
Week 3 Notes

Warning: These are unofficial notes which address some questions in the support class. The contents are not
necessarily part of the lectures and may not be examinable. Please use them at your own discretion.

In this course, all rings are assumed to be commutative rings with multiplicative identity 1.

2.1 Dickson’s lemma
Proposition 2.1. Dickson’s Lemma

Let 𝑆 = 𝑘 [𝑥1, ..., 𝑥𝑛] be a polynomial ring and 𝐼 = ⟨𝑥𝒖 | 𝒖 ∈ 𝐴⟩ be a monomial ideal, where 𝐴 ⊆ N𝑛 . Then
there exists 𝒂1, ..., 𝒂𝑠 ∈ 𝐴 such that 𝐼 = ⟨𝑥𝒂1, ..., 𝑥𝒂𝑠 ⟩.

Proof. We prove this by induction on 𝑛.

Base case: for 𝑛 = 1, 𝐼 = ⟨𝑥𝛼 ⟩ where 𝛼 is the smallest integer in the set 𝐴 ⊆ N.

Induction case. Suppose that the result holds for 𝑆𝑛−1 = 𝑘 [𝑥1, ..., 𝑥 [𝑛−1]]. Then 𝑆 = 𝑆𝑛−1 [𝑦] where𝑦 := 𝑥𝑛 .
Consider the ideal

𝐽 := ⟨𝑥𝛼 ∈ 𝑆𝑛−1 | 𝑥𝛼𝑦𝑚 ∈ 𝐼 for some𝑚 ∈ Z+⟩ ⊳ 𝑆𝑛−1.

By induction hypothesis, 𝐽 =
〈
𝑥𝛼 (1) , ..., 𝑥𝛼 (𝑠 )

〉
for some 𝛼 (1), ..., 𝛼 (𝑠) ∈ N𝑛−1. For each 𝑖 , there exists some

𝑚𝑖 ∈ N such that 𝑥𝛼 (𝑖 )𝑦𝑚𝑖 ∈ 𝐼 . Let𝑚 := max{𝑚1, ...,𝑚𝑠 }. For each ℓ ∈ {0, ...,𝑚 − 1}, consider the ideals

𝐽ℓ :=
〈
𝑥𝛼 ∈ 𝑆𝑛−1 | 𝑥𝛼𝑦ℓ ∈ 𝐼

〉
⊳ 𝑆𝑛−1.

By induction hypothesis, 𝐽ℓ =
〈
𝑥𝛼ℓ (1) , ..., 𝑥𝛼ℓ (𝑚ℓ )

〉
. Now we claim that 𝐼 is generated by the polynomials

𝑥𝛼 (1)𝑦𝑚, . . . , 𝑥𝛼 (𝑠 )𝑦𝑚 ;
𝑥𝛼0 (1) , . . . , 𝑥𝛼0 (𝑠0 ) ;
𝑥𝛼1 (1)𝑦, . . . , 𝑥𝛼1 (𝑠1 )𝑦;
. . . ;
𝑥𝛼𝑚−1 (1)𝑦𝑚−1, . . . 𝑥𝛼𝑚−1 (𝑠𝑚−1 )𝑦𝑚−1.

As 𝐼 is a monomial ideal, it suffices to check that all monomials in 𝐼 can be generated by these elements.
Let 𝑥𝑢𝑦 𝑗 ∈ 𝐼 . If 𝑗 ⩾ 𝑚, then since 𝑥𝑢 ∈ 𝐽 we have 𝑥𝛼 (𝑖 ) | 𝑥𝑢 for some 𝑖 . Hence 𝑥𝛼 (𝑖 )𝑦𝑚 | 𝑥𝑢𝑦 𝑗 . If 𝑗 < 𝑚,
then 𝑥𝑢 ∈ 𝐽 𝑗 and hence 𝑥𝛼 𝑗 (𝑖 ) | 𝑥𝑢 for some 𝑖 . Hence 𝑥𝛼 𝑗 (𝑖 )𝑦 𝑗 | 𝑥𝑢𝑦 𝑗 .

