NOTES ON COMMUTATIVE ALGEBRA

CHUNYI LI

CONTENTS

1. Hilbert Bases Theorem and Noetherian Ring	2
1.1. Rings and subrings	2
1.2. Ideals and quotient rings	2
1.3. PID	3
1.4. Generators for ideals in $F[x, y]$	4
1.5. Noetherian Ring	7
1.6. Hilbert Bases Theorem	8
2. Ideals and Primary Decomposition	10
2.1. Prime ideals	10
2.2. Maximal ideals	11
2.3. Primary ideal	13
3. Modules and Integral extensions	17
3.1. Modules	17
3.2. Cayley-Hamilton Theorem	18
3.3. Integral and Finite Extensions	21
3.4. Tower Laws	23
4. The Nullstellensatz	25
4.1. Ideals and Varieties	25
4.2. Weak Nullstellensatz	26
4.3. Maximal Ideals in $\mathbb{C}[x_1, \ldots, x_n]$	27
4.4. Nullstellensatz	28
4.5. Varieties in \mathbb{C}^n	30
4.6. Irreducible Varieties	30
5. Primary Decomposition	34
5.1. Associated primes	34
6. Localisation and Normalisation	38
6.1. Ring of fractions	38
6.2. Localisation and local rings	39
6.3. Nakayama Lemma	40
6.4. Normalisation	41

Key words and phrases. Ring, ideals, modules, integral closure, varieties, primary decomposition, valuations, dimension.

1. HILBERT BASES THEOREM AND NOETHERIAN RING

1.1. Rings and subrings. We collect some definitions/notations from previous modules.

Definition 1.1. A Ring $R = (R, +, \cdot)$ is a set R equipped with two operations (addition and multiplication) satisfying the following axioms:

- (a) (R, +) is an abelian group;
- (b) (R, \cdot) is associative and distributive with respect to addition;

ALL ring in this module will be commutative, i.e.,

- (a) $\forall x, y \in R, xy = yx;$
- (b) $\exists 1_R \text{ s.t. } \forall x \in R, 1_R x = x.$

In this module, a **ring** is commutative with (multiplicative) identity, unless stated otherwise.

By the first axiom, the ring R has an 'additional identity' 0_R . By the second axiom, we have $0_R \cdot x = 0$ for any $x \in R$.

Example 1.2. Examples of rings:

- (a) Zero ring: R = (0) the only ring such that $0_R = 1_R$.
- (b) \mathbb{Z} : ring of integers; \mathbb{Q} : rational numbers; \mathbb{R} : real numbers; \mathbb{C} : complex numbers.
- (c) Polynomial Rings: Let R be a ring, we define the polynomial ring over R as

 $R[x] := \{a_0 + a_1 x + \dots + a_n x^n | n \in \mathbb{N}, a_i \in R\}.$

The set R[x] has natural addition and multiplication operations.

Definition 1.3. A subring S (of R) is a subset of R when

- (a) $(S, +_R, \cdot_R)$ is a ring (closed under operation);
- (b) $1_S = 1_R \in S$.

Exercise 1.4. (a) $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$;

- (b) $R \subset R[x];$
- (c) $\{0_R\}$ is a subset of the ring R. Though $\{0_R\}$ is a zero ring itself, it is NOT a subring of R when R is non-zero.

1.2. Ideals and quotient rings.

Definition 1.5. A ring morphism $\phi : R \to S$ is a map (from the set R to the set S) such that:

- (a) Compatible with addition: $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$;
- (b) Compatible with multiplication: $\phi(r_1r_2) = \phi(r_1)\phi(r_2)$;
- (c) $\phi(\mathrm{Id}_R) = \mathrm{Id}_S$.

Definition 1.6. Let R be a ring. An ideal $I \triangleleft R$ is a subset of R such that

- (a) (I, +) is a subgroup of (R, +), i.e., $\forall x, y \in I$, we have $x y \in I$;
- (b) $\forall r \in R \text{ and } x \in I$, we have $rx \in I$.

Proper ideal: $I \neq R$.

Proposition and Definition 1.7. Let I be an ideal in R, we define

$$R/I := \{a_I | a \in R\} / \sim$$
, where $a + I \sim a' + I \iff a - a' \in I$.

We define two operations for elements in R/I as follows:

(1)
$$(+_R): (a+I) +_R (b+I) := (a+b) + I,$$

(2)
$$(\cdot_R) : (a+I) \cdot_R (b+I) := (ab) + I$$

Then $(R/I, +_R, \cdot_R)$ is a ring.

Example 1.8. Let R be a ring, then $\{0\}$ and R are always ideals in R.

Observation: $1_R \in I \implies \forall x \in R, I \ni 1_R x = x$. Hence I = R.

Definition 1.9. An element *a* is a **unit** if $\exists b \in R$ s.t. $ab = 1_R$.

The inverse of a unit r is unique, we denoted as r^{-1} .

Definition 1.10. A ring *R* is a **field** if

- it is not a zero ring;
- every non-zero element is a unit.

Lemma 1.11. A field F has exactly two ideals, namely, (0) and F.

Example 1.12. Fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}.$

1.3. **PID.**

Definition 1.13. An element a is called a **zero-divisor** if $\exists 0 \neq b \in R$ s.t. ab = 0. A ring R is called a **domain** if it has no non-zero divisor.

Example 1.14. A field is a domain. A finite domain is a field.

The ring of integers \mathbb{Z} is a domain.

Let R be a domain, then R[x] is a domain.

The ring $\mathbb{Z}/6\mathbb{Z} = \{\underline{0}, \underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{5}\}$ is not a domain.

Proposition and Definition 1.15. Let A be a subset of R, we define the subset

$$\langle A \rangle := \left\{ \sum_{f \in A} r_f f | r_f \in R, \text{ where only finitely many } r_f \text{ is non-zero} \right\}$$

Then $\langle A \rangle$ is the minimum ideal that contains the subset A, in other words, if I is an ideal in R such that $I \supseteq A$, then $I \supseteq \langle A \rangle$.

An ideal is **principally generated** if $\exists f \in R$ such that $I = \langle f \rangle$. An ideal is **finitely generated** if $\exists f_1, f_2, \ldots, f_m \in R$ such that $I = \langle f_1, f_2, \ldots, f_m \rangle$.

Example 1.16. Ideals in a field $F: \langle 0 \rangle$ and $\langle 1 \rangle = F$.

Definition 1.17. A ring R is a principal ideal domain (PID) if

• R is a domain;

• every ideal in *R* is principally generated.

Example 1.18. (a) A field is a PID.

- (b) The ring of integers \mathbb{Z} is a PID.
- (c) Let F be a field, then F[x] is a PID.

We give a proof for the case of F[x] with a 'trick' which will appear later.

Proof. Let I be an ideal in F[x]. If $I = \langle 0 \rangle$, then it is automatically principally generated by 0.

Let f(x) be a non-zero element in I with the minimum degree. We write f(x) term-wisely as

$$f(x) = a_n x^n + \dots,$$

for some $a_n \in F$ and deg f(x) = n.

Suppose $I \neq \langle f(x) \rangle$, then we may let g(x) be an element in $I \setminus \langle f(x) \rangle$ with the minimum degree. We write

$$g(x) = b_m x^m + \dots$$

for some $b_m \in F$ and $\deg g(x) = m$.

Note that $g(x) \in I$, by the minimum assumption on deg f(x), we have $m \ge n$. Let

$$\tilde{g}(x) := g(x) - a_n^{-1} b_m x^{m-n} f(x).$$

Here a_n^{-1} exists as F is a field. The element $a_n^{-1}b_m x^{m-n}$ is in F[x]. Note that $f(x) \in I$ and $g(x) \in I \setminus \langle f(x) \rangle$, we have

$$\tilde{g}(x) \in I \setminus \langle f(x) \rangle$$

Note that the leading terms in g(x) and $a_n^{-1}b_m x^{m-n}f(x)$ cancel out, so we have

$$\deg \tilde{g}(x) < \deg g(x).$$

This contradicts to the minimum assumption on deg g(x) among all elements in $I \setminus \langle f(x) \rangle$.

Therefore, we must have $I = \langle f(x) \rangle$.

1.4. Generators for ideals in F[x, y].

Example 1.19. Let F be a field, consider the ring F[x, y] and the ideal

$$I := \langle x, y \rangle = \{ f(x, y) | f(0, 0) = 0 \}.$$

We claim that I can NOT be generated by one element.

Proof. Suppose $I = \langle f(x, y) \rangle$, then we have x = f(x, y)h(x, y) and y = f(x, y)g(x, y). Note that x = f(x, y)h(x, y) implies that f(x, y) has no variable y. Therefore, f(x, y) must be a constant function, $0 \neq f(x, y) \equiv f_0 \in F$. But then I = F[x, y], which is a contradiction.

Example 1.20. Let F be a field, consider the ring F[x, y] and the ideal

$$I := \langle x^2, xy, y^2 \rangle = \{ \sum_{i+j \ge 2} a_{ij} x^i y^j | a_{ij} \in F \}.$$

We claim that I can NOT be generated by two elements.

Proof. Suppose $I = \langle f, g \rangle$ for some

$$f(x,y) = f_{20}x^2 + f_{11}xy + f_{02}y^2 + f_3(x,y),$$

$$g(x,y) = g_{20}x^2 + g_{11}xy + g_{02}y^2 + g_3(x,y),$$

where $f_{ij}, g_{ij} \in F$, the polynoimials $f_3(x, y)$ and $g_3(x, y)$ only have terms with degree ≥ 3 . Since $x^2, xy, y^2 \in I = \langle f, g \rangle$, we must have

$$\begin{cases} x^2 &= a_1(x,y)f(x,y) + b_1(x,y)g(x,y), \\ xy &= a_2(x,y)f(x,y) + b_2(x,y)g(x,y), \\ y^2 &= a_3(x,y)f(x,y) + b_3(x,y)g(x,y), \end{cases}$$

for some $a_i(x, y), b_i(x, y) \in F[x, y]$.

Compare the degree 2 terms on both hand sides of the equations, we have

$$\begin{cases} x^2 = a_1(0,0)(f_{20}x^2 + f_{11}xy + f_{02}y^2) + b_1(0,0)(g_{20}x^2 + g_{11}xy + g_{02}y^2), \\ xy = a_2(0,0)(f_{20}x^2 + f_{11}xy + f_{02}y^2) + b_2(0,0)(g_{20}x^2 + g_{11}xy + g_{02}y^2), \\ y^2 = a_3(0,0)(f_{20}x^2 + f_{11}xy + f_{02}y^2) + b_3(0,0)(g_{20}x^2 + g_{11}xy + g_{02}y^2), \end{cases}$$

Note that the coefficients for x^2 , xy and y^2 must be the same on both hand sides, hence

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_1(0,0) & b_1(0,0) \\ a_2(0,0) & b_2(0,0) \\ a_3(0,0) & b_3(0,0) \end{pmatrix} \begin{pmatrix} f_{20} & f_{11} & f_{02} \\ g_{20} & g_{11} & g_{02} \end{pmatrix}$$

as a product of matrices with coefficients in F. Note that the matrices on the right hand side are 3×2 and 2×3 , both of which has rank at most 2. Their product has rank at most 2. We get the contradiction as the the 3×3 identity matrix has rank 3.

There is no bound for the number of generators for an arbitrary ideal in F[x, y].

Example 1.21. Let F be a field, the ideal $I = \langle x^n, x^{n-1}y, \dots, y^n \rangle$ in F[x, y] can NOT be generated by n elements.

Theorem 1.22 (Hilbert Bases Theorem 'Toy Case'). Let F be a field and I be an ideal in F[x, y], then I is finitely generated.

Convention: We think F[x, y] as the polynomial ring (F[x])[y] with variable y and coefficient in F[x]. For every element $f \in (F[x])[y]$, we can write

$$f(x,y) = f_n(x)y^n + f_{n-1}(x)y^{n-1} + \dots + f_0(x)$$

for some $f_i(x) \in F[x]$ in a unique way, where $f_n(x) \neq 0$. We denote the y-degree of f(x, y) as $\text{Deg}_y f(x, y) = n$.

Proof. If I = (0), then we are done.

Otherwise, let $F_1(x, y)$ be a non-zero element in I with the minimum degree Deg_y . We write

$$F_1(x,y) = f_1(x)y^{n_1} + \dots,$$

where $\text{Deg}_y F_1(x, y) = n_1$ and $f_1(x) \in F[x]$ is the leading coefficient.

If $I = \langle F_1(x, y) \rangle$, then we are done.

Otherwise, let $F_2(x, y)$ be a non-zero element in $I \setminus \langle F_1(x, y) \rangle$ with the minimum degree Deg_y . We write

$$F_2(x,y) = f_2(x)y^{n_2} + \dots$$

where $\text{Deg}_y F_2(x, y) = n_2$ and $f_2(x) \in F[x]$ is the leading coefficient.

By the minimum assumption on $\text{Deg}_y F_1(x, y)$ among all non-zero elements in I, we have $n_2 \ge n_1$.

Suppose $f_2(x) \in \langle f_1(x) \rangle$ in F[x], then we can write $f_2 = r_1(x)f_1(x)$ for some $r_1(x) \in F[x]$. Let

$$\tilde{F}_2(x,y) := F_2(x,y) - r_1(x)y^{n_2 - n_1}F_1(x,y),$$

, then by the same argument as that in Example 1.18, we have $\text{Deg}_y F_2(x,y) < \text{Deg}_y F_2(x,y)$ and $\tilde{F}_2(x,y) \in I \setminus \langle F_1(x,y) \rangle$. This contradicts the minimum assumption on $\text{Deg}_y F_2(x,y)$ among all elements in $I \setminus \langle F_1(x,y) \rangle$. Therefore $f_2(x) \notin \langle f_1(x) \rangle$ in F[x], in other words,

$$\langle f_1(x) \rangle \subsetneq \langle f_1(x), f_2(x) \rangle.$$

If $I = \langle F_1(x, y), F_2(x, y) \rangle$, then we are done.

Otherwise, let $F_3(x, y)$ be a non-zero element in $I \setminus \langle F_1(x, y), F_2(x, y) \rangle$ with the minimum degree Deg_y . We write

$$F_3(x,y) = f_3(x)y^{n_3} + \dots$$

where $\text{Deg}_y F_3(x, y) = n_3$ and $f_3(x) \in F[x]$ is the leading coefficient.

By the minimum assumption on $\text{Deg}_y F_2(x, y)$ among all elements in $I \setminus \langle F_1(x, y) \rangle$, we have $n_3 \ge n_2$.

Suppose $f_3(x) \in \langle f_1(x), f_2(x) \rangle$ in F[x], then we can write $f_2 = r_1(x)f_1(x) + r_2(x)f_2(x)$ for some $r_i(x) \in F[x]$.

