
Week 2 Notes

Warning: These are unofficial notes which address some questions in the support class. The contents are not
necessarily part of the lectures and may not be examinable. Please use them at your own discretion.

In this course, all rings are assumed to be commutative rings with multiplicative identity 1.

1.1 Is the polynomial ring a PID?

Recall that a PID is a ring in which every ideal is generated by a single element. The following should be an easy
exercise from Algebra II.

Proposition 1.1

Let 𝑅 be a ring. Then 𝑅 is a field if and only if 𝑅 [𝑥] is a PID.

Proof. ” =⇒ ”: If 𝑅 is a field, then in fact 𝑅 [𝑥] is a Euclidean domain in the sense that division algorithm works
for all polynomials in 𝑅 [𝑥] (in general, it only works for polynomials whose leading coefficient is a unit
in 𝑅). Let 𝐼 be a non-zero ideal of 𝑅 [𝑥]. We choose 𝑓 ∈ 𝐼 such that deg 𝑓 = min {deg𝑔 | 𝑔 ∈ 𝐼 \ {0}}. For
ℎ ∈ 𝐼 , there exists 𝑞, 𝑟 ∈ 𝐼 such that ℎ = 𝑞𝑓 +𝑟 with either 𝑟 = 0 or deg 𝑟 < deg 𝑓 . As 𝑓 , ℎ ∈ 𝐼 , 𝑟 = ℎ−𝑞𝑓 ∈ 𝐼 .
We must have 𝑟 = 0 by minimality of deg 𝑓 . Hence ℎ = 𝑞𝑓 ∈ ⟨𝑓 ⟩. We have 𝐼 = ⟨𝑓 ⟩. So 𝑅 [𝑥] is a principal
ideal domain.

“ ⇐= ”: Consider the surjective ring homomorphism 𝜑 : 𝑅 [𝑥] → 𝑅 such that 𝜑 (𝑟 ) = 𝑟 for all 𝑟 ∈ 𝑅

and 𝜑 (𝑥) = 1. Then by first isomorphism theorem we have 𝑅 [𝑥]/ker𝜑 � 𝑅. Note that 𝜑 (𝑥 − 1) = 0 so
𝑥 − 1 ∈ ker𝜑 . Since 𝑅 [𝑥] is a PID, ker𝜑 = ⟨𝑓 ⟩ for some 𝑓 ∈ 𝑅 [𝑥]. It follows that 𝑓 divides (𝑥 − 1). Since
(𝑥 − 1) is irreducible, we have ker𝜑 = ⟨𝑥 − 1⟩, which is a maximal ideal. Therefore 𝑅 � 𝑅 [𝑥]/⟨𝑥 − 1⟩ is a
field. □

1.2 Row echelon form

For an ideal generated by linear polynomials the problem of finding a Gröbner basis is purely linear algebra.

Proposition 1.2

Let 𝑘 be a field and 𝑅 := 𝑘 [𝑥1, ..., 𝑥𝑛] a polynomial ring. Let 𝐼 = ⟨𝑔1, ..., 𝑔𝑚⟩ be an ideal generated by
𝑔1, ..., 𝑔𝑚 ∈ 𝑅 where each 𝑔𝑖 =

∑𝑛
𝑗=1 𝑎𝑖 𝑗𝑥 𝑗 is a linear polynomial. Suppose that the matrix 𝑀 = (𝑎𝑖 𝑗 ) is in its

row echelon form. Then {𝑔1, ..., 𝑔𝑚} is a Gröbner basis (with respect to a suitable lexicographic ordering) for
𝐼 .

1.3 Noetherian rings and Hilbert basis theorem

The problem of existence of Gröbner basis for any ideal is a corollary of Hilbert basis theorem, which holds not
only for polynomial rings over a field but for any Noetherian ring. These materials might be covered in the later
lectures.
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Proposition 1.3

Suppose that 𝑅 is a ring. The following statements are equivalent:

1. Every ideal of 𝑅 is finitely generated.

2. (Ascending Chain Condition) Suppose that we have an ascending chain of ideals of 𝑅:

𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆ · · ·

Then there exists𝑚 ∈ N such that 𝐼𝑚 = 𝐼𝑚+𝑛 for all 𝑛 > 0.

If 𝑅 satisfies those conditions, then 𝑅 is called a Noetherian ring.

Proof. 1 =⇒ 2: Consider an ascending chain of ideals:

𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆ · · ·

Let 𝐼 :=
⋃∞

𝑛=1 𝐼𝑛 . By assumption 𝐼 is finitely generated. Let 𝑖 = ⟨𝑥1, ..., 𝑥𝑚⟩. For each 𝑖 there exists 𝑛𝑖 ∈ N
such that 𝑥𝑖 ∈ 𝐼𝑛𝑖 . Take 𝑁 := max{𝑛1, ..., 𝑛𝑚}. Then we have 𝐼𝑁 = 𝐼 and hence 𝐼𝑁 = 𝐼𝑁+1 = 𝐼𝑁+2 = · · · .

2 =⇒ 1: Suppose that 𝐼 ⊳ 𝑅 is not finitely generated. First pick a 𝑥1 ∈ 𝐼 . For each 𝑛 > 0, there exists
𝑥𝑛+1 ∈ 𝐼 \ ⟨𝑥1, ..., 𝑥𝑛⟩, for otherwise 𝐼 would be generated by the set {𝑥1, ..., 𝑥𝑛}. Therefore we can construct
a non-terminating ascending chain:

⟨𝑥1⟩ ⊊ ⟨𝑥1, 𝑥2⟩ ⊊ ⟨𝑥1, 𝑥2, 𝑥3⟩ ⊊ · · ·

This contradicts the ACC. □

Theorem 1.4. Hilbert basis theorem

Let 𝑅 be a Noetherian ring. Then 𝑅 [𝑥] is also a Noetherian ring.

This is one of the foundational theorems in commutative algebra. You may find the proof in

• Theorem 1.27 of Chunyi’s notes; or

• Theorem 3.6 of Miles’ book; or

• Theorem 7.5 of Atiyah & MacDonald.

The point is that using ACC dramatically simplifies the proof (at least conceptually). The following is the historical
version of Hilbert basis theorem, but it is now an easy corollary.

Corollary 1.5

Let 𝑘 be a field. Then every ideal of 𝑘 [𝑥1, ..., 𝑥𝑛] is finitely generated.

A direct (and probably more computational?) proof without using ACC of this fact can be found inTheorem 2.5.4
of CLO.
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