We have proven that 𝐼 is generated by 𝑥𝑏1, . . . , 𝑥𝑏𝑠 for some 𝑏1, . . . , 𝑏𝑠 ∈ N𝑛 . By the lemma in the lectures,
for each 𝑖 there exists 𝒂𝑖 ∈ 𝐴 such that 𝑥𝑎𝑖 | 𝑥𝑏𝑖 . Hence 𝐼 is generated by 𝑥𝑎1, . . . , 𝑥𝑎𝑠 with 𝒂1, . . . , 𝒂𝑠 ∈ 𝐴. □

2.2 Hilbert basis theorem for power series rings

We can mimic the proof of Hilbert basis theorem to prove a similar result for the rings of power series.

Proposition 2.2

Let 𝑅 be a Noetherian ring. Then 𝑅⟦𝑥⟧ is also Noetherian.
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Proof. Instead of the degree of a polynomial, for 𝑓 ∈ 𝑅⟦𝑥⟧ we consider 𝑑 (𝑓 ) := min {𝑛 ∈ N | 𝑓 ∈ ⟨𝑥𝑛⟩}. That is,
𝑑 (𝑓 ) is the degree of the lowest non-zero term of 𝑓 . Let 𝑏 (𝑓 ) ∈ 𝑅 be the coefficient of the term of degree
𝑑 (𝑓 ) of 𝑓 . That is, 𝑓 (𝑥) = 𝑏 (𝑓 )𝑥𝑑 (𝑓 ) +∑∞

𝑛=𝑑 (𝑓 )+1 𝑐𝑛𝑥
𝑛 .

Suppose that 𝐼 ⊳ 𝑅⟦𝑥⟧ is not finitely generated. We may construct a non-stabilising ascending chain of
ideals of 𝑅⟦𝑥⟧ :

⟨𝑓1⟩ ⊊ ⟨𝑓1, 𝑓2⟩ ⊊ ⟨𝑓1, 𝑓2, 𝑓3⟩ ⊊ · · ·

where 𝑓𝑚+1 ∈ 𝐼 \ ⟨𝑓1, . . . , 𝑓𝑚⟩ is with the largest 𝑑 (𝑓 ) among all elements of 𝐼 \ ⟨𝑓1, . . . , 𝑓𝑚⟩ for each𝑚 ∈ N.
We claim that 𝑏 (𝑓𝑚+1) ∉ ⟨𝑏 (𝑓1) , . . . , 𝑏 (𝑓𝑚)⟩. Suppose the contrary holds. Then 𝑏 (𝑓𝑚+1) =

∑𝑚
𝑖=1 𝑟𝑖𝑏 (𝑓𝑖) for

some 𝑟1, . . . , 𝑟𝑚 ∈ 𝑅. Consider 𝑓 ′𝑚+1 := 𝑓𝑚+1−
∑𝑚

𝑖=1 𝑟𝑖 𝑓𝑖 . Thenwe note that 𝑓 ′𝑚 ∈ 𝐼 \⟨𝑓1, . . . , 𝑓𝑚⟩ and𝑑
(
𝑓 ′𝑚+1

)
>

𝑑 (𝑓𝑚+1). This contradicts the maximality assumption on 𝑓𝑚+1. Hence 𝑏 (𝑓𝑚+1) ∉ ⟨𝑏 (𝑓1) , . . . , 𝑏 (𝑓𝑚)⟩. But
now we have a non-stabilising ascending chain of ideals of 𝑅 :

⟨𝑏 (𝑓1)⟩ ⊊ ⟨𝑏 (𝑓1) , 𝑏 (𝑓2)⟩ ⊊ ⟨𝑏 (𝑓1) , 𝑏 (𝑓2) , 𝑏 (𝑓3)⟩ ⊊ · · ·

This contradicts that 𝑅 is Noetherian. Hence 𝐼 is finitely generated so 𝑅⟦𝑥⟧ is Noetherian. □

In the class you are told to determine if 𝑘⟦𝑥⟧ is a Noetherian ring, where 𝑘 is a field. Of course this is a special
case of the result proven above. Nonetheless, a simpler proof can be given for this case. In particular we can
prove that 𝑘⟦𝑥⟧ is a PID.