Let

$$\tilde{F}_3(x,y) := F_3(x,y) - r_1(x)y^{n_3 - n_1}F_1(x,y) - r_2(x)y^{n_3 - n_2}F_2(x,y)$$

then by the same argument as that in Example 1.18, we have $\text{Deg}_y \tilde{F}_3(x, y) < \text{Deg}_y F_3(x, y)$ and $\tilde{F}_3(x, y) \in I \setminus \langle F_1(x, y), F_2(x, y) \rangle$. This contradicts the minimum assumption on $\text{Deg}_y F_3(x, y)$ among all elements in $I \setminus \langle F_1(x, y), F_2(x, y) \rangle$.

Therefore $f_3(x) \notin \langle f_1(x), f_2(x) \rangle$ in F[x], in other words,

$$\langle f_1(x), f_2(x) \rangle \subsetneq \langle f_1(x), f_2(x), f_3(x) \rangle$$

Suppose the ideal *I* is not finitely generated, then we can continue this procedure to an ascending chain of ideals:

$$\langle F_1 \rangle \subsetneq \langle F_1, F_2 \rangle \subsetneq \langle F_1, F_2, F_3 \rangle \subsetneq \dots \langle F_1, F_2, \dots, F_m \rangle \subsetneq \dots$$

such that $F_m(x, y)$ is with minimum Deg_y among all elements in $I \setminus \langle F_1, \ldots, F_{m-1} \rangle$. Write $F_m(x, y) = f_m(x)y^{n_m} + \ldots$

By the 'Cancellation Technic', we get an ascending chain of ideals:

 $\langle f_1(x) \rangle \subsetneq \langle f_1(x), f_2(x) \rangle \subsetneq \langle f_1(x), f_2(x), f_3(x) \rangle \subsetneq \dots \langle f_1(x), f_2(x), \dots, f_m(x) \rangle \subsetneq \dots$ in F[x].

Note that F[x] is a PID by Example 1.18, we have

$$\langle f_1, \ldots, f_m \rangle = \langle h_m(x) \rangle$$

for some $h_m(x) \in F[x]$.

Note that $\langle h_{m-1}(x) \rangle \subseteq \langle h_m(x) \rangle$, we have $h_{m-1}(x) = h_m(x)g_m(x)$ for non-unit polynomial $g_m(x)$. In particular, deg $g_m(x) \ge 1$.

Therefore, we have the chain

$$\deg h_1 > \deg h_2 > \dots > \deg h_m > \dots$$

This is a contradiction as deg $h_t \in \mathbb{Z}_{\geq 0}$ for every non-zero polynomial h_t . Hence I is finitely generated with at most $1 + \deg f_1(x)$ generators.

Example 1.23. Let $I = \{f(x, y) | f(0, 0) = f(0, 1) = f(1, 0) = 0\}$. Find a set of generators for I according to the procedure as that in the proof.

Note that I is indeed an ideal: $\forall f, g \in I$ and $h \in F[x, y]$, we have

$$(f \pm g)(a, b) = f(a, b) \pm g(a, b) = 0;$$

 $(fh)(a, b) = f(a, b)g(a, b) = 0$

for any (a, b) = (0, 0), (0, 1) or (1, 0). Therefore, $f \pm g, fh \in I$.

To find generators for I, we first search element with $\text{Deg}_y = 0$. In particular, if f(x) = 0 for x = 0 and 1, then we have x(x - 1)|f(x). We may choose $F_1(x, y) = x(x - 1)$ with $\text{Deg}_y = 0$ and leading coefficient $f_1(x) = x(x - 1)$.

In the last paragraph, we have also shown that any element in $I \setminus \langle x(x-1) \rangle$ has $\text{Deg}_y \ge 1$. To search F_2 , we may write it as $f_2(x)y + r(x)$. By the proof of Theorem 1.22, we may assume that $\text{deg } f_2(x) \le 1$ and $f_2(x)|f_1(x)$. This helps us to find $F_2(x,y) = xy$ 'quickly'.

By the proof of Theorem 1.22, there is at most one extra generator, and its leading coefficient has degree strictly smaller than 1. It is easy to figure out that $y + r(x) \notin I$ for any $r(x) \in F[x]$, therefore, the third generator has $\text{Deg}_y \ge 2!$

We may choose $F_3(x, y) = y^2 - y$, with $\text{Deg}_y F_3 = 2$ and leading coefficient 1. By the proof of Theorem 1.22, the ideal $I = \langle x(x-1), xy, y(y-1) \rangle$.

1.5. Noetherian Ring.

Definition 1.24. A ring R is called **Noetherian** if every ideal I in R can be finitely generated.

Definition 1.25. Let R be a ring. We say that (the set of ideals of) R has the **ascending chain** condition (a.c.c.) if every chain of ideals

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m \subseteq \ldots$$

eventually stops, in other words, there exists k such that $I_k = I_{k+1} = I_{k+2} = \dots$

In other words, R has a.c.c. if it has no strictly ascending chain of ideals:

$$I_1 \subsetneq I_2 \subsetneq I_3 \cdots \subsetneq I_m \subsetneq \ldots$$

Proposition 1.26. A ring R is Noetherian if and only if R has a.c.c..

Proof. ' \Leftarrow ': Let I be an ideal in R, suppose I is not finitely generated.

There exists $f_1 \in I$.

As I is not finitely generated, $I \neq \langle f_1 \rangle$. There exists $f_2 \in I \setminus \langle f_1 \rangle$, in other words, $\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle$.

As I is not finitely generated, $I \neq \langle f_1, f_2 \rangle$. There exists $f_3 \in I \setminus \langle f_1, f_2 \rangle$, in other words, $\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle \subsetneq \langle f_1, f_2, f_3 \rangle$.

We may carry on this procedure and get a strictly asceding chain of ideals:

$$\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle \subsetneq \cdots \subsetneq \langle f_1, \dots, f_m \rangle \subsetneq \dots$$

This contradicts to the a.c.c. on R.

 \Longrightarrow : Let

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m \subseteq \ldots$$

be an ascending chain of ideals in R.

Take $J = \bigcup_{m=1}^{+\infty} I_m$, we claim that J is an ideal:

- $\forall x, y \in J$, we have $x, y \in I_k$ for some k large enough, therefore $x \pm y \in I_j \subseteq J$.
- $\forall r \in R$, we have $xr \in I_k \subseteq J$.

By the Noetherian assumption on R, the ideal J is finitely generated, namely,

$$J = \langle f_1, \ldots, f_t \rangle$$

for some $f_1, \ldots, f_t \in R$. Note that $f_i \in I_{m_i}$ for some $m_i \in \mathbb{Z}_{\geq 1}$, we may take $k := \max\{m_1, \ldots, m_t\}$, then $f_1, \ldots, f_t \in I_k$.

Therefore,

$$J = \langle f_1, \dots, f_t \rangle \subseteq I_k \subseteq I_{k+1} \subseteq \dots \subseteq J.$$

Hence, $I_k = I_{k+1} = \ldots$, in other words, R has a.c.c..

1.6. Hilbert Bases Theorem.

Theorem 1.27 (Hilbert Bases Theorem). Let R be a Noetherian ring, then R[x] is Noetherian.

Proof. Let I be an ideal in R[x], suppose I is NOT finitely generated, we have an ascending chain of ideals in R[x]:

$$\langle F_1(x) \rangle \subsetneq \langle F_1(x), F_2(x) \rangle \subsetneq \cdots \subsetneq \langle F_1(x), \dots, F_m(x) \rangle \subsetneq \dots,$$

where $F_m(x)$ is with the minimum degree among all elements in $I \setminus \langle F_1(x), \ldots, F_{m-1}(x) \rangle$. We write

$$F_m(x) = f_m x^{n_m} + \dots,$$

where $\text{Deg}F_m = n_m$ and $f_m \in R$ is the leading coefficient of $F_m(x)$. By the minimum assumption on degree of F_i 's, we have

 $n_1 \leq n_2 \leq \cdots \leq n_m \leq \ldots$

Suppose $f_m \in \langle f_1, \ldots, f_{m-1} \rangle$, then we have

$$f_m = r_1 f_1 + \dots + r_{m-1} f_{m-1}$$

for some $r_1, \ldots, r_{m-1} \in R$. We may consider

$$\tilde{F}_m(x) := F(x) - r_1 x^{n_m - n_1} F_1(x) - \dots - r_{m-1} x^{n_m - n_{m-1}} F_{m-1}(x).$$

By a formal check, we have

•
$$\deg F_m(x) < \deg F_m(x);$$

• $\tilde{F}_m(x) \in I \setminus \langle F_1(x), \dots, F_{m-1}(x) \rangle.$

This contradicts the minimum assumption on deg $F_m(x)$ among all elements in $I \setminus \langle F_1(x), \ldots, F_{m-1}(x) \rangle$.

Therefore, $f_m \notin \langle f_1, \ldots, f_{m-1} \rangle$. We have a strictly ascending chain of ideals

$$\langle f_1 \rangle \subsetneq \langle f_1, f_2 \rangle \subsetneq \cdots \subsetneq \langle f_1, \dots, f_m \rangle \subsetneq \dots$$

This contradicts to the fact that R has a.c.c.(by Proposition 1.26).

Proposition 1.28. Let R be a Noetherian ring and I be an ideal in R. Then R/I is Noetherian.

Proof. Let J be an ideal in R/I. We may consider the ideal (check!)

$$\tilde{J} := \{ r \in R | r + I \in J \}.$$

Since R is Noetherian, the ideal $\tilde{J} = \langle f_1, \ldots, f_m \rangle$ for some $f_1, \ldots, f_m \in R$.

For any $r + I \in J$, since $r \in \tilde{J}$, we have $r = \sum r_i f_i$ for some $r_i \in R$. Therefore,

$$r+I = \sum (r_i + I)(f_i + I),$$

. The ideal J is finitely generated.

Example 1.29. Let R be field or PID, then $R[x_1, \ldots, x_n]/I$ is Noetherian for any ideal I in $R[x_1, \ldots, x_n]$.

If R is Noetherian, then the formal power series ring

$$R[[x]] := a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots | a_i \in R$$

is Noetherian.

Example 1.30. The following rings are not Noetherian:

- (a) Polynomial ring with infinitely many variables $F[x_1, \ldots, x_n, \ldots]$.
- (b) $F[x, xy, xy^2, ..., xy^n, ...].$
- (c) $R = \{ \text{real-valued continuous function from } \mathbb{R} \to \mathbb{R} \}.$

2. IDEALS AND PRIMARY DECOMPOSITION

2.1. Prime ideals. There are two equivalent definitions for a prime number in the ring of integers:

Definition 2.1. Let R be a domain, an element p is called **irreducible**, if

- it is not a unit nor zero;
- if p = xy, then x or y is a unit.

Definition 2.2. Let R be a ring, an element p is called **prime**, if

- it is not a unit nor zero;
- if p|xy, then p|x or p|y.

These two definitions are the same when the ring is a so-called UFD.

Definition 2.3. A domain R is called a **unique factorization domain** (UFD), if for every non-zero, non-unit element $r \in R$, r can be written as a product of irreducible elements, uniquely up to order and units.

In other words, if $r = p_1 p_2 \dots p_s = q_1 \dots q_t$ for some p_i, q_j irreducible, then t = s and there exists a bijective map $\sigma : \{1, \dots, s\} \longleftrightarrow \{1, \dots, t\}$ such that $p_i = q_{\sigma(i)} u_i$ for some units u_i .

Example 2.4. Here are some examples of UFD:

- The ring of integers \mathbb{Z} is a UFD.
- A PID is a UFD.
- Let R be a UFD, then R[x] is also a UFD.

Lemma 2.5. A prime element in a domain is irreducible. An irreducible element in a UFD is prime.

Proof. Let p be a prime element in a domain. Suppose p = xy, then p|x or p|y.

WLOG, $p|x \implies x = pa \implies p = pay \implies p(1 - ay) = 0$. Since there is no non-zero divisor in a domain, we have ay = 1. Therefore, y is a unit.

Let p be an irreducible element in a UFD. Suppose p|xy, then rp = xy for some $r \in R$. We may consider the prime decomposition for r, x and y:

$$r = q_1 \dots, q_m; x = p_1 \dots p_t; y = s_1 \dots s_l$$

Since rp = xy, the collection q_1, \ldots, q_m, p is the same as $p_1, \ldots, p_t, s_1, \ldots, s_l$ up to orders and units. Hence, p|x or p|y.

In general, the condition in the first definition is strictly 'weaker' than that in the second definition.

Example 2.6. Consider the number 3 in the ring $\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$, then 3 is irreducible but NOT prime.

Instead of thinking about prime decomposition for elements in a ring, a more meaningful task is to considering decomposition for ideals.

Definition 2.7. An ideal $P \subset R$ is called **prime**, if

• $P \neq R$;

• if $xy \in P$, then $x \in P$ or $y \in P$.

We denote the set of all prime ideals of R by **Spec**R, and call it the spectrum of R.

Example 2.8. Spec $\mathbb{Z} = \{(0), \langle p \rangle | p \text{ is a prime number} \}$. Let *F* be a field, then Spec $F = \{(0)\}$.

Proposition 2.9. An ideal P is prime $\iff R/P$ is a domain.

Proof.

An ideal P is prime \iff for any $a, b \notin P, ab \notin P$ \iff for any $a, b \notin P, (a + P)(b + P) \neq P$ \iff for any $a + P, b + P \neq 0 + P$ in R/P, $(a + P)(b + P) \neq 0 + P$ in R/P $\iff R/P$ is a domain.

Example 2.10. The ideal $\langle 3 \rangle$ is NOT prime in the ring $\mathbb{Z}[\sqrt{-5}]$.

The ideal $(3, 1 + \sqrt{-5})$ contains all elements of the form $3a + b + b\sqrt{-5}$ in $\mathbb{Z}[\sqrt{-5}]$. Therefore, $\mathbb{Z}[\sqrt{-5}]/\langle 3, 1 + \sqrt{-5} \rangle \simeq \{\underline{0}, \underline{1}, \underline{2}\} \simeq \mathbb{Z}/3\mathbb{Z}$. By Proposition 2.9, $\langle 3, 1 + \sqrt{-5} \rangle$ is prime.

Definition 2.11. Let I and J be two ideals in R, we define their product as:

$$IJ := \langle xy | x \in I, y \in J \rangle$$

Exercise 2.12. Check: $\langle 3 \rangle = \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle$.

2.2. Maximal ideals.

Definition 2.13. An ideal $I \subset R$ is called **maximal**, if

- (a) $I \neq R$;
- (b) there is no proper ideal J s.t $I \subsetneq J \subsetneq R$.

We denote the set of all maximal ideals of *R* by **max-Spec***R*.

Example 2.14. A field *F* has a unique maximum ideal (0).

Proposition 2.15. Let I be an ideal of R, then I is maximal $\iff R/I$ is a field.

