

Picture from Google：middle of the mountain in Japan
Cayley＋Hamilton \rightarrow Nakayama（中山正）
Proof．Consider $\phi: M \rightarrow M$ ，where ϕ is the identity morphism，then $\phi(M) \subseteq I M$ ．Apply Cayley－Hamilton for ϕ and I ，then

$$
\mathrm{id}+a_{1}+a_{2}+\cdots+a_{n}=0
$$

for some $a_{j} \in I^{j}$ ，where n is the number of generators of M ．Denote $a=a_{1}+a_{2}+\cdots+a_{n} \in I$ ， then $(\mathrm{id}+a) m=0$ for any m ，in other words，$(1+a) m=0$ ．

Lemma 6．13．Let R be a local ring with maximal ideal \mathfrak{m} ，and M a finitely generated R－module． If $M=\mathfrak{m} M$ ，then $M=0$ ．

Proof．By Lemma 6．12，$\exists r \notin \mathfrak{m}$ s．t．$r M=0$ ．By Lemma 6．9，r is a unit．Therefore $M=0$ ．

Lemma 6.14. Let R be a local ring with maximal ideal \mathfrak{m}, and M a finitely generated R-module. Let a_{1}, \ldots, a_{t} be elements in M such that $a_{1}+\mathfrak{m} M, \ldots, a_{t}+\mathfrak{m} M$ spans $M / \mathfrak{m} M$ as a vector space over R / \mathfrak{m}.

Then a_{1}, \ldots, a_{t} generate M.
Proof. Let N be the submodule of M generated by a_{1}, \ldots, a_{t}. Since $a_{i}+\mathfrak{m} M$ spans $M / \mathfrak{m} M$, for any element $m \in M$,

$$
m+\mathfrak{m} M=r_{1}\left(a_{1}+\mathfrak{m} M\right)+\cdots+r_{t}\left(a_{t}+\mathfrak{m} M\right)
$$

for some $r_{i} \in R$. Therefore, $m=r_{1} a_{1}+\cdots+r_{t} a_{t}+\tilde{m}$ for some $m \in \mathfrak{m} M$. By the definition of $N, m+N=\tilde{m}+N$. Therefore,

$$
M / N=\mathfrak{m} M / N .
$$

By Lemma 6.13, $M / N=0$.
Example 6.15. Consider the localization of $\mathbb{C}[x, y]$ at $\langle x, y\rangle$, the unique maximal ideal is $\mathfrak{m}=$ $\langle x, y\rangle$.

$$
\text { Claim:m }=\left\langle x+y^{4}, y+x y+x^{4} y^{3}\right\rangle=I .
$$

The quotient field $\mathbb{C}[x, y]_{\langle x, y\rangle} / \mathfrak{m}$ is isomorphic to \mathbb{C}. Consider the module $M=\mathfrak{m}$, then

$$
M / \mathfrak{m} M=\mathfrak{m} / \mathfrak{m}^{2}=\langle x, y\rangle /\left\langle x^{2}, x y, y^{2}\right\rangle
$$

is a \mathbb{C}-vector space spanned by $x+\mathfrak{m} M$ and $y+\mathfrak{m} M$ as well as spanned by $x+y^{4}+\mathfrak{m} M$ and $y+x y+x^{4} y^{3}+\mathfrak{m} M$.

By Lemma $6.14, x+y^{4}, y+x y+x^{4} y^{3}$ spans the whole module M.

6.4. Normalisation.

Definition 6.16. Let $R \subseteq S$ be rings. We say R is integrally closed in S if every element in S that is integral over R is contained in R.

Definition 6.17. Let R be a domain, then we say R is an integrally closed domain or normal if it is integrally closed in its field of fractions $\operatorname{Frac} R$. The integral closure of R in $\operatorname{Frac}(R)$ is called the normalization of R.

