
Week 6 Notes

Warning: These are unofficial notes loosely related to the support class or the module in general. The contents
are not necessarily part of the lectures and may not be examinable. Please use them at your own discretion.

In this course, all rings are assumed to be commutative rings with multiplicative identity 1.

5.1 Identifying free modules
Proposition 5.1

Let 𝑅 be a ring and 𝑀 an 𝑅-module. A torsion element of 𝑀 is𝑚 ∈ 𝑀 such that there exists a non-zero-
divisor 𝑟 ∈ 𝑅 \ {0} with 𝑟𝑚 = 0. If𝑀 has a non-zero torsion element, then it is not a free 𝑅-module.

Proof. Suppose that 𝑀 is free with a basis 𝐵. Let𝑚 ∈ 𝑀 be a non-zero trosion element. Then there exists unique
𝑟1, ..., 𝑟𝑛 ∈ 𝑅 \ {0} and𝑚1, ...,𝑚𝑛 ∈ 𝐵 such that𝑚 =

∑
𝑖 𝑟𝑖𝑚𝑖 . By assumption we have some non-zero divisor

𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0. Therefore
∑

𝑖 𝑟𝑟𝑖𝑚𝑖 = 0. By linear independence of𝑚1, ...,𝑚𝑛 , we must have 𝑟𝑟𝑖 = 0.
This is a contradiction. Hence𝑀 is not free. □

For example, the Z-modules Z2 ⊕ Z/2Z and Z3 ⊕ Z/2Z ⊕ Z/4Z are not free due to the presence of torsion.

Remark. An 𝑅-module is called torsion if every element of𝑀 is torsion. It is called torsion-free if no non-zero
element of𝑀 is torsion. Therefore we have

free =⇒ torsion-free.

The converse is not true. it is proven in the lectures that Q is not a free Z-module, yet it is still torsion-free.

Remark. For a general module𝑀 , the set of torsion elements of𝑀 is a submodule of𝑀 and is called the torsion
submodule of 𝑀 . In fact, when 𝑅 is a PID and 𝑀 finitely generated 𝑅-module, a preliminary version of the
structure theorem says

𝑀 � 𝑅rk(𝑀 )︸ ︷︷ ︸
free module

⊕ 𝑅/⟨𝑟1⟩ ⊕ · · · ⊕ 𝑅/⟨𝑟𝑠⟩︸                     ︷︷                     ︸
torsion module

.

5.2 An alternative proof of Cayley–Hamilton theorem
Theorem 5.2. Cayley–HamiltonTheorem

Let 𝑅 be a ring and𝑀 a finitely generated 𝑅-module. For any 𝑅-module homomorphism 𝑓 : 𝑀 → 𝑀 , there
exists a monic polynomial 𝜒 ∈ 𝑅 [𝑥] such that 𝜒 (𝑓 ) = 0.

A proof by using the adjoint (adjugate) matrix is presented in the lectures. There is an alternative proof without
using matrices. The idea is to reduce the problem to what is known in linear algebra.

Proof. We shall prove that the characteristic polynomial 𝜒 (𝑥) := det(𝑥 id−𝑓 ) annihilates 𝑓 ∈ End(𝑀). The
strategy is a sequence of relaxations on the assumption of 𝑅:

𝑅 splitting field 𝑅 field 𝑅 integral domain 𝑅 commutative ring.

• Step 1: 𝑅 is a field such that 𝜒 splits as linear factors and𝑀 is an 𝑛-dimensional vector space over 𝑅.
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Let 𝜒 (𝑥) = det(𝑥 id−𝑓 ) ∈ 𝑅 [𝑥] and suppose that 𝜒 splits over the field 𝑅. Let 𝜆1, ..., 𝜆𝑛 be the roots
of 𝜒 , which are the eigenvalues of 𝑓 . Let 𝑣1, ..., 𝑣𝑛 be the corresponding eigenvectors such that the
matrix of 𝑀 is upper triangular with respect to this basis of 𝑀 . That is, 𝑓 (𝑉𝑖) ⊆ 𝑉𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

where 𝑉𝑖 := span{𝑣1, ..., 𝑣𝑖}. For 𝑣 =
∑𝑛

𝑖=1 𝑎𝑛𝑣𝑛 ∈ 𝑉 ,

(𝑓 − 𝜆𝑛 id)𝑣 =
𝑛−1∑︁
𝑖=1

𝑎𝑖 (𝑓 (𝑣𝑖) − 𝜆𝑛𝑣𝑖) ∈ 𝑉𝑛−1.

By induction, we have
𝜒 (𝑓 )𝑣 = (𝑓 − 𝜆1 id) · · · (𝑓 − 𝜆𝑛 id)𝑣 = 0.

Therefore 𝜒 (𝑥) annihilates 𝑓 .

• Step 2: 𝑅 is a field and𝑀 is an 𝑛-dimensional vector space over 𝑅.

Let 𝐾 be the splitting field of 𝜒 ∈ 𝑅 [𝑥]. By passing to 𝐾 [𝑥] we have by Step 1 that 𝜒 (𝑥) annihilates
𝑓 .

• Step 3: 𝑅 is an integral domain and𝑀 is generated by 𝑣1, ..., 𝑣𝑛 ∈ 𝑀 .

Suppose that 𝑓 (𝑣𝑖) =
∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑣 𝑗 . So we can represent 𝜒 (𝑥) = det(𝑥 id−𝑓 ) ∈ 𝑅 [𝑥] by the determinant
of the matrix (𝛿𝑖 𝑗𝑥 − 𝑎𝑖 𝑗 )𝑛𝑖,𝑗=1. Let 𝐾 = Frac𝑅 be the field of fractions of 𝑅. By passing to 𝐾 [𝑥] we
have by Step 2 that 𝜒 (𝑥) annihilates 𝑓 .

• Step 4: 𝑅 is a commutative ring and𝑀 is generated by 𝑣1, ..., 𝑣𝑛 ∈ 𝑀 .

Suppose that 𝑓 (𝑣𝑖) =
∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑣 𝑗 . Let 𝑆 := Z[𝑥11, ..., 𝑥𝑛𝑛] and consider the ring homomorphism 𝜋 : 𝑆 →
𝑅 which sends 𝑥𝑖 𝑗 to 𝑎𝑖 𝑗 . Let 𝜋 : 𝑆 [𝑥] → 𝑅 [𝑥] be induced by 𝜋 . Note that𝑀 is naturally an 𝑆-module
𝑀𝑆 , where 𝑥𝑖 𝑗 · 𝑣 := 𝑎𝑖 𝑗𝑣 , and 𝑓 is naturally an 𝑆-module homomorphism 𝑓𝑆 : 𝑀𝑆 → 𝑀𝑆 . Since
𝑆 is an integral domain, 𝜒 (𝑥) = det

(
𝛿𝑖 𝑗𝑥 − 𝑥𝑖 𝑗

)𝑛
𝑖,𝑗=1 ∈ 𝑆 [𝑥] annihilates 𝑓𝑆 . Therefore 𝜋 (𝜒) (𝑥) =

det
(
𝛿𝑖 𝑗𝑥 − 𝑎𝑖 𝑗

)𝑛
𝑖,𝑗=1 ∈ 𝑅 [𝑥] annihilates 𝑓 . □
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