Lemma 2.3

Let 𝑘 be a field. Then 𝑘⟦𝑥⟧ is a PID. Moreover, every ideal of 𝑘⟦𝑥⟧ is of the form ⟨𝑥𝑛⟩ for some 𝑛 ∈ Z⩾0.

Proof. We will be using the following fact: 𝑓 ∈ 𝑘⟦𝑥⟧ is a unit if and only if 𝑓 has non-zero constant term. Indeed,
if 𝑓 (𝑥) = ∑∞

𝑛=0 𝑎𝑛𝑥
𝑛 , 𝑓 is a unit if we can find 𝑔(𝑥) = ∑∞

𝑛=0 𝑏𝑛𝑥
𝑛 ∈ 𝑘⟦𝑥⟧ such that 𝑓 (𝑥)𝑔(𝑥) = 1. We can

solve 𝑏𝑛 inductively:

1 = 𝑎0𝑏0;
𝑛∑︁
𝑖=0

𝑎𝑖𝑏𝑛−𝑖 = 0, ∀𝑛 > 0.

So there exists a sequence (𝑏𝑛)𝑛⩾0 that solves the above equation if and only if 𝑎0 ≠ 0. In this case, 𝑔 exists
and 𝑓 is a unit.

Now let 𝐼 ⊳ 𝑘⟦𝑥⟧. Let 𝑓 ∈ 𝐼 such that 𝑑 (𝑓 ) is minimal among all elements in 𝐼 (the same 𝑑 (𝑓 ) as in the
previous proof) and let 𝑛 = 𝑑 (𝑓 ). That is, 𝑓 ∈ ⟨𝑥𝑛⟩ and 𝑓 ∉

〈
𝑥𝑛+1

〉
. We claim that 𝐼 = ⟨𝑥𝑛⟩.

On one hand, we may write 𝑓 (𝑥) = 𝑥𝑛𝑔(𝑥) where 𝑔 ∈ 𝑘⟦𝑥⟧ has non-zero constant term. This means there
exists ℎ ∈ 𝑘⟦𝑥⟧ such that 𝑔ℎ = 1. Therefore 𝑥𝑛 = 𝑥𝑛𝑔(𝑥)ℎ(𝑥) = 𝑓 (𝑥)ℎ(𝑥) ∈ ⟨𝑓 (𝑥)⟩ ⊆ 𝐼 . On the other hand,
for 𝑓 ′ ∈ 𝐼 , by assumption we have 𝑓 ′(𝑥) = 𝑥𝑚𝑔′(𝑥) where𝑚 ⩾ 𝑛 and 𝑔′ ∈ 𝑘⟦𝑥⟧ has non-zero constant
term. So 𝑓 ′(𝑥) = 𝑥𝑛 · 𝑥𝑚−𝑛𝑔′(𝑥) ∈ ⟨𝑥𝑛⟩. This finishes the proof. □

2.3 An example of Noetherian ring
Proposition 2.4

Z [2−1] := {𝑎/𝑏 ∈ Q | gcd(𝑎, 𝑏) = 1, 𝑏 = 2𝑛 for some 𝑛 ∈ Z⩾0} is a Noetherian ring.
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Z [2−1] is an example of localisation of Z . In general, a localisation of a Noetherian ring 𝑅 is also Noetherian.
Although in this case direct proofs are easier. We present two proofs.

Proof 1. Consider the ring homomorphism 𝜑 : Z [𝑥] → Z [2−1] induced by 𝑥 ↦−→ 1/2. It is clear that 𝜑 is
surjective, and 𝜑 (2𝑥 − 1) = 0. We claim that ker𝜑 = ⟨2𝑥 − 1⟩. Indeed, suppose that 𝑓 ∈ ker𝜑 . Consider
𝑓 ∈ Q[𝑥]. We have 𝑓 (1/2) = 0 by construction of 𝜑 . Hence 𝑓 (𝑥) = (2𝑥 − 1)𝑔(𝑥) for some 𝑔(𝑥) ∈ Q[𝑥].
Suppose that 𝑓 (𝑥) = ∑

𝑛 𝑎𝑛𝑥
𝑛 and 𝑔(𝑥) = ∑

𝑛 𝑏𝑛𝑥
𝑛 . Then

𝑎𝑛 = −𝑏𝑛 + 2𝑏𝑛−1, ∀𝑛 ∈ Z>0; 𝑎0 = −𝑏0.

