Week 8 Notes

7.1 UFDs are integrally closed

Recall that a domain is called normal if it is integrally closed in its field of fractions.

Proposition 7.1

Let R be a UFD. Then R is normal.

Proof. Suppose that $\alpha=a / b \in \operatorname{Frac}(R)$ (where $\operatorname{gcd}(a, b)=1$ - which is well-defined as R is UFD) is integral over R. Then there exists a monic polynomial $f \in R[x]$ such that

$$
f(\alpha)=(a / b)^{n}+c_{n-1}(a / b)^{n-1}+\cdots+c_{1}(a / b)+c_{0}=0 .
$$

Clearing denominators, we have

$$
a^{n}=-b\left(c_{n-1} a^{n-1}+\cdots+c_{1} b^{n-2} a+c_{0} b^{n-1}\right) .
$$

In particular $b \mid a^{n}$. Since $\operatorname{gcd}(a, b)=1$, we must have that b is a unit of R. Hence $\alpha=a b^{-1} \in R$. So R is integrally closed in $\operatorname{Frac}(R)$.

7.2 Rings of Algebraic Integers

Lemma 7.2

Let $f \in \mathbb{Z}[x]$ be a monic polynomial. Suppose that there exists a monic polynomial $g \in \mathbb{Q}[x]$ such that $g \mid f$ in $\mathbb{Q}[x]$. Then $g \in \mathbb{Z}[x]$.

Proof. Recall from Algebra 2 that the content of a polynomial $p \in \mathbb{Z}[x]$ is the gcd of all coefficients of p, and is denoted by $c(p)$. Gauss' lemma says that the content is multiplicative: $p(x)=q(x) r(x)$ in $\mathbb{Z}[x]$ implies that $c(p)=c(q) c(r)$ (up to associates).

Write $f(x)=g(x) h(x)$ in $\mathbb{Q}[x]$. Let $G, H \in \mathbb{Z}[x]$ be such that $g(x)=G(x) / a, h(x)=H(x) / b$, where $a, b \in \mathbb{Q}$ and $c(G)=c(H)=1$. Since g, h are monic, we have that $a, b \in \mathbb{Z}$. By Gauss' lemma, $a b f=G H$ implies that $a b c(f)=c(G) c(H)$. Since f is monic, $c(f)=1$. Hence $a b=1$. It follows that $a=b=1$ (up to associates). Hence $g=G \in \mathbb{Z}[x]$.

Example 7.3

$\mathbb{Z}[\sqrt{3}]$ is normal.

Proof. We need a little bit field theory for this one. The field of fractions of $\mathbb{Z}[\sqrt{3}]$ is $\mathbb{Q}(\sqrt{3})$, which is the smallest subfield of \mathbb{C} that contains \mathbb{Q} and $\{\sqrt{3}\}$. It is easy to see that, as a set,

$$
\mathbb{Q}(\sqrt{3})=\mathbb{Q}[\sqrt{3}]=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\} .
$$

We would like to identify the elements of $\mathbb{Q}(\sqrt{3})$ that are integral over $\mathbb{Z}[\sqrt{3}]$. Suppose that $\alpha=a+$ $b \sqrt{3} \in \mathbb{Q}(\sqrt{3})$ is integral over $\mathbb{Z}[\sqrt{3}]$. Note that $\mathbb{Z}[\sqrt{3}]$ is integral over \mathbb{Z} as $\sqrt{3}$ satisfies the monic equation
$x^{2}-3 \in \mathbb{Z}[x]$. By tower law, α is integral over \mathbb{Z}.
Suppose that $b=0$. Then $\alpha=a \in \mathbb{Q}$. By (a) we have $a \in \mathbb{Z}$. Hence $\alpha \in \mathbb{Z}[\sqrt{3}]$.
Suppose that $b \neq 0$. Then $\alpha \notin \mathbb{Q}$. The minimal polynomial of α over \mathbb{Q} is the quadratic monic polynomial

$$
m(x)=(x-\alpha)(x-\bar{\alpha})=x^{2}-2 a x+\left(a^{2}+3 b^{2}\right) \in \mathbb{Q}[x] .
$$

By assumption, α is integral over \mathbb{Z}. So there exists a monic $f(x) \in \mathbb{Z}[x]$ such that $f(\alpha)=0$. It follows that $m \mid f$ in $\mathbb{Q}[x]$. By the previous lemma, this means $m \mid f$ in $\mathbb{Z}[x]$. In particular $m \in \mathbb{Z}[x]$. We have $2 a \in \mathbb{Z}$ and $a^{2}-3 b^{2} \in \mathbb{Z}$.

Now the modular arithmetic comes in. Let $A:=2 a$ and $B:=2 b$. Now we have $A \in \mathbb{Z}$ and $A^{2}-3 B^{2} \in 4 \mathbb{Z}$. Hence $A^{2}, B^{2} \in \mathbb{Z}$ and $A^{2}-3 B^{2} \equiv 0 \bmod 4$. Note that a square of integer has $\equiv 0$ or $1 \bmod 4$. Hence we can only have $A^{2} \equiv 0$ and $B^{2} \equiv 0 \bmod 4$. Hence A and B are even. It follows that $a, b \in \mathbb{Z}$. We conclude that $\alpha=a+b \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$. So $\mathbb{Z}[\sqrt{3}]$ is integrally closed.

Example 7.4

$\mathbb{Z}[\sqrt{5}]$ is not normal.
Proof. Note that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed, as $\alpha=\frac{1+\sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5})$ satisfies the monic equation:

$$
\alpha^{2}-\alpha-1=0
$$

whereas $\alpha \notin \mathbb{Z}[\sqrt{5}]$. The reason that the naïve UFD argument does not work is simply because $\mathbb{Z}[\sqrt{d}]$ is not a UFD:
Suppose that $\mathbb{Z}[\sqrt{5}]$ is a UFD. Note that in $\mathbb{Z}[\sqrt{5}]$ we have

$$
2 \cdot 2=(\sqrt{5}+1)(\sqrt{5}-1)
$$

We do not know yet if 2 or $(\sqrt{5}+1)$ are irreducibles in $\mathbb{Z}[\sqrt{5}]$. But we can consider $p:=\operatorname{gcd}(2, \sqrt{5}+1)$. Let $2=a p$ and $\sqrt{5}+1=b p$, where $a, b \in \mathbb{Z}[\sqrt{5}]$ are coprime. Now we have

$$
(a p)^{2}=b p \cdot(b p-a p) \Longrightarrow a^{2}=b^{2}(b-a) .
$$

In particular $b \mid a$ in $\mathbb{Z}[\sqrt{5}]$. Since $\operatorname{gcd}(a, b)=1$, we must have $b=1$. Hence

$$
a=\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{2} \in \mathbb{Z}[\sqrt{5}] .
$$

This is a contradiction.
Remark. Let K be a finite extension field of \mathbb{Q}. The ring of integers of K is the integral closure of \mathbb{Z} in K, and is denoted by O_{K}. For the quadratic number field $\mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ is square-free, the ring of integers is

$$
O_{\mathbb{Q}(\sqrt{d})}= \begin{cases}\mathbb{Z}[\sqrt{d}], & d \equiv 2,3 \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & d \equiv 1 \bmod 4\end{cases}
$$

