Week 7 Notes

6.1 Even more localisations

We start with Question 4 of Part B of Assignment 2. There are some clever solutions which avoid listing all elements in each equivalence class.

Example 6.1. PS2.B. 4

Let $R=\mathbb{Z} / 10 \mathbb{Z}$ and $U:=\{1,2,4,6,8\} \subseteq \mathbb{Z} / 10 \mathbb{Z}$. Then

$$
\mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right]=\mathbb{Z} / 10 \mathbb{Z}\left[2^{-1}\right] \cong \mathbb{Z} / 5 \mathbb{Z}
$$

Proof 1. Consider the natural homomorphism $\varphi: \mathbb{Z} / 10 \mathbb{Z} \rightarrow \mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right]$. Note that $a \in \operatorname{ker} \varphi$ if and only if there exists $u \in U$ such that $a u=0$ in $\mathbb{Z} / 10 \mathbb{Z}$. The only zero divisor in U is 2 and we have $5 \cdot 2=0$. Hence $\operatorname{ker} \varphi=\{0,5\}$. Ne3xt we claim that φ is surjective. For this we note the equivalence

$$
\begin{array}{ll}
\frac{1}{2} \sim \frac{3}{1} \in \mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right] & \text { as } 2 \cdot(3 \cdot 2-1 \cdot 1)=0 \in \mathbb{Z} / 10 \mathbb{Z} \\
\frac{1}{6} \sim \frac{1}{1} \in \mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right] & \text { as } 2 \cdot(6 \cdot 1-1 \cdot 1)=0 \in \mathbb{Z} / 10 \mathbb{Z}
\end{array}
$$

For any $r \in \mathbb{Z} / 10 \mathbb{Z}, r=\frac{a}{u}$, where u is either 6 or a power of 2 . This shows that $r=\frac{a^{\prime}}{1}$ for some $a^{\prime} \in \mathbb{Z} / 10 \mathbb{Z}$. So φ is surjective. Finally, by first isomorphism theorem,

$$
\mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right] \cong \frac{\mathbb{Z} / 10 \mathbb{Z}}{\{0,5\}} \cong \mathbb{Z} / 5 \mathbb{Z}
$$

Proof 2. $\mathbb{Z} / 10 \mathbb{Z} \times U$ is an Abelian group with the addition

$$
(a, b)+(c, d):=(a d+b c, b d)
$$

identity $(0,1)$, and inverse $-(a, b)=(10-a, b)$. Moreover, the equivalence relation on $\mathbb{Z} / 10 \mathbb{Z} \times U$ defines a subgroup H via

$$
(a, b) \sim(c, d) \Longleftrightarrow(a, b)-(c, d) \in H .
$$

In particular, the additive group $\mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right]$ is identified with the quotient group $(\mathbb{Z} / 10 \mathbb{Z} \times U) / H$. To describe the subgroup H, note that

$$
(a, b) \sim(0,1) \Longleftrightarrow \exists u \in U(a u=0) \Longleftrightarrow a \in\{0,5\} .
$$

Hence $|H|=|U| \times|\{0,5\}|=2 \cdot 5=10$. By Lagrange's theorem,

$$
\left|\mathbb{Z} / 10 \mathbb{Z}\left[U^{-1}\right]\right|=|\mathbb{Z} / 10 \mathbb{Z} \times U| /|H|=|\mathbb{Z} / 10 \mathbb{Z}| \times|U| /|H|=5 .
$$

Finally, a ring with 5 elements must be isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$.

Example 6.2. PS3.A. 4

Let R be a local ring with maximal ideal \mathfrak{m}. Then $R_{\mathfrak{m}} \cong R$.

Remark. This is a special case of the general fact that, if $U \subseteq R^{\times}$, then $R \cong R\left[U^{-1}\right]$. Because "units are already invertible, so inverting them gives you nothing new".

Proof. We will use the fact that $U=R \backslash \mathfrak{m}$ consists of units of R. Consider the natural map $\varphi: R \rightarrow R_{\mathfrak{m}}=R\left[U^{-1}\right]$.

- φ is injective: for $a \in \operatorname{ker} \varphi, a / 1 \sim 0 / 1 \in R\left[U^{-1}\right]$. So there exists $u \in U$ such that $a u=0$. Note that $u \in R \backslash \mathfrak{m}$ is a unit and thus not a zero divisor. We must have $a=0$, which means φ is injective.
- φ is surjective: for $a / u \in R\left[U^{-1}\right]$, since $u \in R \backslash \mathfrak{m}$ is a unit, $u^{-1} \in R$. So $a / u \sim a u^{-1} / 1 \in \operatorname{im} \varphi$. Therefore φ is surjective.