Remark 6.18. Let R be an integral domain, then the normalisation of R is a normal ring.
Example 6.19. (a) A field F is normal: $\operatorname{Frac} F=F$.
(b) The ring of integers \mathbb{Z} is normal.

Note that $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}, \forall q \in \mathbb{Q}$, we may write $q=\operatorname{gcd}(a, b)=1$ for some $a, b \in \mathbb{Z}$.
Suppose $\frac{a}{b}$ is integral over \mathbb{Z}, then

$$
\left(\frac{a}{b}\right)^{n}+\cdots+a_{n-1} \frac{a}{b}+a_{n}=0
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{Z}$. We have

$$
a^{n}+a_{1} a^{n-1} b+\cdots+a_{n} b^{n}=0 .
$$

Note that a^{n} is the only term that cannot be divided by b, therefore, $b= \pm 1$. And $\frac{a}{b} \in \mathbb{Z}$. (c) By the same argument, a unique factorization domain (UFD) is normal.
(d) $\mathbb{Z}[\sqrt{5}]$ is not normal.

As $\frac{\sqrt{5}+1}{2} \in \operatorname{Frac}(\mathbb{Z}[\sqrt{5}])=\mathbb{Q}(\sqrt{5})$, but it satisfies the equation $\phi^{2}-\phi-1=0$ hence is integral over \mathbb{Z}.

The normalisation of $\mathbb{Z}[\sqrt{5}]$ is $\mathbb{Z}\left[\frac{\sqrt{5}+1}{2}\right]$.
(e) $R=\mathbb{C}\left[t^{2}, t^{3}\right]$ is NOT normal: its normalization is $\mathbb{C}[t]$.

Note that $\operatorname{Frac}\left(\mathbb{C}\left[t^{2}, t^{3}\right]\right)=\operatorname{Frac}(\mathbb{C}[t])=\mathbb{C}(t)$. The element $t=\frac{t^{3}}{t^{2}} \in \operatorname{Frac}\left(\mathbb{C}\left[t^{2}, t^{3}\right]\right)$ satisfies the equation $x^{2}-t^{2}=0$, but is not in $\mathbb{C}\left[t^{2}, t^{3}\right]$. By definition $\mathbb{C}\left[t^{2}, t^{3}\right]$ is not normal.

Moreover, since $t \in \bar{R}$, we have $\mathbb{C}[t] \subseteq \bar{R}$. On the other hand, $R \subset \mathbb{C}[t] \Longrightarrow \bar{R} \subseteq$ $\overline{\mathbb{C}}[t]$ in $\mathbb{C}(t)$. Since $\mathbb{C}[t]$ is normal by c), $\overline{\mathbb{C}}[t]=\mathbb{C}[t]$. Hence, $\bar{R}=\mathbb{C}[t]$.
Lemma 6.20. Let R be a normal ring, S be an m.c.s. not containg 0 , then $S^{-1} R$ is normal.
Proof. Note that $\operatorname{Frac} R \subseteq \operatorname{Frac}\left(S^{-1} R\right) \subseteq \operatorname{Frac}(\operatorname{Frac} R)=\operatorname{Frac} R$, we have $\operatorname{Frac} R=\operatorname{Frac}\left(S^{-1} R\right)$. Let $t \in \operatorname{Frac} R$ be integral over $S^{-1} R$, then

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{n}=0
$$

for some $a_{i}=\frac{b_{i}}{c_{i}} \in S^{-1} R$, where $b_{i} \in R$ and $c_{i} \in S$. Let $c:=c_{1} c_{2} \ldots c_{n} \in S$, then $c t$ is integral over R. Therefore, $t=\frac{t c}{c} \in S^{-1} R$. By definition, $S^{-1} R$ is normal.
C. L.:, B 1.32: Mathematics Institute, University of Warwick

Email address: C.Li.25@warwick.ac.uk
URL: https://sites.google.com/site/chunyili0401/

[^0]: Key words and phrases. Ring, ideals, modules, integral closure, varieties, primary decomposition, valuations, dimension.

