
Week 7 Notes

6.1 Even more localisations

We start with Question 4 of Part B of Assignment 2. There are some clever solutions which avoid listing all
elements in each equivalence class.

Example 6.1. PS2.B.4

Let 𝑅 = Z/10Z and𝑈 := {1, 2, 4, 6, 8} ⊆ Z/10Z. Then

Z/10Z[𝑈 −1] = Z/10Z[2−1] � Z/5Z.

Proof 1. Consider the natural homomorphism 𝜑 : Z/10Z → Z/10Z[𝑈 −1]. Note that 𝑎 ∈ ker𝜑 if and only if there
exists 𝑢 ∈ 𝑈 such that 𝑎𝑢 = 0 in Z/10Z. The only zero divisor in 𝑈 is 2 and we have 5 · 2 = 0. Hence
ker𝜑 = {0, 5}. Ne3xt we claim that 𝜑 is surjective. For this we note the equivalence

1
2 ∼ 3

1 ∈ Z/10Z[𝑈 −1] as 2 · (3 · 2 − 1 · 1) = 0 ∈ Z/10Z;
1
6 ∼ 1

1 ∈ Z/10Z[𝑈 −1] as 2 · (6 · 1 − 1 · 1) = 0 ∈ Z/10Z.

For any 𝑟 ∈ Z/10Z, 𝑟 = 𝑎

𝑢
, where 𝑢 is either 6 or a power of 2. This shows that 𝑟 = 𝑎′

1 for some 𝑎′ ∈ Z/10Z.
So 𝜑 is surjective. Finally, by first isomorphism theorem,

Z/10Z[𝑈 −1] � Z/10Z
{0, 5} � Z/5Z. □

Proof 2. Z/10Z ×𝑈 is an Abelian group with the addition

(𝑎, 𝑏) + (𝑐, 𝑑) := (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑),

identity (0, 1), and inverse −(𝑎, 𝑏) = (10 − 𝑎, 𝑏). Moreover, the equivalence relation on Z/10Z ×𝑈 defines
a subgroup 𝐻 via

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇐⇒ (𝑎, 𝑏) − (𝑐, 𝑑) ∈ 𝐻.

In particular, the additive group Z/10Z[𝑈 −1] is identified with the quotient group (Z/10Z × 𝑈 )/𝐻 . To
describe the subgroup 𝐻 , note that

(𝑎, 𝑏) ∼ (0, 1) ⇐⇒ ∃𝑢 ∈ 𝑈 (𝑎𝑢 = 0) ⇐⇒ 𝑎 ∈ {0, 5}.

Hence |𝐻 | = |𝑈 | × |{0, 5}| = 2 · 5 = 10. By Lagrange’s theorem,

|Z/10Z[𝑈 −1] | = |Z/10Z ×𝑈 |/|𝐻 | = |Z/10Z| × |𝑈 |/|𝐻 | = 5.

Finally, a ring with 5 elements must be isomorphic to Z/5Z. □

Example 6.2. PS3.A.4

Let 𝑅 be a local ring with maximal ideal 𝔪. Then 𝑅𝔪 � 𝑅.
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Remark. This is a special case of the general fact that, if 𝑈 ⊆ 𝑅× , then 𝑅 � 𝑅 [𝑈 −1]. Because “units are already
invertible, so inverting them gives you nothing new”.

Proof. We will use the fact that𝑈 = 𝑅 \𝔪 consists of units of 𝑅. Consider the natural map 𝜑 : 𝑅 → 𝑅𝔪 = 𝑅 [𝑈 −1].

• 𝜑 is injective: for 𝑎 ∈ ker𝜑 , 𝑎/1 ∼ 0/1 ∈ 𝑅 [𝑈 −1]. So there exists 𝑢 ∈ 𝑈 such that 𝑎𝑢 = 0. Note that
𝑢 ∈ 𝑅 \𝔪 is a unit and thus not a zero divisor. We must have 𝑎 = 0, which means 𝜑 is injective.