We conclude that φ is an isomorphism.

6.2 Reduced Gröbner basis

Many people found this homework question difficult so I attach a complete solution below.

Theorem 6.3. PS2.B. 1

Let I be an ideal of $k\left[x_{1}, \ldots, x_{n}\right]$. Fix a term order $<$. We say that a Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I is reduced, if:

1) The coefficient of each $\mathrm{in}_{<}\left(g_{i}\right)$ is 1 ;
2) $\left\{\mathrm{in}_{<}\left(g_{1}\right), \ldots, \mathrm{in}_{<}\left(g_{s}\right)\right\}$ is an irredundant minimal generating set for $\mathrm{in}_{<}(I)$;
3) No term of g_{i} is divisible by $\mathrm{in}_{<}\left(g_{j}\right)$ for any $i \neq j$.

Any ideal I has a unique reduced Gröbner basis. This produces an algorithm to decide whether two ideals I and J are equal in $k\left[x_{1}, \ldots, x_{n}\right]$.

Remark. We say that a Gröbner basis is minimal if it satisfies (1) and (2).
Proof. First we prove the existence of a reduced Gröbner basis, and at the same time give a algorithm to compute it. Suppose that $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is an ideal. A Gröbner basis of I can be computed by the Buchberger's algorithm (this is not examinable, see CLO Section 2.7). So

Step 0: There exists a Gröbner basis $G=\left\{g_{1}, \ldots, g_{s}\right\}$ of I.
For (1), we divide each g_{i} by the coefficient $\operatorname{LC}\left(g_{i}\right) \in k$ of in ${ }_{<}\left(g_{i}\right)$, and replace g_{i} by this polynomial. Then G is a Gröbner basis in which every polynomial is monic.

For (2), we remove any $g_{i} \in G$ from G such that $\mathrm{in}_{<}\left(g_{i}\right) \in\left\langle\mathrm{in}_{<}\left(G \backslash\left\{g_{i}\right\}\right)\right\rangle$. After removing all suchb polynomials, G is still a Gröbner basis, and there are no $g_{i}, g_{j} \in G$ such that $\mathrm{in}_{<}\left(g_{i}\right) \mid \mathrm{in}_{<}\left(g_{j}\right)$. After this step, G becomes a minimal Gröbner basis.

For (3), we take $g \in G$ and replace it by the remainder g^{\prime} of g divided by $G \backslash\{g\}$. Note that we have $\mathrm{in}_{<}(g)=\mathrm{in}_{<}\left(g^{\prime}\right)$, and no term of g^{\prime} is divisible by elements of $\mathrm{in}_{<}(G \backslash\{g\})$. We say that each g^{\prime} is fully reduced. Continue this process until all elements of G are fully reduced. This process terminates after finitely many steps, because once a polynomial is fully reduced, it stays fully reduced since we never change the leading terms. Thus, we end up with a reduced Gröbner basis.

Next we prove the uniqueness. Suppose that $G=\left\{g_{1}, \ldots, g_{n}\right\}$ and $H=\left\{h_{1}, \ldots, h_{m}\right\}$ are two reduced Gröbner bases. Since $\left\{\mathrm{in}_{<}\left(g_{1}\right), . ., \mathrm{in}_{<}\left(g_{n}\right)\right\}$ and $\left\{\mathrm{in}_{<}\left(h_{1}\right), \ldots, \mathrm{in}_{<}\left(h_{m}\right)\right\}$ are both minimal generating set of the monomial ideal $\mathrm{in}_{<}(I)$, they are equal. Therefore $n=m$, and after renumbering, we have $\mathrm{in}_{<}\left(g_{i}\right)=\mathrm{in}_{<}\left(h_{i}\right)$ for each i.

Consider $g_{i}-h_{i} \in I$. Since G is a Gröbner basis of I, the remainder of $g_{i}-h_{i}$ divided by G is zero. On the other hand, the initial terms of g_{i} and h_{i} cancel, and the remaining terms are divisible by none of $\mathrm{in}_{<}(G)=\mathrm{in}_{<}(H)$. Therefore the remainder of $g_{i}-h_{i}$ divided by G is equal to $g_{i}-h_{i}$. It follows that $g_{i}=h_{i}$ and hence $G=H$.