Lemma 2.16. Let I be an ideal in R. Denote the natural quotient ring homomorphism by $\pi : R \to R/I$. There is a one-to-one correspondence:

 ψ : {*ideal in* R/I} \longleftrightarrow {*ideal of* R *containing* I} : ψ^{-1} .

Here for every ideal J in R/I the map ψ is defined as $\psi(J) := \pi^{-1}(J)$. For every ideal \tilde{J} of R containing I, the map ψ^{-1} is defined as $\psi^{-1}(\tilde{J}) := \pi(\tilde{J})$.

Proof of Proposition 2.15. The ideal *I* is maximal.

 \iff The set {ideal of R containing I} has exactly two elements, namely, I and R.

 \iff The ring R/I has exactly two ideals.

 \iff The ring R/I is a field.

Corollary 2.17. A maximal ideal is prime.

Proof. $I \triangleleft R$ is maximal $\implies R/I$ is a field $\implies R/I$ is a domain $\implies I$ is prime. \Box

 \square

The existence of a maximal ideal is equivalent to the Zorn's Lemma.

Axiom: (Zorn's Lemma) Let S be a non-emplty, partially ordered set with the property that

"Any chain $U_1 < U_2 < \cdots < U_n < \ldots$ has at least one maximal element in S."

Then S has at least one maximal element.

Proposition 2.18. Let $I \triangleleft R$ be a proper ideal of R, then there exists a maximal ideal \mathfrak{m} containing I.

Proof. Let S be the set

{proper ideals of R which contains I }.

with inclusion as partially order. As $I \in S$, S is not empty.

For any chain of elements in S:

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \ldots$$

Let $\tilde{I} = \bigcup I_j$, then \tilde{I} is an ideal containing I. Since $1 \notin I_j$ for any $j, 1 \notin \tilde{I}$ as well. \tilde{I} is a proper ideal of R, therefore an element in S.

By Zorn's lemma, S has a maximal element, which is a maximal ideal containing I. \Box

Remark 2.19. The Zorn's Lemma is equivalent to several other logical statements, including: Axiom of Choice and Well-Ordering Principal. It also has some highly anti-intuitive implications, such as Banach-Tarski Paradox. A reference for more details is the blog: https://plato.stanford.edu/entries/axiomchoice/

Example 2.20. maxSpec(\mathbb{Z}) = { $\langle p \rangle | p$ is a prime number}.

By Example 2.10, $(3, 1 + \sqrt{-5})$ is a maximal ideal in $\mathbb{Z}[\sqrt{-5}]$. Most important example: let *F* be a field and $a_1, \ldots, a_n \in F$, then

 $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$

is a maximal ideal in $F[x_1, \ldots, x_n]$.

Theorem (First Ring Isomorphism Theorem). Let $\phi : R \to S$ be a ring homomorphism, then ker ϕ is an ideal in R. Moreover, the homomorphism ϕ induces a ring isomorphism:

$$\phi: R/\ker \phi \cong \operatorname{im} \phi.$$

Proof. For any element $x, y \in \ker \phi$ and $r \in R$, we have $\phi(x \pm y) = \phi(x) \pm \phi(y) = 0$ and $\phi(xr) = \phi(x)\phi(r) = 0$. Hence ker ϕ is an ideal.

We define the map $\tilde{\phi}$ as $\tilde{\phi}(r + \ker \phi) := \phi(r)$. The map $\tilde{\phi}$ is well-defined: for any pair $r + \ker \phi \sim r' + \ker \phi$, we have $\phi(r) = \phi(r) - \phi(r - r') = \phi(r')$. It is straitforward to check $\tilde{\phi}$ is a ring homomorphism.

The map ϕ is injective: $\phi(r) = 0 \implies r + \ker \phi \sim 0 + \ker \phi$.

The map ϕ is surjective onto im ϕ by definition.

To show that $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ is a maximal ideal in $F[x_1, \ldots, x_n]$, we may consider the following map:

$$\phi_{a_1,\ldots,a_n}: F[x_1,\ldots,x_n] \to F: f(x_1,\ldots,x_n) \mapsto f(a_1,\ldots,a_n).$$

The map ϕ_{a_1,\ldots,a_n} is a ring homomorphism with kernel generated by $x_1 - a_1, \ldots, x_n - a_n$. By Proposition 2.15 and RIT, the ideal $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ is maximal.

2.3. Primary ideal. Naively, we would like to express every ideal I in R as:

$$I = P_1^{e_1} \dots P_m^{e_m}$$

for some prime ideals P_i in R and powers $e_m \in \mathbb{Z}_{\geq 0}$.

Consider the example $I = \langle x^2, y \rangle$ in the ring $\overline{F[x, y]}$. Suppose I admits such a decomposition, then for every prime factor P_i , we have

$$I \subseteq P_i$$
.

Since $x^2 \in P_i$ and P_i is prime, $x \in P_i$. Therefore, $\langle x, y \subseteq P_i$. We must have $P_i = \langle x, y \rangle$.

However, it is not hard to check that

$$\langle x, y \rangle \supseteq \langle x^2, y \rangle \supseteq \langle x^2, xy, y^2 \rangle = \langle x, y \rangle^2.$$

It is therefore impossible to have a naive prime decomposition theorem for every ideal in the ring. We should include more ideals as 'prime' factors.

Definition 2.21. Let *R* be a ring. An ideal *Q* of *R* is called **primary** if:

• $Q \neq R$; • $fg \in Q \implies f \in Q \text{ or } g^m \in Q \text{ for some } m \in \mathbb{Z}_{\geq 1}$.

Definition 2.22. Let *I* be an ideal in a ring *R*, the **radical** of *I* is

$$\sqrt{I} := \{ f \in R | f^m \in I \text{ for some } m \in \mathbb{N} \}.$$

Note that the radical of an ideal is an ideal.

For $\forall f, g \in \sqrt{I}$ and $x \in R$, suppose $f^m, g^n \in I$ for some m, n > 0. Then

$$(f-g)^{m+n} \in I; (xf)^m \in I$$

Lemma 2.23. If Q is primary, then \sqrt{Q} is a prime ideal.

Proof. Suppose $fg \in \sqrt{Q}$, then $(fg)^m \in Q$ for some m > 0. Then f^m or $g^m \in \sqrt{Q}$. So f^{mn} or $g^{mn} \in Q$. Hence, f or $g \in Q$.

 \Box

Example 2.24. The ideal $Q = \langle 27 \rangle$ is a primary in \mathbb{Z} .

If 27|nm, then 27|n or $3|m \implies 27|m^3$.

The ideal $\langle 3 \rangle$ is NOT primary in $\mathbb{Z}[\sqrt{-5}]$.

The ideal $\langle 2 \rangle$ is primary in $\mathbb{Z}[\sqrt{-5}]!$

The deal $I = \langle xy, y^2 \rangle$ in F[x, y] has radical $\sqrt{I} = \langle y \rangle$. But it is NOT primary.

Lemma 2.25. Let R be a Noetherian ring and I be a proper ideal. Suppose I is NOT primary, then

$$I = J_1 \cap J_2$$

for some $J_1, J_2 \neq I$.

Proof. By Lemma 2.16 and Proposition 1.28, we may assume that I = (0)!

Let f and g be two elements such that fg = 0, $f \neq 0$ and $g^m \neq 0$ for any m.

Consider the chain of ideals:

$$J_k := \{ r \in R | rg^k = 0 \}.$$

Note that $J_k \subseteq J_{k+1}$ is an ascending chain of ideals. Since R is Noetherian, $\exists k_0$ such that $J_k = J_{k_1}$ for all $k > k_0$.

Claim: (0) = $\langle f \rangle \cap \langle g^{k_0} \rangle$.

Let r be an element in both ideals, then

$$r = fr_1 = g^{k_0}r_2$$

for some $r_1, r_2 \in R$. Timing g on the equality, we have

$$gr = gfr_1 = 0 = g^{k_0 + 1}r_2.$$

Therefore, $r_2 \in J_{k_0+1} = J_{k_0}$. We have $r = g^{k_0} r_2 = 0$.

Definition 2.26. Let I be a proper ideal in a ring R. A **primary decomposition** of I is an expression

$$I = Q_1 \cap \dots \cap Q_r$$

with each Q_i primary.

The decomposition is called **irredundant** if $I \neq \bigcap_{i \neq j} Q_j$ for any j, and is called **minimal** if r is as small as possible.

Theorem 2.27. Let $I \triangleleft R$ be a proper ideal in a Noetherian ring. Then I admits a primary decomposition.

Proof. Suppose there is an ideal *I* that does NOT admits a primary decomposition, then *I* is not primary itself and by Lemma 2.25,

$$I = J_1 \cap J_2$$

for some $I \subsetneq J_1, J_2$. At least one of these two factors does NOT admits a primary decomposition, since otherwise I admits a primary decomposition. WLOG, we may assume J_1 does not admits a primary decomposition and denote it by I_2 .

Repeat this procedure for I_2 and so on, we get a strictly ascending chain of proper ideals that does NOT admits a primary decomposition. This contradicts the Noetherian assumption on R.

14

Remark 2.28. The Noetherian assumption is essential here. Consider the example of ring $R = \{\text{real-valued continuous functions on } \mathbb{R}\}$. Then the ideal $\langle \sin x \rangle$ does NOT have a primary decomposition.

A prime ideal P is NOT decomposible: suppose $P = I \cap J$ for some $I \neq P$, $J \neq P$, then we may choose $x \in I \setminus J$ and $y \in J \setminus I$. The product xy will violates the primality of P.

Example 2.29. Let $I = \langle xy, x - yz \rangle$ be an ideal in $\mathbb{C}[x, y, z]$. Find the primary decomposition of I.

Solution. Note that $xy \in I$, we claim that $x \notin I$ and $y^m \notin I$ for any $m \ge 1$. If $x \in I$, then

$$x = xyF_1(x, y, z) + (x - yz)F_2(x, y, z)$$

for some $F_1, F_2 \in \mathbb{C}[x, y, z]$. We may substitute x = yz, then we have

$$yz = y^2 z F_1 + 0,$$

which is impossible. Therefore, $x \notin I$.

If $f(y) \in I$, then

$$F(y) = xyF_1(x, y, z) + (x - yz)F_2(x, y, z)$$

for some $F_1, F_2 \in \mathbb{C}[x, y, z]$. We may substitute x = z = 0, then we have

$$(3) f(y) = 0,$$

which is impossible. Therefore, $f(y) \notin I$ for any $0 \neq f(y) \in \mathbb{C}[x, y, z]$. Following the argument in Lemma 2.25, we let

$$J_m := \{ F(x, y, z) | y^m F(x, y, z) \in I \}.$$

It is easy to see that $I \subset J_1$ and $x \in J_1$, therefore, $J_1 \supset \langle I, x \rangle = \langle x, yz \rangle$.

Note that $J_2 = \{F | yF \in J_1\}$, we have $z \in J_2$. Hence $J_2 \supset \langle J_1, z \rangle \supset \langle x, z \rangle$. We claim:

$$J_m = \langle x, z \rangle$$

Let F(x, y, z) be an element in J_m for some $m \ge 2$. Then we may write

$$F = xG_1(x, y, z) + zG_2(x, y, z) + f(y)$$

for some $G_1, G_2 \in \mathbb{C}[x, y, z]$ and $f(y) \in \mathbb{C}[y]$. Since $J_m \supset \langle x, z \rangle$, we have $f(y) \in J_m$. In particular, we have

$$y^m f(y) \in I.$$

By (3), f(y) = 0.

By the argument as that in Lemma 2.25, we have

$$I = \langle xy, x - yz, x \rangle \cap \langle xy, x - yz, y^2 \rangle = \langle x, yz \rangle \cap \langle y^2, x - yz \rangle.$$

The first factor has an 'obvious' primary decomposition as $\langle x, y \rangle \cap \langle x, z \rangle$. We claim that the second factor $\langle y^2, x - yz \rangle$ is primary.

Lemma 2.30. Let $\phi : R \to S$ be a ring homomorphism and Q be a primary ideal in S. Then $\phi^{-1}(Q)$ is primary in R.

Proof. Easy exercise.

Consider the ring homomorphism

$$\begin{split} \phi : \mathbb{C}[x,y,z] &\to \mathbb{C}[y,z] \\ x \mapsto yz \\ y \mapsto y \\ z \mapsto z \end{split}$$

Then $\phi^{-1}(\langle y^2 \rangle) = \langle y^2, x - yz \rangle$. Note that $\mathbb{C}[y, z]$ is a UFD, the ideal $\langle y^2 \rangle$ is primary. By Lemma 2.30, $\langle y^2, x - yz \rangle$ is primary. Note that $\langle y^2, x - yz \rangle \subset \langle x, y \rangle$, the ideal *I* have a primary decomposition:

$$I = \langle x, z \rangle \cap \langle y^2, x - yz \rangle.$$

16

3. MODULES AND INTEGRAL EXTENSIONS

3.1. Modules.

Definition 3.1. Let R be a ring, an **R-module** M is an abelian group (M, +) with a multiplication map

$$R\times M\to M:(r,m)\mapsto rm,$$

such that $\forall m, n \in M$ and $r, r' \in R$

(a)
$$r(m \pm n) = rm \pm rn$$

- (b) (r + r')m = rm + r'm
- (c) (rr')m = r(r'm)
- (d) $1_R m = m$

Example 3.2. For a field k, the definition of a module is the same as a vector space over the field. In particular, if M is of finite dimension, then $M \simeq k^{\oplus n}$.

An ideal *I* is an *R*-module by definition.

Definition 3.3. A subset $N \subseteq M$ of an *R*-module is an **R**-submodule if (N, +) is an abelian subgroup of M and $\forall r \in R, n \in N$, one has $rn \in N$.

The **quotient module** M/N is constructed as equivalence classes of elements $m \in M$ modulo N. In other words, the coset

$$M/N = \{m + N | m \in M\} / \sim,$$

where $m_1 + N \sim m_2 + N \iff m_1 - m_2 \in N$, has a well-defined *R*-module structure:

$$R \times M/N \to M/N : f(m+N) := fm+N.$$

Example 3.4. Let I be an ideal of R, then both I and R/I are R-modules.

Definition 3.5. A map $\phi : M \to N$ is an **R-module homomorphism** if $\forall f, g \in R, m, n \in M$:

$$\phi(fm + gn) = f\phi(m) + g\phi(n)$$

Proposition 3.6. Let $\phi : M \to N$ be an *R*-module homomorphism, then

- (a) ker ϕ and im ϕ are both *R*-modules;
- (b) $M / \ker \phi \simeq \operatorname{im} \phi$.

Definition 3.7. Let M and N be two R-module. Their **direct sum** $M \oplus N$ is defined as

$$\begin{split} M \oplus N &:= \{(m,n) | m \in M, n \in N\} \\ R \times (M \oplus N) \to M \oplus N \\ r(m,n) \mapsto (rm,rn). \end{split}$$

Notation: $M^{\oplus r} = M \oplus \cdots \oplus M$ for r times.

