Week 8 Notes

7.1 UFDs are integrally closed

Recall that a domain is called normal if it is integrally closed in its field of fractions.

Proposition 7.1

Let R be a UFD. Then R is normal.

Proof. Suppose that & = a/b € Frac(R) (where gcd(a, b) = 1 — which is well-defined as R is UFD) is integral over
R. Then there exists a monic polynomial f € R[x] such that

f(a) = (a/b)" +cp_1(a/b)" ' +---+ci(a/b) + ¢y = 0.
Clearing denominators, we have
a*=-b (cn_la"_1 4o+ b" a+ cobn_l) .
In particular b | a". Since gcd(a, b) = 1, we must have that b is a unit of R. Hence « = ab™! € R. So R is

integrally closed in Frac(R). O

7.2 Rings of Algebraic Integers

Lemma 7.2

Let f € Z[x] be a monic polynomial. Suppose that there exists a monic polynomial g € Q[x] such thatg | f
in Q[x]. Then g € Z[x].

Proof. Recall from Algebra 2 that the content of a polynomial p € Z[x] is the gcd of all coefficients of p, and is
denoted by c(p). Gauss’ lemma says that the content is multiplicative: p(x) = q(x)r(x) in Z[x] implies
that c¢(p) = c¢(q)c(r) (up to associates).

Write f(x) = g(x)h(x) in Q[x]. Let G,H € Z[x] be such that g(x) = G(x)/a, h(x) = H(x)/b, where
a,b € Q and ¢(G) = ¢(H) = 1. Since g, h are monic, we have that a,b € Z. By Gauss’ lemma, abf = GH
implies that abc(f) = ¢(G)c(H). Since f is monic, c¢(f) = 1. Hence ab = 1. It follows thata = b = 1 (up to
associates). Hence g = G € Z[x]. O

Example 7.3

Z[V3] is normal.

Proof. We need a little bit field theory for this one. The field of fractions of Z[V/3] is Q(V/3), which is the smallest
subfield of C that contains Q and {V/3}. It is easy to see that, as a set,

Q(V3) = Q[V3] :{a+b«/§|a,beQ}.

We would like to identify the elements of Q(V/3) that are integral over Z[V3]. Suppose that & = a +
b3 € Q(V/3) is integral over Z[V3]. Note that Z[/3] is integral over Z as V3 satisfies the monic equation

26



x? — 3 € Z[x]. By tower law, « is integral over Z.
Suppose that b = 0. Then & = a € Q. By (a) we have a € Z. Hence € Z[V3].

Suppose that b # 0. Then « ¢ Q. The minimal polynomial of « over Q is the quadratic monic polynomial
m(x) = (x — a)(x — @) = x% — 2ax + (a® + 3b%) € Q[x].

By assumption, « is integral over Z. So there exists a monic f(x) € Z[x] such that f(a) = 0. It follows
that m | f in Q[x]. By the previous lemma, this means m | f in Z[x]. In particular m € Z[x]. We have
2a € Z and a® — 3b% € Z.

Now the modular arithmetic comes in. Let A := 2a and B := 2b. Now we have A € Z and A% — 3B* € 4Z.
Hence A% B? € Z and A? - 3B? = 0 mod 4. Note that a square of integer has = 0 or 1 mod 4. Hence we can
only have A2 = 0 and B> = 0 mod 4. Hence A and B are even. It follows that a,b € Z. We conclude that
a = a+bV3 € Z[V3]. So Z[V3] is integrally closed. O

Example 7.4

Z[V5] is not normal.

1+ V5
Proof. Note that Z[\/g] is not integrally closed, as & = V5 € Q(\/g) satisfies the monic equation:

d-a-1=0

whereas a ¢ Z[V5]. The reason that the naive UFD argument does not work is simply because Z[Vd] is
not a UFD:

Suppose that Z[+/5] is a UFD. Note that in Z[V/5] we have
2-2:(\/§+1) (\/5—1).
We do not know yet if 2 or (\/3 + 1) are irreducibles in Z[\/E]. But we can consider p = gcd(2, V5 + 1).
Let2 = ap and Vs+1= bp, where a,b € Z[\/g] are coprime. Now we have
(ap)® =bp - (bp —ap) = a’ =b*(b~a).
In particular b | a in Z[V/5]. Since gcd(a, b) = 1, we must have b = 1. Hence

2 b1
1+5 2

This is a contradiction. a

e Z[V5].

a

Remark. Let K be a finite extension field of Q. The ring of integers of K is the integral closure of Z in K, and
is denoted by Ok. For the quadratic number field Q(Vd), where d € Z is square-free, the ring of integers is

o Z[Vd], d=23mod4
Q) = Z[#], d =1mod 4
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