6.3 Description of $\operatorname{Spec} \mathbb{Z}[x]$

Example 6.4. PS2.C. 2

What are the prime ideals in $\mathbb{Z}[x]$?

Remark. The idea is to consider the projection $f: \operatorname{Spec} \mathbb{Z}[x] \rightarrow \operatorname{Spec} \mathbb{Z}$. We know that

$$
\text { Spec } \mathbb{Z}=\{\langle p\rangle \mid p=0 \text { or } p \text { is prime }\} .
$$

The fibre of f over $\langle p\rangle \in \operatorname{Spec} \mathbb{Z}$ is isomorphic to Spec $\kappa(p)[x]$, where $\kappa(p):=\mathbb{Z}_{\langle p\rangle} /\langle p\rangle \mathbb{Z}_{\langle p\rangle}$ is the residue field.
Proof. We claim that

$$
\begin{aligned}
\text { Spec } \mathbb{Z}[x]= & \{\langle 0\rangle\} \cup\{\langle f\rangle \mid f \in \mathbb{Z}[x] \text { irreducible }\} \\
& \cup\left\{\langle p, f\rangle \mid p \in \mathbb{Z} \text { prime, } f \in \mathbb{Z}[x] \text { is s.t. } \bar{f} \in \mathbb{F}_{p}[x] \text { irreducible }\right\} .
\end{aligned}
$$

Let $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[x]$. Then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z}. We know that Spec $\mathbb{Z}=\{\langle 0\rangle\} \cup\{\langle p\rangle \mid p \in \mathbb{Z}$ prime $\}$. The proof is divided into two cases:

- Suppose that $\mathfrak{p} \cap \mathbb{Z}=\{0\}$. We could have either $\mathfrak{p}=\{0\}$, or there exists some $g \in \mathfrak{p} \backslash\{0\}$. Since $\mathbb{Z}[x]$ is a UFD, $g=\prod_{i=1}^{k} f_{i}^{n_{i}}$ for some irreducible polynomials $f_{1}, \ldots, f_{s} \in \mathbb{Z}[x]$. Since \mathfrak{p} is prime, there is some $f:=f_{i} \in \mathfrak{p}$. We claim that $\mathfrak{p}=\langle f\rangle$. Let $j: \mathbb{Z}[x] \rightarrow \mathbb{Q}[x]$ be the natural inclusion, and \mathfrak{p}^{e} the extended ideal of \mathfrak{p} in $\mathbb{Q}[x]$. By Gauss' lemma, f is irreducible in $\mathbb{Q}[x]$ and hence $\langle f\rangle_{\mathbb{Q}[x]}$ is maximal. Since $\mathfrak{p} \cap \mathbb{Z}=\{0\}, 1 \notin \mathfrak{p}^{e}$. Then we must have $\mathfrak{p}^{e}=\langle f\rangle_{\mathbb{Q}[x]}$. Now $\mathfrak{p}=\mathfrak{p}^{e} \cap \mathbb{Z}[x]=\langle f\rangle_{\mathbb{Q}[x]} \cap \mathbb{Z}[x]=\langle f\rangle_{\mathbb{Z}[x]}$.
- Suppose that $\mathfrak{p} \cap \mathbb{Z}=\langle p\rangle_{\mathbb{Z}}$ for some prime $p \in \mathbb{Z}$. Let $\pi: \mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x]$ be the projection. $\pi(\mathfrak{p})$ is an ideal of $\mathbb{F}_{p}[x]$ and we have an isomorphism $\mathbb{Z}[x] / \mathfrak{p} \cong \mathbb{F}_{p}[x] / \pi(\mathfrak{p})$. Now $\pi(\mathfrak{p})$ is an prime ideal of $\mathbb{F}_{p}[x]$. Since $\mathbb{F}_{p}[x]$ is a PID, $\pi(\mathfrak{p})=\langle\bar{f}\rangle$ where $\bar{f} \in \mathbb{F}_{p}[x]$ is irreducible. It follows that $\mathfrak{p}=\langle p, f\rangle$, where $f \in \mathbb{Z}[x]$ is such that $\bar{f}=\pi(f)$.

Figure 1: Mumford's picture of $\operatorname{Spec} \mathbb{Z}[x]$.