Definition 3.8. Let M be an R-module, and let $A = \{m_a\}$ be a subset of M. The set A generates a submodule $\langle A \rangle_M$ in M:

$$\{m \in M | m = \sum_{m_a \in A} r_a m_a \text{ for some } r_a \in R, \text{ only finitely many } r_a \neq 0\}.$$

In other words, the module $\langle A \rangle_M$ is the minimum *R*-submodule in *M* containing *A*.

We say that A generates M as an R-module if $\langle A \rangle_M = M$. The module M is called finitely generated if there is a finite generating set for M.

Definition 3.9. Let M be an R-module, a subset $A \subset M$ is called a basis if

- (a) A generates M as an R-module;
- (b) A is linear independent, i.e., $\forall \mathbf{e}_1, \dots, \mathbf{e}_n \in A$,

 $r_1\mathbf{e}_1 + \ldots r_n\mathbf{e}_n = 0 \iff r_1 = \cdots = r_n = 0.$

An *R*-module is called **free** if it has a basis. The cardinality of a basis (independent of the choice of basis) is called the **rank** of the module.

Example 3.10. Let M be a free R-module of rank n, then

$$M \cong R^{\oplus n}$$

as an *R*-module.

In particular, if $I = \langle f \rangle$ is a principally generated ideal in a domain R, then $\{f\}$ is a basis for I as an R-module, and

 $I \cong R$

as an R-module.

When R is a field, then every R-module/vector space has a basis.

When R is not a field, let I be a non-zero, non-proper ideal of R, then R/I is an R-module generated by 1 + I. But it is NOT free.

Theorem 3.11. Let R be a PID, M be a finitely generated R-module, then

 $M \cong R^{\oplus n} \oplus R/P_1^{n_1} \oplus \dots \oplus R/P_s^{n_s}$

for some maximal ideals P_i and positive integers n_i , n.

Example 3.12. The ideal $\langle x, y \rangle$ in F[x, y] is NOT a free F[x, y]-module.

Let $M = \mathbb{Z}[\frac{1}{2}] := \{\frac{n}{2^m} | m, n \in \mathbb{Z}\}$ be a \mathbb{Z} -module, then M is NOT finitely generated. M does NOT have a basis.

3.2. Cayley-Hamilton Theorem. Cayley-Hamilton for vector spaces over a field:

Let A be a $n \times n$ matrix with coefficients in k, its characteristic polynomial is:

$$p_A(x) = \det(x \operatorname{Id}_n - A).$$

Then $p_A(A) = 0$.

Example 3.13. Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, then $p_A(x) = (x-1)(x-4) - 2 \times 3 = x^2 - 5x - 2$.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^2 - 5 \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} - \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 0$$

Definition 3.14. Let M be a $n \times n$ matrix

$$\begin{bmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ \dots & \dots & \dots & \dots \\ m_{n1} & m_{n2} & \dots & m_{nn} \end{bmatrix}$$

with coefficients in R, then the determinant of M is

$$\det M := \sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \prod_{i=1}^n m_{i\sigma(i)} \in R$$

The characteristic polynomial $p_A(x)$ is

$$x^n - trace(A)x^{n-1} + \dots + (-1)^n \det A.$$

Theorem 3.15. Let R be a ring, A be a $n \times n$ matrix with coefficients in R, its characteristic polynomial is:

$$p_A(x) = \det(x \operatorname{Id}_n - A).$$

Then $p_A(A) = 0$.

Remark 3.16. Recall how did one prove the following statement in linear algebra:

Let B be a $n \times n$ matrix with coefficient in k, suppose $\exists v \neq 0$, s.t. Bv = 0. Then det B = 0.

Proof. Let C be the adjoint of $B: C = [C_{ij}]$ such that

$$C_{ij} = (-1)^{i+j} \det \hat{B}_{ji}.$$

Here \hat{B}_{ij} is the $(n-1) \times (n-1)$ matrix by taking off the *i*th-column and *j*th-row from B. We have $BC = CB = \det BI_n$.

Hence $0 = CBv = \det Bv$ for a non-zero v, and therefore $\det B = 0$.

Proof. Note that R[A] is a commutative ring. Consider the $n \times n$ matrix B with coefficient in R[A]:

$$B = \begin{pmatrix} A - a_{11}I_n & -a_{21}I_n & \dots & -a_{n1}I_n \\ -a_{12}I_n & A - a_{22}I_n & \dots & -a_{n2}I_n \\ \dots & \dots & \dots & \dots \\ -a_{1n}I_n & -a_{2n}I_n & \dots & A - a_{nn}I_n \end{pmatrix}$$

The statement is to show det B = 0. Consider the adjoint of B: $C = [C_{ij}]$ such that

$$C_{ij} = (-1)^{i+j} \det \hat{B}_{ji}.$$

Here \hat{B}_{ij} is the $(n-1) \times (n-1)$ matrix by taking off *i*th-column and *j*th-row from *B*. We have $BC = CB = \det BI_n$. Let $\mathbf{e}_i = (0, \ldots, 1, \ldots, 0)^T$ with 1 at the *i*-th position. Then for

 $\forall a \leq i \leq n$,

$$A\mathbf{e}_{i} = a_{1i}\mathbf{e}_{1} + \dots + a_{ni}\mathbf{e}_{n}$$
$$\implies (A - a_{ii})\mathbf{e}_{i} - a_{1i}\mathbf{e}_{1} - \dots - a_{ni}\mathbf{e}_{n} = 0$$
$$\implies B_{ii}\mathbf{e}_{i} + B_{i1}\mathbf{e}_{1} + \dots + B_{in}\mathbf{e}_{n} = 0$$
$$\implies \sum_{j=1}^{n} B_{ij}\mathbf{e}_{j} = 0$$

Let $v = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)^T$, then Bv = 0. Therefore CBv = 0 and (CB)v = 0 (Here the product of B on v is not the product of matrix with vector, but composing the action of A on \mathbf{e}_i).

We may conclude that for $\forall 1 \leq i \leq n$: det $Be_i = 0$. Therefore, det B = 0.

Theorem 3.17. Let M be a finitely generated R-module with n generators, $\phi : M \to M$ be an endomorphism. Suppose $\phi(M) \subseteq IM$ for some ideal of R, then ϕ satisfies a relation:

$$\phi^n + a_1 \phi^{n-1} + \dots + a_n = 0,$$

for some $a_m \in I^m$ for $1 \le m \le n$.

Proof. Let $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ be a set of generators, then

$$\phi(\mathbf{e}_j) = r_{1j}\mathbf{e}_1 + r_{2j}\mathbf{e}_2 + \dots + r_{nj}\mathbf{e}_n$$

for some $r_{ij} \in I$.

Let A be the $n \times n$ matrix (r_{ij}) , and $p_A(x) = x^n + a_1 x^{n-1} + \cdots + a_n$, then the coefficient $a_i \in I^j$.

By Theorem 3.15,

$$A^{n} + a_1 A^{n-1} + \dots + a_n = 0.$$

Hence true for ϕ .

Here few more explanations for the last sentence in the proof: For any element $m \in M$, m can be written as

$$m = b_1 \mathbf{e}_1 + \dots + b_n \mathbf{e}_n.$$

Note that these b_j 's are not unique, but this is the only difference between a finitely generated module and a free module. Let

$$\begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} = A \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

then $\phi(m) = c_1 \mathbf{e}_1 + \dots + c_n \mathbf{e}_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} A \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}.$

$$(\phi^n + a_1\phi_{n-1} + \dots + a_n)m$$

= $\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \dots & \mathbf{e}_n \end{bmatrix} (A^n + a_1A^{n-1} + \dots + a_nId) \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} = 0.$

3.3. Integral and Finite Extensions. An algebraic number is a complex number which is a root of a non-zero polynomial in $\mathbb{Z}[x]$. The set of all algebraic numbers is denoted as $\overline{\mathbb{Q}}$ in this notes.

'Well-known facts': $\overline{\mathbb{Q}}$ is a field. For an algebraic number $\alpha \in \overline{\mathbb{Q}}$, there exists a minimal polynomial $f(x) \in \mathbb{Z}[x]$ of α such that:

if $g(\alpha) = 0$ and $g(x) \in \mathbb{Z}[x]$, then g(x) = f(x)h(x) for some $h(x) \in \mathbb{Z}[x]$.

As for an integer n, its minimal polynomial is just x - n. As for a rational number $\frac{m}{n}$, where gcd(m,n) = 1, its minimal polynomial is nx - m. For a rational number q, it is not hard to figure out that q is an integer if and only if it is a root of monic polynomial in $\mathbb{Z}[x]$, i.e., its minimal polynomial is monic.

The concept of being an integral element can be generalized to all algebraic numbers.

Definition 3.18. A number $\alpha \in \overline{\mathbb{Q}}$ is called an algebraic integer, if $f(\alpha) = 0$ for some monic polynomial $f(x) \in \mathbb{Z}[x]$.

Example 3.19. All integers are algebraic integers. Given positive integers m and n, the number $\sqrt[n]{m}$ is an algebraic integer.

Without a general theory for integral elements, it is usually very hard to tell whether a given number is an algebraic integer or not, say, $\sqrt{2} + \sqrt[3]{3}$. In this section, we apply the Cayley-Hamilton theorem to set up some basic theories of integral and finite algebra. This will allow us to describe several properties of algebraic integers that are not trivial at a first glance.

Definition 3.20. Let R be a ring. A ring S is called an R-algebra if there is a ring homomorphism $\phi: R \to S$.

Note that this makes S into an R-module.

In practice, we may always assume that R is a subring of S.

Definition 3.21. Let R be a ring and S be an R-algebra. An element $s \in S$ is **integral over** R if there is a monic polynomial

$$f(y) = y^n + a_1 y^{n-1} + \dots + a_n \in R[y]$$

such that f(s) = 0.

If all elements of S are integral over R, then S is said to be integral over R.

Example 3.22. (a) Let $R = \mathbb{C}$ and $S = \mathbb{C}[x]$, then an element in S is integral over R if and only if it is a constant function.

- (b) Let $R = \mathbb{Z}$ and $S = \mathbb{C}$, a number if integral over \mathbb{Z} if and only if it is an algebraic integer.
- (c) Let $R = \mathbb{C}[x^2]$ and $S = \mathbb{C}[x]$, then x is integral over R.

Definition 3.23. Let S be an R algebra, we say that S is a finite R-algebra(or finite over R) if it is finitely generated as an R-module.

Example 3.24. (a) $\mathbb{C}[x]$ is NOT finite over \mathbb{C} . (b) $\mathbb{C}[x]$ is finite over $\mathbb{C}[x^2]$.

Proposition 3.25. Let S be a finite R algebra, then S is integral over R.

Proof. For any element $s \in S$, we may consider

$$\phi_s: S \to S: m \mapsto sm.$$

Apply Cayley-Hamilton Theorem 3.17 for R, S, ϕ_s and I = R. Then there exists $a_1, \ldots, a_n \in R$ such that

$$\phi_s^n + a_1 \phi_s^{n-1} + \dots + a_n = 0.$$

In particular, the homomorphism on the left hand side maps 1 to 0. That is

$$s^n + a_1 s^{n-1} + \dots a_n = 0.$$

Hence s is integral over R. Since this holds for any $s \in S$, S is integral over R.

Example 3.26. (a) $t^5 + t^3 + 1$ satisfy the equation $x^4 + f_1(t^4)x^3 + f_2(t^4)x^2 + f_3(t^4)x + f_r(t^4) = 0$ for some $f_i(t) \in \mathbb{C}[t]$.

(b) $1 + \sqrt[3]{2} + \sqrt[3]{4}$ is an algebraic integer.

Definition 3.27. Let S be a ring and $R \subseteq S$ be a subring. Let s_1, \ldots, s_m be elements of S, then we write $R[s_1, s_2, \ldots, s_m]$ for the smallest subring of S containing R and s_1, s_2, \ldots, s_m .

We say that S is finitely generated over R if $\exists s_1, \ldots, s_m$ such that $R[s_1, s_2, \ldots, s_m] = S$.

In particular, every element of $R[s_1, s_2, ..., s_m]$ can be written as a polynomial in $s_1, s_2, ..., s_m$ with coefficients in R.

 $R[s_1, \dots, s_m] = \{ f(s_1, \dots, s_m | f(x_1, \dots, x_m) \in R[x_1, \dots, x_m] \}.$

By the definition,

$$R[s_1, \dots, s_{m-1}][s_m] = R[s_1, \dots, s_{m-1}, s_m].$$

Proposition 3.28. Let S be an R-algebra with $R \subseteq S$. Let $s \in S$. The followings statements are equivelant.

- (a) The element s is integral over R.
- (b) Then the subring R[s] is finite over R.

(c) There exists an R-subalgebra $\tilde{R} \subset S$ such that \tilde{R} is finite over R and $R[s] \subset \tilde{R}$

Proof. 'a \implies b': Since the element s is integral over R, there exists a monic polynomial f(x) such that

$$f(s) = s^{n} + a_{1}x^{n-1} + \dots + a_{n-1}s + a_{n} = 0.$$

Claim: R[s] as an *R*-module is generated by $s^{n-1}, \ldots, s, 1$.

For any element $g(s) \in R[s]$, since f(x) is a monic polynomial,

$$g(x) = f(x)h(x) + r(x)$$

for some deg r(x) < deg f(x). Therefore, g(s) = r(s) which is $r_1 s^{n-1} + \ldots + r_{n-1} s + r_n$.

3.4. Tower Laws.

Lemma 3.29. Let $R \subseteq S \subseteq S'$ be rings, such that S' is finite over S and S is finite over R. Then S' finite over R.

Proof. Let S' be generated by a_1, \ldots, a_n as an S-module; S be generated by b_1, \ldots, b_m as an R-module.

Then for any $m \in S'$:

$$m = s_1 a_1 + \dots s_n a_n \qquad \text{for some } s_1 \dots, s_n \in S$$
$$= (r_{11} b_1 + \dots + r_{1m} b_m) a_1 + \dots + (r_{n1} b_1 + \dots + r_{nm} b_m) a_n \qquad \text{for some } a_{ij} \in R$$
$$= \sum r_{ij} a_i b_j.$$

Therefore, S' is generated by $\{a_ib_i\}$ as an R-module.

Corollary 3.30. Let $R \subseteq S$ be rings, $s_1, \ldots, s_m \in S$ be integral over R. Then $R[s_1, \ldots, s_m]$ is finite over R.

Proof. Consider the extension of rings:

$$R \subseteq R[s_1] \subseteq R[s_1, s_2] \subseteq \cdots \subseteq R[s_1, s_2, \dots, s_m].$$

For each extension, as s_l is integral over $S[s_1, \ldots, s_{l-1}]$, by Proposition 3.28, $R[s_1, \ldots, s_l]$ is finite over $R[s_1, \ldots, s_{l-1}]$. By Lemma 3.29, $R[s_1, s_2, \ldots, s_m]$ is finite over R.