Since 𝑎𝑛 ∈ Z for all 𝑛, by induction we have that 𝑏𝑛 ∈ Z for all 𝑛. Hence 𝑔 ∈ Q[𝑥]. So we have
𝑓 (𝑥) = (2𝑥 − 1)𝑔(𝑥) in Z [𝑥]. That is, 𝑓 ∈ ⟨2𝑥 − 1⟩. This proves the claim. Now by first isomorphism
theorem we have Z [𝑥]/⟨2𝑥 − 1⟩ � Z [2−1].

Finally,Z is Noetherian because it is a PID;Z [𝑥] is Noetherian byHilbert basis theorem; andZ [𝑥]/⟨2𝑥 − 1⟩
is Noetherian since it is a quotient of a Noetherian ring. □

Proof 2. We can also show directly that Z [2−1] is a PID. For 𝐼 ⊳ Z [2−1], consider the ideal

𝐽 := ⟨𝑎 ∈ Z | 𝑎/𝑏 ∈ 𝐼 for some 𝑏 = 2𝑛⟩ ⊳ Z .

Since Z is a PID, we have 𝐽 = ⟨𝑎0⟩ for some 𝑎0 ∈ Z . Now we claim that 𝐼 = ⟨𝑎0/1⟩ in Z [2−1].

On one hand, by definition 𝑎0/𝑏0 ∈ 𝐼 for some 𝑏0. Then 𝑎0/1 = 𝑎0/𝑏0 · 𝑏0/1 ∈ 𝐼 . On the other hand, if
𝑎/𝑏 ∈ 𝐼 , then 𝑎 ∈ 𝐽 and hence 𝑎 = 𝑐𝑎0 for some 𝑐 ∈ Z . Now 𝑎/𝑏 = 𝑐/𝑏 · 𝑎0/1 ∈ ⟨𝑎0/1⟩. This finishes the
proof. □

2.4 An example of non-Noetherian ring
Proposition 2.5

Let 𝑘 be a field and 𝑅 be the 𝑘-algebra generated by the semi-group {𝑥, 𝑥𝑦, 𝑥𝑦2, 𝑥𝑦3, ...}. That is, 𝑅 is a subring
of 𝑘 [𝑥,𝑦] in which every polynomial is of the form 𝑓 (𝑥,𝑦) = ∑

𝑖⩾1
𝑗⩾0

𝑎𝑖 𝑗𝑥
𝑖𝑦 𝑗 . Then 𝑅 is not a Noetherian ring.

Proof. We claim that the following ascending chain of ideals of 𝑅 does not stabilise:

⟨𝑥⟩ ⊆ ⟨𝑥, 𝑥𝑦⟩ ⊆
〈
𝑥, 𝑥𝑦, 𝑥𝑦2

〉
⊆ · · ·

Inductively we shall prove that 𝑥𝑦𝑛+1 ∉ ⟨𝑥, 𝑥𝑦, ..., 𝑥𝑦𝑛⟩. Suppose that the contrary holds. Let

𝑥𝑦𝑛 =

𝑛∑︁
𝑖=0

𝑓𝑖 (𝑥,𝑦)𝑥𝑦𝑖 .

Since 𝑅 is an integral domain, 𝑦𝑛 =
∑𝑛

𝑖=0 𝑓𝑖 (𝑥,𝑦)𝑦𝑖 . Note that each 𝑓𝑖 ∈ 𝑅 is divisible by 𝑥 in 𝑘 [𝑥,𝑦], but 𝑦
is not divisible by 𝑥 in 𝑘 [𝑥,𝑦]. So this is a contradiction. □
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