
Week 8 Notes

7.1 UFDs are integrally closed

Recall that a domain is called normal if it is integrally closed in its field of fractions.

Proposition 7.1

Let 𝑅 be a UFD. Then 𝑅 is normal.

Proof. Suppose that 𝛼 = 𝑎/𝑏 ∈ Frac(𝑅) (where gcd(𝑎, 𝑏) = 1 — which is well-defined as 𝑅 is UFD) is integral over
𝑅. Then there exists a monic polynomial 𝑓 ∈ 𝑅 [𝑥] such that

𝑓 (𝛼) = (𝑎/𝑏)𝑛 + 𝑐𝑛−1(𝑎/𝑏)𝑛−1 + · · · + 𝑐1(𝑎/𝑏) + 𝑐0 = 0.

Clearing denominators, we have

𝑎𝑛 = −𝑏
(
𝑐𝑛−1𝑎

𝑛−1 + · · · + 𝑐1𝑏
𝑛−2𝑎 + 𝑐0𝑏

𝑛−1) .
In particular 𝑏 | 𝑎𝑛 . Since gcd(𝑎, 𝑏) = 1, we must have that 𝑏 is a unit of 𝑅. Hence 𝛼 = 𝑎𝑏−1 ∈ 𝑅. So 𝑅 is
integrally closed in Frac(𝑅). □

7.2 Rings of Algebraic Integers
Lemma 7.2

Let 𝑓 ∈ Z[𝑥] be a monic polynomial. Suppose that there exists a monic polynomial 𝑔 ∈ Q[𝑥] such that 𝑔 | 𝑓
in Q[𝑥]. Then 𝑔 ∈ Z[𝑥].

Proof. Recall from Algebra 2 that the content of a polynomial 𝑝 ∈ Z[𝑥] is the gcd of all coefficients of 𝑝 , and is
denoted by 𝑐 (𝑝). Gauss’ lemma says that the content is multiplicative: 𝑝 (𝑥) = 𝑞(𝑥)𝑟 (𝑥) in Z[𝑥] implies
that 𝑐 (𝑝) = 𝑐 (𝑞)𝑐 (𝑟 ) (up to associates).

Write 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) in Q[𝑥]. Let 𝐺,𝐻 ∈ Z[𝑥] be such that 𝑔(𝑥) = 𝐺 (𝑥)/𝑎, ℎ(𝑥) = 𝐻 (𝑥)/𝑏, where
𝑎, 𝑏 ∈ Q and 𝑐 (𝐺) = 𝑐 (𝐻 ) = 1. Since 𝑔, ℎ are monic, we have that 𝑎, 𝑏 ∈ Z. By Gauss’ lemma, 𝑎𝑏𝑓 = 𝐺𝐻

implies that 𝑎𝑏𝑐 (𝑓 ) = 𝑐 (𝐺)𝑐 (𝐻 ). Since 𝑓 is monic, 𝑐 (𝑓 ) = 1. Hence 𝑎𝑏 = 1. It follows that 𝑎 = 𝑏 = 1 (up to
associates). Hence 𝑔 = 𝐺 ∈ Z[𝑥]. □

Example 7.3

Z[
√

3] is normal.

Proof. We need a little bit field theory for this one. The field of fractions of Z[
√

3] is Q(
√

3), which is the smallest
subfield of C that contains Q and {

√
3}. It is easy to see that, as a set,

Q(
√

3) = Q[
√

3] =
{
𝑎 + 𝑏

√
3 | 𝑎, 𝑏 ∈ Q

}
.

We would like to identify the elements of Q(
√

3) that are integral over Z[
√

3]. Suppose that 𝛼 = 𝑎 +
𝑏
√

3 ∈ Q(
√

3) is integral over Z[
√

3]. Note that Z[
√

3] is integral over Z as
√

3 satisfies the monic equation
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𝑥2 − 3 ∈ Z[𝑥]. By tower law, 𝛼 is integral over Z.

Suppose that 𝑏 = 0. Then 𝛼 = 𝑎 ∈ Q. By (a) we have 𝑎 ∈ Z. Hence 𝛼 ∈ Z[
√

3].

Suppose that 𝑏 ≠ 0. Then 𝛼 ∉ Q. The minimal polynomial of 𝛼 over Q is the quadratic monic polynomial

𝑚(𝑥) = (𝑥 − 𝛼) (𝑥 − 𝛼) = 𝑥2 − 2𝑎𝑥 + (𝑎2 + 3𝑏2) ∈ Q[𝑥] .

By assumption, 𝛼 is integral over Z. So there exists a monic 𝑓 (𝑥) ∈ Z[𝑥] such that 𝑓 (𝛼) = 0. It follows
that 𝑚 | 𝑓 in Q[𝑥]. By the previous lemma, this means 𝑚 | 𝑓 in Z[𝑥]. In particular 𝑚 ∈ Z[𝑥]. We have
2𝑎 ∈ Z and 𝑎2 − 3𝑏2 ∈ Z.

Now the modular arithmetic comes in. Let 𝐴 := 2𝑎 and 𝐵 := 2𝑏. Now we have 𝐴 ∈ Z and 𝐴2 − 3𝐵2 ∈ 4Z.
Hence𝐴2, 𝐵2 ∈ Z and𝐴2 − 3𝐵2 ≡ 0 mod 4. Note that a square of integer has ≡ 0 or 1 mod 4. Hence we can
only have 𝐴2 ≡ 0 and 𝐵2 ≡ 0 mod 4. Hence 𝐴 and 𝐵 are even. It follows that 𝑎, 𝑏 ∈ Z. We conclude that
𝛼 = 𝑎 + 𝑏

√
3 ∈ Z[

√
3]. So Z[

√
3] is integrally closed. □

Example 7.4

Z[
√

5] is not normal.

Proof. Note that Z[
√

5] is not integrally closed, as 𝛼 =
1 +

√
5

2 ∈ Q(
√

5) satisfies the monic equation:

𝛼2 − 𝛼 − 1 = 0

whereas 𝛼 ∉ Z[
√

5]. The reason that the naı̈ve UFD argument does not work is simply because Z[
√
𝑑] is

not a UFD:

Suppose that Z[
√

5] is a UFD. Note that in Z[
√

5] we have

2 · 2 =

(√
5 + 1

) (√
5 − 1

)
.

We do not know yet if 2 or
(√

5 + 1
)

are irreducibles in Z[
√

5]. But we can consider 𝑝 := gcd(2,
√

5 + 1).
Let 2 = 𝑎𝑝 and

√
5 + 1 = 𝑏𝑝 , where 𝑎, 𝑏 ∈ Z[

√
5] are coprime. Now we have

(𝑎𝑝)2 = 𝑏𝑝 · (𝑏𝑝 − 𝑎𝑝) =⇒ 𝑎2 = 𝑏2(𝑏 − 𝑎) .

In particular 𝑏 | 𝑎 in Z[
√

5]. Since gcd(𝑎, 𝑏) = 1, we must have 𝑏 = 1. Hence

𝑎 =
2

1 +
√

5
=

√
5 − 1
2 ∈ Z[

√
5] .

This is a contradiction. □

Remark. Let 𝐾 be a finite extension field of Q. The ring of integers of 𝐾 is the integral closure of Z in 𝐾 , and
is denoted by 𝑂𝐾 . For the quadratic number field Q(

√
𝑑), where 𝑑 ∈ Z is square-free, the ring of integers is

𝑂Q(
√
𝑑 ) =


Z[

√
𝑑], 𝑑 ≡ 2, 3 mod 4

Z
[

1+
√
𝑑

2

]
, 𝑑 ≡ 1 mod 4

27