Definition 3.31. Let $R \subseteq S$ be rings, the **integral closure** of R in S is

 $\overline{R} = \{s \in S | s \text{ is integral over } R\}$

Corollary 3.32. Let $R \subseteq S$ be rings, then \overline{R} is a subring of S.

Proof. For any $s_1, s_2 \in S$, the ring $R[s_1, s_2]$ is integral over R. In particular, $s_1 \pm s_2$ and s_1s_2 are integral over R, therefore they are both in \overline{R} .

Proposition 3.33. Let $R \subseteq S \subseteq S'$ be rings such that S' integral over S and S integral over R. Then S' is integral over R.

Proof. $\forall b \in S'$, since b is integral over S, there exist $a_1, \ldots, a_n \in S$ such that

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

This implies b is integral over $R[a_1, \ldots, a_n]$.

By Proposition 3.28, $R[a_1, \ldots, a_n][b]$ is finite over $R[a_1, \ldots, a_n]$. Since a_1, \ldots, a_n are all integral over R, by Corollary 3.30, $R[a_1, \ldots, a_n]$ is finite over R. We may consider the tower

$$R \subseteq R[a_1, \ldots, a_n] \subseteq R[a_1, \ldots, a_n][b],$$

by Lemma 3.29, $R[a_1, \ldots, a_n][b]$ is finite over R, by Corollary 3.25, $R[a_1, \ldots, a_n][b]$ is integral over R, therefore b is integral over R and S' is integral over R.

Example 3.34. The number $\sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}} + \sqrt[7]{6}$ is an algebraic integer.

The golden ration number $\frac{\sqrt{5}-1}{2}$ satisfies the equation $x^2 + x - 1 = 0$. The number $\frac{\sqrt{17}-1}{2}$ satisfies the equation $x^2 + x - 4 = 0$. Both numbers are algebraic integers.

As $\mathbb{Z} \subset \mathbb{Z}[\frac{\sqrt{17}-1}{2}, \frac{\sqrt{5}-1}{2}, \sqrt[7]{6}] \subset \mathbb{Z}[\frac{\sqrt{17}-1}{2}, \frac{\sqrt{5}-1}{2}, \sqrt[7]{6}, \sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}}]$ is a chain of integral extensions, therefore $\sqrt[5]{\frac{\sqrt{17}+\sqrt{5}}{2}} + \sqrt[7]{6}$ is integral over \mathbb{Z} , in other words, an algebraic integer.

Corollary 3.35. Let $R \subseteq S \subseteq T$ be rings such that S is integral over R. Then $\overline{R} = \overline{S}$ in T. In particular, $\overline{R} = (\overline{R})$ in T.

Proof. Consider $R \subseteq S \subseteq \overline{S}$, by Proposition 3.33, \overline{S} is integral over R, therefore, $\overline{S} \supseteq \overline{R}$.

Definition 3.36. Let S be an R-algebra. We say that R is **integrally closed** in S if $R = \overline{R}$ in S.

Proposition 3.37. Let S be an integral domain. Suppose S is integral over R, then R is a field \iff S is a field.

Proof. ' \implies ': For $\forall 0 \neq x \in S$,

$$x^n + a_1 x^{n-1} + \dots + a_n = 0$$

for some $a_i \in R$. We may assume that $a_n \neq 0$ since otherwise we may cancel x as S is a domain. Since R is a field,

$$x(-a_n^{-1}(x^{n-1}+a_1x^{n-2}+\dots a_{n-1}))=1$$

Therefore, x is invertible and S is a field.

' \Leftarrow ': For $\forall 0 \neq x \in R, x^{-1} \in S$ and is integral over R, we have

$$x^{-n} + a_1 x^{-n+1} + \dots + a_n = 0$$

for some $a_i \in R$. Therefore,

$$x^{-1} = a_1 + a_2 x + \dots + a_n x^{n-1} \in R$$

And R is a field.

L.,	_	

4. THE NULLSTELLENSATZ

4.1. Ideals and Varieties.

Definition 4.1. Let k be a field. Let I be an ideal in $k[x_1, \ldots, x_n]$. The variety of I is the set

$$V(I) := \{ (a_1, \dots, a_n) \in k^n | f(a_1, \dots, a_n) = 0 \text{ for any } f \in I \}$$

Let k be a field. Let I be an ideal in $k[x_1, \ldots, x_n]$. By Hilbert Bases Theorem: Theorem 1.27, $I = \langle f_1, \ldots, f_m \rangle$ for some $f_i \in k[x_1, \ldots, x_n]$.

Lemma 4.2. Adopt the notation as above, we have $V(I) = \{(a_1, \ldots, a_n) \in k^n | f_i(a_1, \ldots, a_n) =$ 0 for all f_i 's}.

Proof. The ' \subseteq ' direction is by definition.

As for the ' \supseteq ' direction: For every $f \in I$, $f = h_1 f_1 + \ldots + h_m f_m$ for some $h_i \in k[x_1, \ldots, x_n]$. If $f_i(a_1, \ldots, a_n) = 0$ for all f_i 's, then

$$f(a_1, \dots, a_n) = h_1(a_1, \dots, a_n) f_1(a_1, \dots, a_n) + \dots + h_m(a_1, \dots, a_n) f_m(a_1, \dots, a_n) = 0.$$

Therefore, the point $(a_1, \dots, a_n) \in V(I)$.

(a) Let I = (0), then $V(I) = k^n$. Example 4.3.

- (b) Let $I = k[x_1, x_2, ..., x_n]$, then $V(I) = \phi$.
- (c) Let $I = \langle xy, x yz \rangle$ in k[x, y, z], then $V(I) = \{(x, y, z) | x = y = 0 \text{ or } x = z = 0\}$. This implies that f(y) is not in the ideal *I*.
- (d) Let $I = \langle x^2 + x 2 \rangle$, then $V(I) = \{-2, 1\}$. Therefore, $x^{24} 1$ is not in the ideal I.

Definition 4.4. Let $X \subseteq k^n$ be a subset, the **ideal** of X is

$$I(X) := \{ f \in k[x_1, \dots, x_n] | f(x) = 0, \forall x \in X \}.$$

(a) I(X) is a radical ideal in $k[x_1, \ldots, x_n]$, in other words, $I(X) = \sqrt{I(X)}$. Lemma 4.5. (b) Let I be an ideal in $k[x_1, \ldots, x_n]$, then

$$V(I) = V(\sqrt{I}).$$

Proof. a): For any elements $f, g \in I(X)$, $h \in k[x_1, \ldots, x_n]$ and $x \in X$, we have

$$(f \pm g)(x) = f(x) \pm g(x) = 0; (fh)(x) = f(x)h(x) = 0.$$

Therefore, I(X) is an ideal.

It is obvious that $I(X) \subset \sqrt{I(X)}$.

Let $f \in k[x_1, \ldots, x_n]$ such that $f^m \in I(X)$ for some $m \in \mathbb{N}$. Then for any $x \in X$, $f^m(x) = 0 \implies f(x) = 0.$

Therefore, $\sqrt{I(X)} = I(X)$.

b): Let $f \in \sqrt{I}$, then $f^m \in I$ for some $m \in \mathbb{N}$. For any $x \in V(I)$, $f^m(x) = 0 \implies f(x) = 0.$

Therefore,
$$x \in V(\sqrt{I})$$
 and $V(I) = V(\sqrt{I})$.

Example 4.6. (a) Let $I = \langle x^2 \rangle$ in k[x], then $V(I) = \{0\}$ and $I(V(I)) = \langle x \rangle$.

- (b) Let $I = \langle xy, x yz \rangle$ in k[x, y, z], then $V(I) = \{(x, y, z) | x = y = 0 \text{ or } x = z = 0\}$ and $I(V(I)) = \langle x, yz \rangle$.
 - (c) $I(\phi) = k[x_1, \dots, x_n]; I(k^n) = (0).$

4.2. Weak Nullstellensatz.

Theorem 4.7. Let $k \subset K$ be fields with $K = k[s_1, \ldots, s_n]$ for some $s_1 \ldots, s_n \in K$. Then the field K is finite/integral/algebraic over k.

Remark 4.8. An element s is algebraic over a field F if and only if it is integral over F.

By Corollary 3.25 and 3.30, the statements that 'K is finite/integral/algebraic over k' are all equivalent.

Proof of Theorem 4.7. We prove by induction on the number of generators *n*.

When n = 1, since $k[s_1] = K$ is a field, the generator s_1 has an inverse

$$\frac{1}{s_1} = a_n s_1^n + \dots + a_0$$

for some $a_i \in k$. Therefore, the element s_1 is algebraic/integral over k. By Proposition 3.28, $k[s_1]$ is finite over k.

Assume the statement holds for n-1 generators case, we consider the case when $K = k[s_1, \ldots, s_n]$. CASE I: The generator s_n is algebraic/integral over k.

By Proposition 3.28, the ring $k[s_n]$ is integral over k. By Proposition 3.37, the ring $k[s_n]$ is a field. Consider the tower of fields extensions:

$$k \subset k[s_n] \subset (k[s_n])[s_1, \dots, s_{n-1}] = K.$$

By induction, $K = (k[s_n])[s_1, \ldots, s_{n-1}]$ is finite over $k[s_n]$. By the argument for the one generator case, $k[s_n]$ is finite over k. By Tower Law Lemma 3.29, K is finite over k.

CASE II: The generator s_n is NOT algebraic over k. We will show that this would finally lead to a contradiction!

Step 1: The smallest subfield in K containing $k[s_n]$ is

$$F = \{f(s_n)(g(s_n))^{-1} | f(x), g(x) \in F[x]\}.$$

Since s_n is assumed to be non-algebraic, one may check that F is isomorphic to the rational function field with coefficient in k.

Step 2: Note that $K = F[s_1, \ldots, s_{n-1}]$, by induction, K is integral over F. Since each a is integral over F there exists $A \in F$ such that

Since each s_i is integral over F, there exists $A_{ij} \in F$ such that

$$s_i^{n_i} + A_{i1}s_i^{n_i-1} + \dots + A_{in_i} = 0.$$

By Step 1, each $A_{ij} = \frac{P_{ij}(s_n)}{Q_{ij}(s_n)}$ for some $P_{ij}(x), Q_{ij}(x) \in k[x]$. Let $Q(x) := \prod_{1 \le i \le n} \prod_{1 \le j \le n_i} Q_{ij}(x)$. Then s_1, \ldots, s_{n-1} are also integral over $k[s_{n-1}, (Q(s_n))^{-1}]$. By Proposition 3.37, $k[s_{n-1}, (Q(s_n))^{-1}]$ must be a field.

Step 3: We show that there exists an element in $k[s_n]$ that does not have an inverse in $k[s_n, (Q(s_n))^{-1}]$.

When Q(x) is a constant function, then $k[s_n, (Q(s_n))^{-1}] = k[s_n] \simeq k[x]$ is NOT a field. When Q(x) is not a constant function, then inverse of $Q(s_n) + 1$ is in $k[s_n, (Q(s_n))^{-1}]$, hence of the form $\frac{f(s_n)}{(Q(s_n))^m}$ for some $f(x) \in k[x]$ and $m \in \mathbb{Z}_{\geq 0}$. Therefore, $(Q(s_n))^m = (Q(s_n) + 1)f(s_n)$. Since s_n is not algebraic over F, we must have

$$(Q(x))^m = (Q(x) + 1)f(x).$$

This is NOT possible since gcd(Q(x), Q(x) + 1) = 1.

We get the contradiction for Case II. Hence the generator s_n must be algebraic over k.

4.3. Maximal Ideals in $\mathbb{C}[x_1, \ldots, x_n]$. Let k be a field, recall from Example 2.20 that for any $a_1, \ldots, a_n \in k$, the ideal

$$\mathfrak{n}_{a_1,\ldots,a_n} := \langle x_1 - a_1,\ldots,x_n - a_n \rangle$$

is a maximal ideal in $k[x_1, \ldots, x_n]$. When the field F is algebraically closed, we proved that every maximal ideal in $k[x_1, \ldots, x_n]$ is of this form.

Theorem 4.9. Let k be an algebraically closed field, then every maximal ideal $\mathfrak{m} = in k[x_1, \ldots, x_n]$ is of the form

$$\langle x_1-a_1,\ldots,x_n-a_n\rangle,$$

for some $a_1, \ldots, a_n \in k$.

Remark 4.10. A field F is algebraically closed, if and only if for every field extension $F \subset K$ and every element s algebraic over F, we have $s \in F$.

For example, the complex number field is algebraic closed

Proof of Theorem. By Proposition 2.15, $k[x_1, \ldots, x_n]/\mathfrak{m}$ is a field. Consider the field extension

$$k \subset k[x_1 + \mathfrak{m}, \dots, x_n + \mathfrak{m}]$$

By Theorem 4.7, $k[x_1 + \mathfrak{m}, \dots, x_n + \mathfrak{m}]$ is algebraic over k. Since k is algebraically closed, $k = k[x_1 + \mathfrak{m}, \dots, x_n + \mathfrak{m}]$. Therefore, for each $x_i + \mathfrak{m}$, we have

$$x_i + \mathfrak{m} = a_i + \mathfrak{m}$$

for some $a_i \in k$. Therefore, $\mathfrak{m} \supseteq \langle x_1 - a_1, \dots, x_n - a_n \rangle$ which is already a maximal ideal. They must be the same.

Theorem 4.11. Let k be an algebraically closed field. Let I be an ideal in $k[x_1, ..., x_n]$ such that $V(I) = \phi$, then $I = k[x_1, ..., x_n]$.

Proof. Suppose I is a proper ideal, by Proposition 2.18, $I \subset \mathfrak{m}$ for some maximal ideal \mathfrak{m} . By Theorem 4.9, $V = (\mathfrak{m}) = (a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in k$. By Lemma 4.20, $V(I) \supset V(\mathfrak{m})$ and is not empty.

We get the contradiction. The ideal is therefore not proper.

Remark 4.12. Both results fail without the algebraically closed assumption.

Example 4.13. What is the ideal $I = \langle xy, x^4 + y^5, x^2 + y^2 + 1 \rangle$ in $\mathbb{R}[x, y]$?