• 𝜑 is surjective: for 𝑎/𝑢 ∈ 𝑅 [𝑈 −1], since 𝑢 ∈ 𝑅 \ 𝔪 is a unit, 𝑢−1 ∈ 𝑅. So 𝑎/𝑢 ∼ 𝑎𝑢−1/1 ∈ im𝜑 .
Therefore 𝜑 is surjective.

We conclude that 𝜑 is an isomorphism. □

6.2 Reduced Gröbner basis

Many people found this homework question difficult so I attach a complete solution below.

Theorem 6.3. PS2.B.1

Let 𝐼 be an ideal of 𝑘 [𝑥1, ..., 𝑥𝑛]. Fix a term order <. We say that a Gröbner basis 𝐺 = {𝑔1, ..., 𝑔𝑠 } of 𝐼 is
reduced, if:

1) The coefficient of each in< (𝑔𝑖) is 1;

2) {in< (𝑔1), ..., in< (𝑔𝑠)} is an irredundant minimal generating set for in< (𝐼 );

3) No term of 𝑔𝑖 is divisible by in< (𝑔 𝑗 ) for any 𝑖 ≠ 𝑗 .

Any ideal 𝐼 has a unique reduced Gröbner basis. This produces an algorithm to decide whether two ideals 𝐼
and 𝐽 are equal in 𝑘 [𝑥1, ..., 𝑥𝑛].

Remark. We say that a Gröbner basis is minimal if it satisfies (1) and (2).

Proof. First we prove the existence of a reduced Gröbner basis, and at the same time give a algorithm to compute
it. Suppose that 𝐼 = ⟨𝑓1, ..., 𝑓𝑚⟩ is an ideal. A Gröbner basis of 𝐼 can be computed by the Buchberger’s
algorithm (this is not examinable, see CLO Section 2.7). So

Step 0: There exists a Gröbner basis 𝐺 = {𝑔1, ..., 𝑔𝑠 } of 𝐼 .

For (1), we divide each 𝑔𝑖 by the coefficient LC(𝑔𝑖) ∈ 𝑘 of in< (𝑔𝑖), and replace 𝑔𝑖 by this polynomial. Then
𝐺 is a Gröbner basis in which every polynomial is monic.

For (2), we remove any 𝑔𝑖 ∈ 𝐺 from 𝐺 such that in< (𝑔𝑖) ∈ ⟨in< (𝐺 \ {𝑔𝑖})⟩. After removing all suchb
polynomials, 𝐺 is still a Gröbner basis, and there are no 𝑔𝑖 , 𝑔 𝑗 ∈ 𝐺 such that in< (𝑔𝑖) | in< (𝑔 𝑗 ). After this
step, 𝐺 becomes a minimal Gröbner basis.

For (3), we take 𝑔 ∈ 𝐺 and replace it by the remainder 𝑔′ of 𝑔 divided by 𝐺 \ {𝑔}. Note that we have
in< (𝑔) = in< (𝑔′), and no term of 𝑔′ is divisible by elements of in< (𝐺 \ {𝑔}). We say that each 𝑔′ is fully
reduced. Continue this process until all elements of 𝐺 are fully reduced. This process terminates after
finitely many steps, because once a polynomial is fully reduced, it stays fully reduced since we never
change the leading terms. Thus, we end up with a reduced Gröbner basis.
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Next we prove the uniqueness. Suppose that𝐺 = {𝑔1, ..., 𝑔𝑛} and𝐻 = {ℎ1, ..., ℎ𝑚} are two reduced Gröbner
bases. Since {in< (𝑔1), .., in< (𝑔𝑛)} and {in< (ℎ1), ..., in< (ℎ𝑚)} are both minimal generating set of the mono-
mial ideal in< (𝐼 ), they are equal. Therefore 𝑛 = 𝑚, and after renumbering, we have in< (𝑔𝑖) = in< (ℎ𝑖) for
each 𝑖 .

