Week 7 Notes

6.1 Even more localisations
We start with Question 4 of Part B of Assignment 2. There are some clever solutions which avoid listing all

elements in each equivalence class.

Example 6.1. PS2.B.4
Let R=2Z/10Z and U := {1, 2,4, 6,8} C Z/10Z. Then

Z/10Z[U'] =Z/10Z[27 '] = Z/5Z.
Proof 1. Consider the natural homomorphism ¢ : Z/10Z — Z/10Z[U~!]. Note that a € ker ¢ if and only if there

exists u € U such that au = 0 in Z/10Z. The only zero divisor in U is 2 and we have 5 - 2 = 0. Hence
ker ¢ = {0,5}. Ne3xt we claim that ¢ is surjective. For this we note the equivalence

€ Z/10Z[U™ ] as2-(3-2—-1-1)=0¢€ Z/10Z;
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€ Z/10Z[U™ ] as2-(6-1—1-1)=0¢€ Z/10Z.

’
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For any r € Z/10Z, r = —, where u is either 6 or a power of 2. This shows that r = T for some a’ € Z/10Z.

So ¢ is surjective. Finally, by first isomorphism theorem,

Proof 2. Z/10Z x U is an Abelian group with the addition
(a,b) + (¢,d) := (ad + bc, bd),

identity (0, 1), and inverse —(a, b) = (10 — a, b). Moreover, the equivalence relation on Z/10Z X U defines
a subgroup H via

(a,b) ~ (¢,d) = (a,b) —(c,d) € H.

In particular, the additive group Z/10Z[U™!] is identified with the quotient group (Z/10Z x U)/H. To
describe the subgroup H, note that

(a,b) ~(0,1) < JueU (au=0) < aec{0,5}.
Hence |H| = |U| x |{0,5}| = 2 - 5 = 10. By Lagrange’s theorem,
|Z/10Z[U™ Y| = |Z/10Z x U|/|H| = |Z/10Z| x |U|/|H]| = 5.

Finally, a ring with 5 elements must be isomorphic to Z/5Z. m]

Example 6.2. PS3.A.4

Let R be a local ring with maximal ideal m. Then Ry, = R.
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Remark. This is a special case of the general fact that, if U C R*, then R = R[U™']. Because “units are already
invertible, so inverting them gives you nothing new”.

Proof. We will use the fact that U = R\ m consists of units of R. Consider the natural map ¢: R — Ry, = R[U™!].

« ¢ is injective: for a € ker @, a/1 ~ 0/1 € R[U™!]. So there exists u € U such that au = 0. Note that
u € R\ m is a unit and thus not a zero divisor. We must have a = 0, which means ¢ is injective.

« ¢ is surjective: for a/u € R[U™!], since u € R\ m is a unit, u™! € R. So a/u ~ au™'/1 € img.
Therefore ¢ is surjective.

We conclude that ¢ is an isomorphism. O

6.2 Reduced Grobner basis

Many people found this homework question difficult so I attach a complete solution below.

Theorem 6.3. PS2.B.1

Let I be an ideal of k[xy, ..., x,]. Fix a term order <. We say that a Grobner basis G = {gy, ...,gs} of I is
reduced, if:

1) The coefficient of each in. (g;) is 1;
2) {in<(g1), ...,in<(gs)} is an irredundant minimal generating set for in<(I);
3) No term of g; is divisible by in.(g;) for any i # j.

Any ideal I has a unique reduced Grobner basis. This produces an algorithm to decide whether two ideals I
and J are equal in k[xy, ..., x,].

Remark. We say that a Grobner basis is minimal if it satisfies (1) and (2).

Proof. First we prove the existence of a reduced Grobner basis, and at the same time give a algorithm to compute
it. Suppose that I = (fi, ..., fiy) is an ideal. A Grobner basis of I can be computed by the Buchberger’s
algorithm (this is not examinable, see CLO Section 2.7). So

Step 0: There exists a Grobner basis G = {¢gy, ..., gs} of L.

For (1), we divide each g; by the coefficient LC(g;) € k of in(g;), and replace g; by this polynomial. Then
G is a Grobner basis in which every polynomial is monic.

For (2), we remove any g; € G from G such that inc(g;) € (in<(G\ {g;})). After removing all suchb
polynomials, G is still a Grobner basis, and there are no g;,g; € G such that in<(g;) | in<(g;). After this
step, G becomes a minimal Grébner basis.

For (3), we take g € G and replace it by the remainder ¢’ of g divided by G \ {g}. Note that we have
in<(g) = in<(¢’), and no term of ¢’ is divisible by elements of in. (G \ {g}). We say that each ¢’ is fully
reduced. Continue this process until all elements of G are fully reduced. This process terminates after
finitely many steps, because once a polynomial is fully reduced, it stays fully reduced since we never
change the leading terms. Thus, we end up with a reduced Grébner basis.
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Next we prove the uniqueness. Suppose that G = {g1, ...,gn} and H = {hy, ..., h;, } are two reduced Grobner
bases. Since {in<(g;), ..,in<(gn) } and {in< (hy), ..., in< (hy,) } are both minimal generating set of the mono-
mial ideal in. (I), they are equal. Therefore n = m, and after renumbering, we have in(g;) = in<(h;) for
each i.

Consider g; — h; € I. Since G is a Grobner basis of I, the remainder of g; — h; divided by G is zero. On
the other hand, the initial terms of g; and h; cancel, and the remaining terms are divisible by none of
in<(G) = in<(H). Therefore the remainder of g; — h; divided by G is equal to g; — h;. It follows that g; = h;
and hence G = H. O

6.3 Description of Spec Z[x]
Example 6.4. PS2.C.2

What are the prime ideals in Z[x] ?

Remark. The idea is to consider the projection f: SpecZ[x] — SpecZ. We know that

SpecZ = {{p) | p = 0 or p is prime} .
The fibre of f over (p) € SpecZ is isomorphic to Spec k(p)[x], where k(p) := Z(,)/{p) Z(p) is the residue field.

Proof. We claim that

SpecZ[x] ={(0)} U{(f) | f € Z[x] irreducible}
U {(p, )| p € Zprime, f € Z[x] is s.t. j_” € Fp[x] irreducible} .

Let p € SpecZ[x]. Then p N Z is a prime ideal of Z. We know that SpecZ = {{0)} U {{p) | p € Z prime}.
The proof is divided into two cases:

« Suppose that pNZ = {0}. We could have either p = {0}, or there exists some g € p\ {0}. Since Z[x] is
aUFD, g = Hle f;"* for some irreducible polynomials fi, ..., f; € Z[x]. Since p is prime, there is some
f == f; € p. We claim that p = (f). Let j: Z[x] — Q[x] be the natural inclusion, and p® the extended
ideal of p in Q[x]. By Gauss’ lemma, f is irreducible in Q[x] and hence (f)g, is maximal. Since
pNZ={0},1¢ p° Then we must have p® = (f)g[,- Now p = p*NZ[x] = (f) g NZ[x] = (/zx]-

« Suppose that p N Z = (p), for some prime p € Z. Let 7 : Z[x] - F,[x] be the projection. 7 (p) is
an ideal of F,[x] and we have an isomorphism Z[x]/p = F,[x]/x(p). Now z(p) is an prime ideal

of F,[x]. Since F,[x] is a PID, (p) = <]_”> where ]_’ € Fp[x] is irreducible. It follows that p = (p, f),
where f € Z[x] is such thatj_r = n(f). ]
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Figure 1: Mumford’s picture of Spec Z[x].
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