Consider the ideal $J = \langle xy, x^4 + y^5, x^2 + y^2 + 1 \rangle$ in $\mathbb{C}[x, y]$. Its variety is $V(\langle xy, x^4 + y^5, x^2 + y^2 + 1 \rangle) = \{xy = x^4 + y^5 = 0 = x^2 + y^2 + 1\} = \{x = y = 0 = x^2 + y^2 + 1\} = \phi$. By Theorem 4.11, $J = \mathbb{C}[x, y]$, in particular, $1 \in J$. In other words,

 $1 = xuf(x, u) + (x^4 + u^5)a(x, u) + (x^2 + u^2 + 1)h(x, u)$

$$1 = xy(x, y) + (x + y)y(x, y) + (x + y + 1)h(x, y)$$

for some $f, g, h \in \mathbb{C}[x, y]$. By taking the conjugates on both sides, we have

$$1 = xy\overline{f}(x,y) + (x^4 + y^5)\overline{g}(x,y) + (x^2 + y^2 + 1)\overline{h}(x,y).$$

Therefore,

$$1 = xy\left(\frac{f+\overline{f}}{2}\right)(x,y) + (x^4+y^5)\left(\frac{g+\overline{g}}{2}\right)(x,y) + (x^2+y^2+1)\left(\frac{h+\overline{h}}{2}\right)(x,y).$$

Here the polynomials $\left(\frac{f+f}{2}\right)(x,y)$ (g,h respectively) are all with real coefficients. Therefore they are all in $\mathbb{R}[x,y]$. Hence $1 \in I$. We have $I = \mathbb{R}[x,y]$.

4.4. Nullstellensatz.

Theorem 4.14. Let k be an algebraically closed field, I an ideal in $k[x_1, \ldots, x_n]$. Let $f \in k[x_1, \ldots, x_n]$ such that f(V(I)) = 0. Then $f^t \in I$ for some $t \in \mathbb{Z}_{\geq 1}$.

Proof. By Hilbert bases theorem, the ideal $I = \langle f_1, \ldots, f_m \rangle$ for some $f_i \in k[x_1, \ldots, x_n]$. We consider the ideal

$$J := \langle f_1, \dots, f_m, yf - 1 \rangle$$

in the ring $k[x_1, \ldots, x_n, y]$.

The variety of J is

$$V(J) = \{(a_1, \dots, a_n, b) \in k^{n+1} | f_i(a_1, \dots, a_n) = 0 \text{ for every } i; f(a_1, \dots, a_n)b = 1\}$$

= $\{(a_1, \dots, a_n, b) \in k^{n+1} | (a_1, \dots, a_n) \in V(I); f(a_1, \dots, a_n)b = 1\}$
= $\{(a_1, \dots, a_n, b) \in k^{n+1} | (a_1, \dots, a_n) \in V(I); 0b = 1\} = \phi.$

By Theorem 4.11, $J = k[x_1, \ldots, x_n, y]$. In particular, $1 \in J$:

$$\mathbf{l} = h_1 f_1 + \dots + h_m f_m + g(yf - 1),$$

for some $h_1, \ldots, h_m, g \in k[x_1, \ldots, x_n, y]$. Substitute $y = \frac{1}{\tau}$, we have

$$1 = h_1(x_1, \dots, x_n, \frac{1}{f})f_1(x_1, \dots, x_n) + \dots + h_m(x_1, \dots, x_n, \frac{1}{f})f_m(x_1, \dots, x_n),$$

which is an equality of elements in $k(x_1, \ldots, x_n)$, the rational function field of $k[x_1, \ldots, x_n]$.

Note that there exists an t large enough such that

$$h_i(x_1,\ldots,x_n,\frac{1}{f}) = \frac{H_i(x_1,\ldots,x_n)}{f^t}$$

for every i and some $H_i(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$. Therefore,

$$f^t = H_1(x_1, \dots, x_n) f_1(x_1, \dots, x_n) + \dots + H_m(x_1, \dots, x_n) f_m(x_1, \dots, x_n) \in I.$$

Corollary 4.15. Let k be an algebraically closed field, J be an ideal in $k[x_1, \ldots, x_n]$. Then $I(V(J)) = \sqrt{J}.$

Proof.

$$f \in \sqrt{J} \iff f^t \in J \text{ for some } t \iff f(V(J)) = 0 \iff f \in I(V(J)).$$

Example 4.16. Let $I = \langle x^2 y^3, (x^2 + y^2)^3 - 4x^2 y^2 \rangle$ in $\mathbb{C}[x, y]$, then I is primary.

Solution. We first compute the radical of I. The variety of I is

$$V(I) = \{(x, y) | x^2 y^3 = (x^2 + y^2)^3 - 4x^2 y^2 = 0\}.$$

Note that $x^2y^3 = 0$ implies x = 0 or y = 0. If x = 0, then by the second equation, we have y = 0. If y = 0, then by the second equation, we have x = 0. Therefore, $V(I) = \{(0, 0)\}$.

The ideal $I(\{(0,0)\}) = \{f(x,y) | f(0,0) = 0\} = \langle x,y \rangle$. By Corollary 4.15, the radical $\sqrt{I} =$ $I(V(I)) = \langle x, y \rangle$, which is a maximal ideal. The I is primary by the following lemma.

Lemma 4.17. Let I be an ideal in R such that \sqrt{I} is maximal, then I is primary.

Proof. Since $I \subseteq \sqrt{I}$ which is proper, the ideal I is also proper.

Let $fg \in I$, if $g \notin \sqrt{I}$, then since R/\sqrt{I} is field, the element $g + \sqrt{I}$ is a unit in R/\sqrt{I} . In particular, m + qr = 1 for some $m \in \sqrt{I}$ and $r \in R$.

Suppose $m^n \in I$, as $1 = (m + gr)^n = m^n + sg$ for some s, we have $f = fm^n + sfg \in I$. Therefore, the ideal *I* is primary.

Example 4.18. Let $I = \langle x^2y^3, (x^2+y^2)^2 - x^3 + 3xy^2 \rangle$ in $\mathbb{C}[x, y]$, what is the radical of *I*? Is *I* primary?

Solution. The variety of *I* is $\{(0,0)\} \cup \{(1,0)\}$.

The ideal $I(\{(0,0)\} \cup \{(1,0)\})$ contains y and x(x-1). We claim that I(V(I)) is generated by these two elements.

Note that for every $f(x,y) \in \mathbb{C}[x,y]$, we have f(x,y) = yg(x,y) + h(x) for some $g(x,y) \in \mathbb{C}[x,y]$ $\mathbb{C}[x,y]$ and $h(x) \in \mathbb{C}[x]$. If $f \in I(\{(0,0)\} \cup \{(1,0)\})$, then h(0) = h(1) = 0. Hence, x(x - 1)1)|h(x). In particular, $f \in \langle x(x-1), y \rangle$. Therefore,

$$\sqrt{I} = I(V(I)) = \langle x(x-1), y \rangle$$

This is not a prime ideal: $x(x-1) \in \sqrt{I}$ but $x, x-1 \notin \sqrt{I}$. Therefore, I is not primary.

4.5. Varieties in \mathbb{C}^n .

Proposition 4.19. *There is a one-to-one correspondence:*

$$V : \{ radical \ ideals \ in \mathbb{C}[x_1, \dots, x_n] \} \longleftrightarrow \{ varieties \ in \mathbb{C}^n \}.$$

Proof. Let J be a radical ideal in $\mathbb{C}[x_1, \ldots, x_n]$, by 0-satz, $I(V(J)) = \sqrt{J} = J$.

Let X = V(J) be a variety, by Lemma 4.5 b), $X = V(\sqrt{J})$. By 0-satz, $V(I(X)) = V(I(V(J))) = V(\sqrt{J}) = X$.

Lemma 4.20. Let X and Y be subspaces in k^n , A and B be subsets in $k[x_1, \ldots, x_n]$, and I, J be ideals in $k[x_1, \ldots, x_n]$. Then

(a) If $X \subset Y \subset k^n$, then $I(X) \supset I(Y)$. If $A \subset B \subset k[x_1, \dots, x_n]$, then $V(A) \supset V(B)$. (b) $I(X \cup Y) = I(X) \cap I(Y)$; $V(I \cap J) = V(IJ) = V(I) \cup V(J)$; $V(I + J) = V(I) \cap V(J)$.

Proof. a): For $\forall f \in I(Y)$, f(x) = 0 for any $x \in Y$ therefore any $x \in X$. Hence, $f \in I(X)$.

b): By a), $I(X \cup Y) \subset I(X) \cap I(Y)$. For any $f \in I(X) \cap I(Y)$ and any $x \in X \cup Y$, since x is either on X or Y, f(x) is always 0.

Let $x \in V(I_1 \cap I_2)$, suppose $x \notin V(I_1) \cup V(I_2)$, then $\exists f_1 \in I_1$ and $f_2 \in I_2$ such that $f_1(x), f_2(x) \neq 0$. In particular, $(f_1f_2)(x) \neq 0$. But $f_1f_2 \in I_1 \cap I_2$, and we get the contradiction. The rest one is easy.

In particular, the intersection and union of varieties are varieties. More relations (NOT examinable):

\sqrt{I} is a prime ideal \iff	V(I) is irreducible ;
\sqrt{I} is a maximum ideal \iff	V(I) is a point;
$\dim \mathbb{C}[x_1, \ldots, x_n]/I =$	Dimension of $V(I)$;
A maximum ideal \mathfrak{m} containing $I \longleftrightarrow$	A point $P_{\mathfrak{m}}$ on $V(I)$;
$\mathfrak{m}/\mathfrak{m}^2 =$	Cotangent space at $P_{\mathfrak{m}}$.

4.6. Irreducible Varieties.

Definition 4.21. An variety X is called **irreducible** if it is non-empty and is NOT the union of two proper varieties, i.e.,

if $X = X_1 \cup X_2$ for some varieties X_1 and X_2 , then either X_1 or X_2 is X.

Proposition 4.22. Let X be a variety in \mathbb{C}^n , then

X is irreducible $\iff I(X)$ is prime.

 $\begin{array}{l} \textit{Proof.} \ `\Longrightarrow`: \ \mbox{For} \ \forall fg \in I(X), \\ X = V(I(X)) \subseteq V(fg) = V(f) \cup V(g) \\ \Longrightarrow X = V(I(X)) = (V(I(X)) \cap V(f)) \cup (V(I(X)) \cap V(g)) = V(I + \langle f \rangle) \cup V(I + \langle g \rangle) \end{array}$

As X is irreducible, either $V(I(X)) \cap V(f)$ or $(V(I(X)) \cap V(g)$ is X. Therefore, either X is contained in either V(f) or V(g). Hence, f or $g \in I(X)$.

' \Leftarrow ': Let $X = X_1 \cup X_2 = V(J_1) \cup V(J_2)$ for some $J_i = \sqrt{J_i}$. Then $I(X) = J_1 \cap J_2$. Since I(X) is prime, either J_1 or $J_2 = I$.

Example 4.23. Let the whole space be \mathbb{C}^2 :

(a) $X = \{(0,0)\}$ is irreducible; (b) $X = \{(0,0)\} \cup \{(1,0)\}$ is not irreducible; (c) $X = \{x = 0\} \cup \{y = 0\}$ is not irreducible; (d) $X = \mathbb{C}^2$; (e) $X = \{(t^2, t^3) | t \in \mathbb{C}\}$;

Corollary 4.24. Let X be an irreducible variety in \mathbb{C}^n . If $X \subseteq X_1 \cup \cdots \cup X_n$ for some varieties X_1, \ldots, X_n , then $X \subseteq X_i$ for some i.

Proof. Note that $X = (X \cap X_1) \cup (X \cap X_2) \cup \cdots \cup (X \cap X_n)$. By Lemma 4.20, the set $X \cap X_1$ and $(X \cap X_2) \cup \cdots \cup (X \cap X_n)$ are both varieties in \mathbb{C}^n . Since X is irreducible, $X = X \cap X_1$ or $X = (X \cap X_2) \cup \cdots \cup (X \cap X_n)$. By induction on the numbers of varieties, $X = X \cap X_i$ for some *i*.

Proposition 4.25. Let X be a variety in \mathbb{C}^n , then X has a decomposition

$$X = X_1 \cup \dots \cup X_m$$

with each X_i an irreducible variety.

By omitting some terms if necessary, one can arrange the expression such that $X_i \not\subseteq X_j$ for any $i \neq j$. Then this expression is unique up to renumbering the components.

Each X_i is called an irreducible component of X.

Proof. By Theorem 2.27, the ideal I(X) admits a primary decomposition in $\mathbb{C}[x_1, \ldots, x_n]$. We may write

$$I(X) = Q_1 \cap \dots \cap Q_n$$

with each Q_i primary.

By taking V on both sides, Proposition 4.19, and Lemma 4.20, we have

$$X = V(I(X)) = V(Q_1 \cap \dots \cap Q_m)$$

= $V(Q_1) \cup \dots \cup V(Q_m)$
= $V(\sqrt{Q_1}) \cup \dots \cup V(\sqrt{Q_m}) = X_1 \cup \dots \cup X_m$

By Lemma 2.23, each ideal $\sqrt{Q_i}$ is prime. By Proposition 4.22, each variety X_i is irreducible. As for the uniqueness, let

$$X = X_1 \cup \dots \cup X_m = Y_1 \cup \dots Y_t$$

be two irredundant irreducible decompositions, in other words, all X_i , Y_j 's are irreducible varieties, $X_i \not\subseteq X_j$, and $Y_i \not\subseteq Y_j$ for any $i \neq j$.

Then for every *i*, we have $X_i \subseteq Y_1 \cup \ldots Y_t$. By Corollary 4.24, $X_i \subseteq Y_j$ for some *j*. Since $Y_j \subseteq X_1 \cup \cdots \cup X_m$, by Corollary 4.24, $Y_j \subseteq X_k$ for some *k*. Hence, $X_i \subseteq Y_j \subseteq X_k$. As $X_i \not\subseteq X_k$ for any $i \neq k$, we must have i = k and $X_i = Y_j$. Therefore, $\{X_1, \ldots, X_m\} = \{Y_1, \ldots, Y_t\}$.

Example 4.26. Let f(x, y) and g(x, y) be two polynomials with coefficient in \mathbb{C} such that gcd(f, g) = 1. Then the equation f(x, y) = g(x, y) = 0 has only finitely many solutions.

Proof. By Lemma 4.2 and Proposition 4.25,

$$\{(a,b) \in \mathbb{C}^2 | f(a,b) = g(a,b) = 0\}$$
$$= V(\langle f(x,y), g(x,y) \rangle)$$
$$= X_1 \cup X_2 \cup \dots \cup X_m$$

for some irreducible varieties X_1, \ldots, X_m .

$$V(\langle f, g \rangle) \supseteq X_i$$

$$\implies f(x) = g(x) = 0 \text{ for every point } x \in X_i.$$

$$\implies f, g \in I(X_i) \ (I(X_i) \text{ is a prime ideal}).$$

Suppose $I(X_i) = \langle h \rangle$ for some $h \neq 0$, then $gcd(f,g) \neq 1$. Therefore, each prime ideal $I(X_i)$ is NOT principally generated.

Lemma 4.27. Let P be a prime ideal in $\mathbb{C}[x, y]$. Suppose $P \neq \langle h(x, y) \rangle$ for any h(x, y), then P is a maximal ideal.