Consider 𝑔𝑖 − ℎ𝑖 ∈ 𝐼 . Since 𝐺 is a Gröbner basis of 𝐼 , the remainder of 𝑔𝑖 − ℎ𝑖 divided by 𝐺 is zero. On
the other hand, the initial terms of 𝑔𝑖 and ℎ𝑖 cancel, and the remaining terms are divisible by none of
in< (𝐺) = in< (𝐻 ). Therefore the remainder of 𝑔𝑖 −ℎ𝑖 divided by𝐺 is equal to 𝑔𝑖 −ℎ𝑖 . It follows that 𝑔𝑖 = ℎ𝑖
and hence 𝐺 = 𝐻 . □

6.3 Description of SpecZ[𝑥]
Example 6.4. PS2.C.2

What are the prime ideals in Z[𝑥] ?

Remark. The idea is to consider the projection 𝑓 : SpecZ[𝑥] → SpecZ. We know that

SpecZ = {⟨𝑝⟩ | 𝑝 = 0 or 𝑝 is prime} .

The fibre of 𝑓 over ⟨𝑝⟩ ∈ SpecZ is isomorphic to Spec𝜅 (𝑝) [𝑥], where 𝜅 (𝑝) := Z⟨𝑝 ⟩/⟨𝑝⟩ Z⟨𝑝 ⟩ is the residue field.

Proof. We claim that

SpecZ[𝑥] = {⟨0⟩} ∪ {⟨𝑓 ⟩ | 𝑓 ∈ Z[𝑥] irreducible}

∪
{
⟨𝑝, 𝑓 ⟩ | 𝑝 ∈ Z prime, 𝑓 ∈ Z[𝑥] is s.t. 𝑓 ∈ F𝑝 [𝑥] irreducible

}
.

Let 𝔭 ∈ SpecZ[𝑥]. Then 𝔭 ∩ Z is a prime ideal of Z. We know that SpecZ = {⟨0⟩} ∪ {⟨𝑝⟩ | 𝑝 ∈ Z prime}.
The proof is divided into two cases:

• Suppose that𝔭∩Z = {0}. We could have either𝔭 = {0}, or there exists some 𝑔 ∈ 𝔭\{0}. Since Z[𝑥] is
a UFD, 𝑔 =

∏𝑘
𝑖=1 𝑓

𝑛𝑖
𝑖

for some irreducible polynomials 𝑓1, ..., 𝑓𝑠 ∈ Z[𝑥]. Since 𝔭 is prime, there is some
𝑓 := 𝑓𝑖 ∈ 𝔭. We claim that 𝔭 = ⟨𝑓 ⟩. Let 𝑗 : Z[𝑥] → Q[𝑥] be the natural inclusion, and 𝔭𝑒 the extended
ideal of 𝔭 in Q[𝑥]. By Gauss’ lemma, 𝑓 is irreducible in Q[𝑥] and hence ⟨𝑓 ⟩Q[𝑥 ] is maximal. Since
𝔭∩Z = {0}, 1 ∉ 𝔭𝑒 . Then we must have 𝔭𝑒 = ⟨𝑓 ⟩Q[𝑥 ] . Now 𝔭 = 𝔭𝑒 ∩Z[𝑥] = ⟨𝑓 ⟩Q[𝑥 ] ∩Z[𝑥] = ⟨𝑓 ⟩Z[𝑥 ] .

• Suppose that 𝔭 ∩ Z = ⟨𝑝⟩Z for some prime 𝑝 ∈ Z. Let 𝜋 : Z[𝑥] ↠ F𝑝 [𝑥] be the projection. 𝜋 (𝔭) is
an ideal of F𝑝 [𝑥] and we have an isomorphism Z[𝑥]/𝔭 � F𝑝 [𝑥]/𝜋 (𝔭). Now 𝜋 (𝔭) is an prime ideal
of F𝑝 [𝑥]. Since F𝑝 [𝑥] is a PID, 𝜋 (𝔭) =

〈
𝑓

〉
where 𝑓 ∈ F𝑝 [𝑥] is irreducible. It follows that 𝔭 = ⟨𝑝, 𝑓 ⟩,

where 𝑓 ∈ Z[𝑥] is such that 𝑓 = 𝜋 (𝑓 ). □
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Figure 1: Mumford’s picture of SpecZ[𝑥].
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