Proof. Let $F_1(x, y)$ be a non-zero element in P with the minimum degree Deg_y . As P is a prime ideal, we may assume $F_1(x, y)$ is irreducible. We write

$$F_1(x,y) = f_1(x)y^{n_1} + \dots,$$

where $\text{Deg}_y F_1(x, y) = n_1$ and $f_1(x) \in F[x]$ is the leading coefficient.

Let $F_2(x, y)$ be with the minimum degree Deg_y among all elements in $P \setminus \langle F_1(x, y) \rangle$, which is non-empty by the condition in the lemma. We write

$$F_2(x,y) = f_2(x)y^{n_2} + \dots,$$

where $\text{Deg}_y F_2(x, y) = n_2$ and $f_2(x) \in F[x]$ is the leading coefficient.

Let

$$F_2(x,y) := f_1(x)F_2(x,y) - f_2(x)y^{n_2-n_1}F_1(x,y),$$

, then

•
$$\operatorname{Deg}_y F_2 < \operatorname{Deg} F_2;$$

• $\tilde{F}_2 \in P$.

By the minimum assumption on $\text{Deg}_y F_2(x, y)$ among all elements in $P \setminus \langle F_1(x, y) \rangle$, we must have

$$\tilde{F}_2 \in \langle F_1 \rangle \implies f_1(x)F_2 \in \langle F_1 \rangle \implies f_1(x)F_2(x,y) = H(x,y)F_1(x,y)$$

for some $H(x,y) \in \mathbb{C}[x,y]$. Since $F_1(x,y)$ is irreducible and can divide $f_1(x)$, it must be x - a for some $a \in \mathbb{C}$. Therefore, $P \ni x - a$.

Repeat the same argument for $(\mathbb{C}[y])[x]$ by viewing x as the main variable, we have $P \ni y - b$ for some $b \in \mathbb{C}$. Therefore, $P = \langle x - a, y - b \rangle$.

Back to the proof of the example, by the lemma, we have

$$V(\langle f,g\rangle) = \{(a_1,b_1)\} \cup \dots \{(a_m,b_m)\}.$$

Example 4.28. Let f_1, f_2, f_3 be different irreducible polynomials in $\mathbb{C}[x, y, z]$ such that $f_i \notin \langle f_j, f_k \rangle$. Then $V(\langle f, f_2, f_3 \rangle)$ needs NOT to be finite. For example, $xz - y^2, yz - x^3$ and $z^2 - x^2y$.

5. PRIMARY DECOMPOSITION

5.1. Associated primes.

Definition 5.1. Let M be an R-module, and $m \in M$. The **annihilator** of m is the set:

$$ann(m) := \{r \in R | rm = 0\}.$$

Definition 5.2. Let *M* be an *R*-module. An ideal $P \triangleleft R$ is called an **associated prime** of *M* if *P* is a prime ideal and P = ann(m) for some $m \in M \setminus \{0\}$.

The **assassin** ass(M) is the set of associated primes of an *R*-module *M*.

Remark 5.3. The annihilator ann(m) is always an ideal, but it needs not to be prime. The annihilator ann(r) is the whole ring if and only if r = 0.

- **Example 5.4.** (a) Let R = F be a field and M be a finite dimensional vector space. Then $\operatorname{ann}(v) = (0)$ for every non-zero vector v. In particular, $\operatorname{ass}(M)$ is $\{(0)\}$.
 - (b) Let R be an integral domain, and M = I be an ideal as an R-module then ann(r) = (0) for every non-zero r. In particular, ass(M) is $\{(0)\}$.
 - (c) $R = \mathbb{Z}$ and $M = \mathbb{Z}/6\mathbb{Z}$, then ass(M) is $\{\langle 2 \rangle, \langle 3 \rangle\}$.

Let X be a variety in \mathbb{C}^n with an irreducible decomposition

$$X = X_1 \cup \cdots \cup X_m$$

such that $X_i \not\subseteq X_j$ for any $i \neq j$.

Let $R = \mathbb{C}[x_1, \ldots, x_n]$ and M = R/I(X) be an *R*-module. We claim that $Ass(R/I) \supseteq \{I(X_1), \ldots, I(X_m)\}$. We only need to prove the $I(X_1)$ case for example.

Since the decomposition is irredundant, by Corollary 4.24,

$$X \supsetneq X_2 \cup X_3 \dots \cup X_m$$

By Proposition 4.19, there exists

$$f \in I(X_2 \cup X_3 \cdots \cup X_m) \setminus I(X) \neq \phi.$$

We compute the annihilator of f + I(X):

ann
$$(f + I(X)) = \{g|g(f + I(X)) = 0 + I(X)\}\$$

= $\{g|gf \in I(X)\} = \{g|gf(x) = 0, \forall x \in X\}\$
= $\{g|gf(x) = 0, \forall x \in I(X_1)\}\$
= $\{g|(gf)^m \in I(X_1)\} = \{g|gf \in I(X_1)\} = I(X_1)\}\$

Therefore, $I(X_1) \in Ass(R/I(X))$.

Lemma 5.5. Let M be a non-zero module over a Noetherian ring R, then $ass(M) \neq \phi$.

Proof. Let $S := \{ann(m) | m \in M \setminus \{0\}\}$. Then S is non-empty since M is non-zero.

Every ideal in S is proper as $1 \notin ann(m)$. Since R is Noetherian, S has a maximal element ann(m).

Claim: ann(m) is a prime ideal.

Proof for the claim: Let $fg \in ann(m)$, then fgm = 0. If $f \notin ann(m)$ which is iff $fm \neq 0$, then we may consider $ann(fm) \in S$. Note that

- $\operatorname{ann}(fm) \supset \operatorname{ann}(m);$
- $g \in \operatorname{ann}(fm)$.

By the maximum assumption on I, we must have $\operatorname{ann}(m) = \operatorname{ann}(fm)$. Therefore, $g \in \operatorname{ann}(fm) = \operatorname{ann}(m)$. The ideal $\operatorname{ann}(m)$ is by definition prime.

In particular, ass(M) is non-empty.

Proposition 5.6. Let Q be a primary ideal in a Noetherian ring R, then

$$\operatorname{ass}(R/Q) = \{\sqrt{Q}\}$$

Proof. Let $r \in R \setminus Q$. If s(r+Q) = 0 + Q for some $s \in R$, then $rs \in Q$. Since $r \notin Q$ and Q primary, the element s must be in \sqrt{Q} . Therefore,

$$Q \subseteq ann(r) \subseteq \sqrt{Q}.$$

As the radical of a prime ideal is itself, if $\operatorname{ann}(r)$ is prime, it can only be \sqrt{Q} . Hence, $\operatorname{ass}(R/Q) \subset {\sqrt{Q}}$. By Lemma 5.5, $\operatorname{ass}(R/Q) = {\sqrt{Q}}$. \Box

Lemma 5.7. Let $\phi : M \to N$ be an injective *R*-mod homomorphism, then $ann(m) = ann(\phi(m))$. In particular,

$$ass(M) \subseteq ass(N).$$

Lemma 5.8. Let M_1, \ldots, M_s be *R*-modules, then

$$ass(\oplus_{i=1}^{s}M_i) = \bigcup_{i=1}^{s}ass(M_i).$$

Proof. Since M_i is a submodule of $\bigoplus_{i=1}^{s} M_i$, ' \supseteq ' holds.

Suppose a prime $P = ann((m_1, ..., m_s))$ is not in any $ass(M_i)$. Then $P \subseteq ann(m_i)$ and $P = \bigcap_{i=1}^s ann(m_i)$. Contradict the fact that P is irreducible.

Definition 5.9. An ideal Q is called **P-primary** if Q is primary and $\sqrt{Q} = P$.

Lemma 5.10. Let Q_1 and Q_2 be two primary ideals such that $\sqrt{Q_1} = \sqrt{Q_2}$, then $Q_1 \cap Q_2$ is primary.

Proof. Let $fg \in Q_1 \cap Q_2$, then either $g \in \sqrt{Q_1} = \sqrt{Q_2}$, or $f \in Q_1 \cap Q_2$.

Corollary 5.11. Let R be a Noetherian ring and $I = Q_1 \cap \cdots \cap Q_r$ be a minimum primary decomposition. Then $\sqrt{Q_i} \neq \sqrt{Q_j}$ when $i \neq j$.

Theorem 5.12. Let R be a Noetherian ring and $I = Q_1 \cap Q_2 \cap \cdots \cap Q_r$ be a primary decomposition. Then

$$ass(R/I) \subseteq \{\sqrt{Q_1}, \dots, \sqrt{Q_r}\}.$$

If the decomposition is irredundant, then the above is an equality. In particular, an irredundant decomposition with $\sqrt{Q_i} \neq \sqrt{Q_j}$ for $i \neq j$ is minimal.

Proof. Consider the module $M := \bigoplus_{i=1}^{r} R/Q_i$, by Proposition 5.6 and Lemma 5.8,

$$ass(M) = \{\sqrt{Q_1}, \dots, \sqrt{Q_r}\}.$$

Consider the *R*-mod homomorphism:

$$\phi: R \to M$$
$$r \mapsto (r + Q_1, \dots, r + Q_r).$$

The ideal I is the kernel. Therefore, ϕ induces an injective morphism from R/I to M. By Lemma 5.7, $\operatorname{ass}(R/I) \subseteq \{\sqrt{Q_1}, \ldots, \sqrt{Q_r}\}$.

If the decomposition is irredundant, then $I \subseteq \bigcap_{i \neq j} Q_i = J_i$ for any $1 \leq j \leq r$.

The image $\phi(J_i/I)$ is not 0 in M. By Lemma 5.5, $\operatorname{ass}(\phi(J_i/I))$ is non-empty. Note that the image $\phi(J_i/I)$ is contained in the component R/Q_i , by Lemma 5.7 and Proposition 5.6, $\operatorname{ass}(J_i/I) = \{\sqrt{Q_i}\}$.

By Lemma 5.7 again,

$$\{\sqrt{Q_1}, \dots, \sqrt{Q_r}\} = \bigcup_i ass(J_i/I) \subseteq ass(R/I) \subseteq \{\sqrt{Q_1}, \dots, \sqrt{Q_r}\}.$$

Theorem 5.13. Let I be a proper ideal in a Noetherian ring R. Let P be a minimal prime ideal in Ass(R/I), in other words, $P \not\supseteq P'$ for any other $P' \in Ass(R/I)$. Then for any minimal primary decomposition of $I = Q_1 \cap \cdots \cap Q_m$, the factor Q_i with $\sqrt{Q_i} = P$ is given as

$$\{r \in R | rf \in I \text{ for some } f \notin P\}.$$

In particular, the factor Q_i does not rely on the decomposition.

Proof. ' \supseteq ': If $rf \in I \subset Q_i$ for some $f \notin P$, then since Q_i is primary and $f \notin \sqrt{Q_i} = P$, we must have $r \in Q_i$.

'⊆': By the condition in the statement, $P \not\supseteq \sqrt{Q_j}$ for any $j \neq i$. As the prime ideal P is radical, $P \not\supseteq Q_j$ for any $j \neq i$.

There exists $f_j \in Q_j \setminus P$ for every $j \neq i$.

As P is a prime ideal, $f := f_1 \dots f_{i-1} f_{i+1} \dots f_m \notin P$. For every $r \in Q_i$, we have $rf \in Q_1 \cap \dots \cap Q_{i-1} \cap Q_{i+1} \cap \dots \cap Q_m \cap Q_i = I$. Hence, the ' \subseteq ' part holds.

Remark 5.14. In some examples that of I that Ass(R/I) has non-minimal prime ideals, there could be more than one minimal primary decompositions for I. For example, let $I = \langle xy, y^2 \rangle$ in $\mathbb{C}[x, y]$, then I has the following different minimal primary decompositions:

$$I = \langle y \rangle \cap \langle x^2, xy, y^2 \rangle = \langle y \rangle \cap \langle x^3, xy, y^2 \rangle = \langle y \rangle \cap \langle x^m, xy, y^2 \rangle.$$

The non-minimal factor $\langle x, y \rangle$ in Ass $\mathbb{C}[x, y]/I$ may appear in infinitely many different forms.

Example 5.15. Find a minimal primary decomposition for $I = \langle 20, x^2 + 1 \rangle$ in $\mathbb{Z}[x]$

Note that the number 20 has an obvious factorization as 4×5 , we may expect $I = I_4 \cap I_5$, where $I_4 = \langle 4, x^2 + 1 \rangle$ and $I_5 = \langle 5, x^2 + 1 \rangle$. This is indeed that case since

$$I = \{ (x^2 + 1)f(x) + 20ax + 20b | f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z} \};$$

$$I_4 = \{ (x^2 + 1)f(x) + 4ax + 4b | f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z} \};$$

$$I_5 = \{ (x^2 + 1)f(x) + 5ax + 5b | f(x) \in \mathbb{Z}[x], a, b \in \mathbb{Z} \}.$$

Moreover, the injective map $\mathbb{Z}[x]/I \to \mathbb{Z}[x]/I_4 \oplus \mathbb{Z}[x]/I_5$ must be also surjective since the number of elements in the modules are both 400. By Lemma 5.8,

$$\operatorname{Ass}(\mathbb{Z}[x]/I) = \operatorname{Ass}(\mathbb{Z}[x]/I_4) \cup \operatorname{Ass}(\mathbb{Z}[x]/I_5).$$

We first show that I_4 is primary:

$$4 \in I_4 \implies 2 \in \sqrt{I_4}.$$

In particular, $2x \in \sqrt{I_4}$. Since $(x+1)^2 - 2x \in \sqrt{I_4}$, we have $x+1 \in \sqrt{I_4}$. The ideal $\langle 2, x+1 \rangle$ is maximal since $\mathbb{Z}[x]/\langle 2, x+1 \rangle \simeq \mathbb{F}_2$, which is a field. Therefore, I_4 is primary.

As for $I_5 = \langle 5, x^2 + 1 \rangle$, note that $x^2 + 1 \equiv (x + 2)(x - 2) \pmod{5}$, we have the following isomorphisms as $\mathbb{Z}[x]$ -modules:

$$\mathbb{Z}[x]/I_5 \simeq \mathbb{F}_5[x]/\langle x^2 + \underline{1} \rangle \simeq \mathbb{F}_5[x]/\langle x + 2 \rangle \oplus \mathbb{F}_5[x]/\langle x - 2 \rangle \simeq \mathbb{Z}[x]/\langle 5, x + 2 \rangle \oplus \mathbb{Z}[x]/\langle 5, x - 2 \rangle.$$

Note that $\mathbb{Z}[x]/\langle 5, x + 2 \rangle \simeq \mathbb{Z}[x]/\langle 5, x - 2 \rangle \simeq \mathbb{F}_5$, which is a field. The ideals $\langle 5, x \pm 2 \rangle$ are all maximal. Therefore, $\operatorname{Ass}(\mathbb{Z}[x]/I_5) = \{\langle 5, x - 2 \rangle, \langle 5, x + 2 \rangle\}.$

Combine the discussion on I_4 and I_5 together, we have

$$\operatorname{Ass}(\mathbb{Z}[x]/I) = \{ \langle 5, x-2 \rangle, \langle 5, x+2 \rangle, \langle 2, x+1 \rangle \}.$$

The unique minimal primary decomposition of I is $I = \langle 5, x - 2 \rangle \cap \langle 5, x + 2 \rangle \cap \langle 4, x^2 + 1 \rangle$.

6. LOCALISATION AND NORMALISATION

6.1. Ring of fractions.

Definition 6.1. Let R be a ring. A set U in R is called a **multiplicatively closed set** (m.c.s) if:

- (a) $1 \in U$;
- (b) $f,g \in U \implies fg \in U$.

Example 6.2. (a) Let $f \in R$, then $U = \{1, f, f^2, ...\}$ is an m.c.s.

- (b) Let $P \triangleleft R$ be a prime ideal, then $R \setminus P$ is an m.c.s.
- (c) Let R be an integral domain, then $R \setminus (0)$ is an m.c.s.

Definition 6.3. Let R be a ring and $U \subseteq R$ be an m.c.s., the **ring of fractions** of R with respect to U is:

$$U^{-1}R := \left\{\frac{r}{u} | r \in R, u \in U\right\} / \sim,$$

where ' \sim ' is the equivalence relation defined by:

$$\frac{r}{u} \sim \frac{r'}{u'} \iff \exists v \in U \text{ such that } v(ru' - r'u) = 0.$$

The arithmetic operations on $U^{-1}R$ are:

$$\frac{r_1}{u_1} \pm \frac{r_2}{u_2} = \frac{r_1 u_2 \pm r_2 u_1}{u_1 u_2}; \frac{r_1}{u_1} \cdot \frac{r_2}{u_2} = \frac{r_1 r_2}{u_1 u_2}$$

Lemma 6.4. Adopt the notation as above:

- (a) ' \sim ' is an equivalence relation;
- (b) The operations on $U^{-1}R$ are well-defined and $(U^{-1}R, +, \cdot)$ is a ring;
- (c) The map $\phi: R \to U^{-1}R: r \mapsto \frac{r}{1}$ is a ring homomorphism.

Proof. We only check the equivalence relation:

- Reflexive: 1(ru ru) = 0, therefore, $\frac{r}{u} \sim \frac{r}{u}$.
- Symmetric: suppose $\frac{r}{u} \sim \frac{r'}{u'}$, then $\exists v \text{ s.t. } v(ru' r'u) = 0$, which means v(r'u ru') = 0and $\frac{r'}{u'} \sim \frac{r}{u}$.
- Transitivity, suppose $\frac{r}{u} \sim \frac{r'}{u'} \sim \frac{r''}{u''}$, then $\exists v, v'$ s.t. v(ru' r'u) = v'(r'u'' r''u') = 0. v'u''(v(ru' - r'u)) + uv(v'(r'u'' - r''u')) = 0.

Since U is m.c., $vv'u' \in U$, we have $\frac{r}{u} \sim \frac{r''}{u''}$.

We make notations for some important ring of fractions.

Definition 6.5. Let R be a ring.

- Let $f \in R$ and $U_f := \{1, f, f^2, \dots, f^m, \dots\}$. We denote $R_f := R[\frac{1}{f}] = (U_f)^{-1}R$.
- Let P be a prime ideal. We denote

$$R_P := (R \setminus P)^{-1}R$$

and call it the **localisation** of R at P.

• Let R be an integral domain. We denote

$$\operatorname{Frac}(R) := (R \setminus (0))^{-1}R$$

and call it the **field of fractions** of R.

Here are some more concrete examples of ring of fractions:

Example 6.6. (a) Let $R = \mathbb{Z}$, then $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$. The localisation of \mathbb{Z} at $\langle 2 \rangle$ is

$$\mathbb{Z}_{\langle 2\rangle} = \{\frac{a}{b} | a, b \in \mathbb{Z}, 2 \nmid b\} \subset \mathbb{Q}$$

The ring of fractions \mathbb{Z}_2 is $\mathbb{Z}_2 = \mathbb{Z}[\frac{1}{2}] = \{\frac{a}{2^m} | a \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}\} \subset \mathbb{Q}.$

(b) Let $R = \mathbb{Z}/6\mathbb{Z}$, we consider the ring of fractions: $(\mathbb{Z}/6\mathbb{Z})_{\underline{2}}$. The set $\{\frac{a}{b} | a \in \mathbb{Z}/6\mathbb{Z}, b \in \{\underline{1}, \underline{2}, \underline{4}\}\}$ has 18 elements. By definition of '~', $\frac{a}{b} \sim \frac{0}{1}$ if and only if $a = \underline{0}$ or $\underline{3}$. $\frac{a}{b} \sim \frac{1}{1}$ if and only if $a - b = \underline{0}$ or $\underline{3}$. $\frac{a}{b} \sim \frac{2}{1}$ if and only if $a - 2b = \underline{0}$ or $\underline{3}$. Therefore, $(\mathbb{Z}/6\mathbb{Z})_2 \simeq \mathbb{Z}/3\mathbb{Z}$.

6.2. Localisation and local rings.

Definition 6.7. A ring is called **local** if it has a unique maximal ideal.

Example 6.8. (a) A field k is a local ring;

(b) $k[x]/\langle x^m \rangle$ is a local ring, but it is not an integral domain;

(c) $\mathbb{Z}, k[x]$ are not local rings.

Lemma 6.9. Let I be a proper ideal of R, then The ideal I is the unique maximal ideal of $R \iff$ every element in $R \setminus I$ is a unit.

Proof. ' \implies ': For $\forall r \in R \setminus I$, if $\langle r \rangle$ is not the whole ring, by Proposition 2.18, \exists a maximal ideal $J \supset \langle r \rangle \notin I$. This invalidates the uniqueness of I. Therefore, $\langle r \rangle = R$ and $1 \in \langle r \rangle$, r is a unit. ' \Leftarrow ': For $\forall J \triangleleft R$ s.t. $J \notin I$, $\exists x \in J \setminus I$. x is a unit by assumption, therefore J = R.

Proposition 6.10. Let P be a prime ideal of R, then $PR_P := P_P := \{\frac{r}{u} | r \in P, u \notin p\}$ is the unique maximal ideal in R_P .

Proof. For any elements $\frac{r}{u}, \frac{r'}{u'} \in PR_P$, and $\frac{a}{b} \in R_P$: $\frac{r}{u} + \frac{r'}{u'} = \frac{ur' + u'r}{uu'} \in PR_P$; $\frac{r}{u}\frac{a}{b} = \frac{ra}{ub} \in PR_P$. If $1 \sim \frac{r}{u}$, then $\exists v \notin P$ such that $v(r-u) = 0 \implies vr = vu \notin P$ as P is prime. Therefore, $r \notin P$ and $1 \notin PR_P$.

We have shown that PR_P is a proper ideal in R_P .

 $\forall \frac{r}{u} \in R_P \setminus PR_P \implies r \notin P \implies \frac{u}{r} \in R_P \implies \frac{r}{u}$ is a unit in R_P . By Lemma 6.9, PR_P is the unique maximal ideal in R_P .

Example 6.11. (a) The ring $\mathbb{Z}_{\langle 3 \rangle}$ is a local ring with unique maximal ideal generated by $\frac{3}{1}$.

- (b) The ring C[x]⟨x⟩ is a local ring consisting of all rational functions on C with no pole at the origin. The ring has unique maximal ideal consisting of rational functions vanishing at the origin.
- (c) The ring $\mathbb{C}[x, y]_{\langle x, y \rangle}$ is a local ring. It has infinitely many prime ideals: $\langle ax + by \rangle$.

6.3. Nakayama Lemma.

Lemma 6.12. Let R be a ring, I be an ideal, and M be a finitely generated R-module. If IM = M, then $\exists r \in R$ with

$$r \equiv 1 \pmod{I}$$

such that rM = 0.

Picture from Google: middle of the mountain in Japan Cayley+Hamilton → Nakayama (中山正)

Proof. Consider $\phi : M \to M$, where ϕ is the identity morphism, then $\phi(M) \subseteq IM$. Apply Cayley-Hamilton for ϕ and I, then

$$\operatorname{id} + a_1 + a_2 + \dots + a_n = 0$$

for some $a_j \in I^j$, where *n* is the number of generators of *M*. Denote $a = a_1 + a_2 + \cdots + a_n \in I$, then (id+a)m = 0 for any *m*, in other words, (1+a)m = 0.

Lemma 6.13. Let R be a local ring with maximal ideal \mathfrak{m} , and M a finitely generated R-module. If $M = \mathfrak{m}M$, then M = 0.

Proof. By Lemma 6.12, $\exists r \notin \mathfrak{m}$ s.t. rM = 0. By Lemma 6.9, r is a unit. Therefore M = 0. \Box

Lemma 6.14. Let R be a local ring with maximal ideal \mathfrak{m} , and M a finitely generated R-module. Let a_1, \ldots, a_t be elements in M such that $a_1 + \mathfrak{m}M, \ldots, a_t + \mathfrak{m}M$ spans $M/\mathfrak{m}M$ as a vector space over R/\mathfrak{m} .

Then a_1, \ldots, a_t generate M.

Proof. Let N be the submodule of M generated by a_1, \ldots, a_t . Since $a_i + \mathfrak{m}M$ spans $M/\mathfrak{m}M$, for any element $m \in M$,

$$m + \mathfrak{m}M = r_1(a_1 + \mathfrak{m}M) + \dots + r_t(a_t + \mathfrak{m}M)$$

for some $r_i \in R$. Therefore, $m = r_1 a_1 + \cdots + r_t a_t + \tilde{m}$ for some $m \in \mathfrak{m}M$. By the definition of $N, m + N = \tilde{m} + N$. Therefore,

$$M/N = \mathfrak{m}M/N$$

By Lemma 6.13, M/N = 0.

Example 6.15. Consider the localization of $\mathbb{C}[x, y]$ at $\langle x, y \rangle$, the unique maximal ideal is $\mathfrak{m} = \langle x, y \rangle$.

Claim:
$$\mathfrak{m} = \langle x + y^4, y + xy + x^4y^3 \rangle = I$$

The quotient field $\mathbb{C}[x,y]_{\langle x,y\rangle}/\mathfrak{m}$ is isomorphic to \mathbb{C} . Consider the module $M=\mathfrak{m}$, then

$$M/\mathfrak{m}M = \mathfrak{m}/\mathfrak{m}^2 = \langle x, y \rangle / \langle x^2, xy, y^2 \rangle$$

is a \mathbb{C} -vector space spanned by $x + \mathfrak{m}M$ and $y + \mathfrak{m}M$ as well as spanned by $x + y^4 + \mathfrak{m}M$ and $y + xy + x^4y^3 + \mathfrak{m}M$.

By Lemma 6.14, $x + y^4$, $y + xy + x^4y^3$ spans the whole module M.

6.4. Normalisation.

Definition 6.16. Let $R \subseteq S$ be rings. We say R is integrally closed in S if every element in S that is integral over R is contained in R.

Definition 6.17. Let R be a domain, then we say R is an **integrally closed domain** or **normal** if it is integrally closed in its field of fractions FracR. The integral closure of R in Frac(R) is called the **normalization** of R.

Remark 6.18. Let *R* be an integral domain, then the normalisation of *R* is a normal ring.

Example 6.19. (a) A field F is normal: Frac F = F.

(b) The ring of integers \mathbb{Z} is normal.

Note that $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}, \forall q \in \mathbb{Q}$, we may write $q = \operatorname{gcd}(a, b) = 1$ for some $a, b \in \mathbb{Z}$. Suppose $\frac{a}{b}$ is integral over \mathbb{Z} , then

$$\left(\frac{a}{b}\right)^n + \dots + a_{n-1}\frac{a}{b} + a_n = 0$$

for some $a_1, \ldots, a_n \in \mathbb{Z}$. We have

$$a^{n} + a_{1}a^{n-1}b + \dots + a_{n}b^{n} = 0.$$

Note that a^n is the only term that cannot be divided by b, therefore, $b = \pm 1$. And $\frac{a}{b} \in \mathbb{Z}$. (c) By the same argument, a unique factorization domain (UFD) is normal.

(d) $\mathbb{Z}[\sqrt{5}]$ is not normal.

As $\frac{\sqrt{5}+1}{2} \in \operatorname{Frac}(\mathbb{Z}[\sqrt{5}]) = \mathbb{Q}(\sqrt{5})$, but it satisfies the equation $\phi^2 - \phi - 1 = 0$ hence is integral over \mathbb{Z} .

The normalisation of $\mathbb{Z}[\sqrt{5}]$ is $\mathbb{Z}\left[\frac{\sqrt{5}+1}{2}\right]$.

(e) $R = \mathbb{C}[t^2, t^3]$ is NOT normal: its normalization is $\mathbb{C}[t]$.

Note that $\operatorname{Frac}(\mathbb{C}[t^2, t^3]) = \operatorname{Frac}(\mathbb{C}[t]) = \mathbb{C}(t)$. The element $t = \frac{t^3}{t^2} \in \operatorname{Frac}(\mathbb{C}[t^2, t^3])$ satisfies the equation $x^2 - t^2 = 0$, but is not in $\mathbb{C}[t^2, t^3]$. By definition $\mathbb{C}[t^2, t^3]$ is not normal.

Moreover, since $t \in \overline{R}$, we have $\mathbb{C}[t] \subseteq \overline{R}$. On the other hand, $R \subset \mathbb{C}[t] \implies \overline{R} \subseteq \overline{\mathbb{C}[t]}$ in $\mathbb{C}(t)$. Since $\mathbb{C}[t]$ is normal by c), $\overline{\mathbb{C}[t]} = \mathbb{C}[t]$. Hence, $\overline{R} = \mathbb{C}[t]$.

Lemma 6.20. Let R be a normal ring, S be an m.c.s. not containg 0, then $S^{-1}R$ is normal.

Proof. Note that $\operatorname{Frac} R \subseteq \operatorname{Frac}(S^{-1}R) \subseteq \operatorname{Frac}(\operatorname{Frac} R) = \operatorname{Frac} R$, we have $\operatorname{Frac} R = \operatorname{Frac}(S^{-1}R)$. Let $t \in \operatorname{Frac} R$ be integral over $S^{-1}R$, then

$$s^{n} + a_{1}s^{n-1} + \dots + a_{n} = 0$$

for some $a_i = \frac{b_i}{c_i} \in S^{-1}R$, where $b_i \in R$ and $c_i \in S$. Let $c := c_1 c_2 \dots c_n \in S$, then ct is integral over R. Therefore, $t = \frac{tc}{c} \in S^{-1}R$. By definition, $S^{-1}R$ is normal.

C.L.:, B1.32: MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK *Email address*: C.Li.25@warwick.ac.uk *URL*: https://sites.google.com/site/chunyili0401/