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Exercise 2.1

Consider the continuous map exp : R → 𝑆1, 𝑡 ↦→ exp(2𝜋 i𝑡). Given a singular simplex 𝜎 : Δ1 → 𝑆1, let
𝑤 (𝜎) := (𝜎 (1) − 𝜎 (0)) ∈ R, where 𝜎 is any continuous map 𝜎 : Δ1 → R such that 𝜎 = 𝜎 ◦ exp.

(i) Show that𝑤 (𝜎) is well-defined in the sense that it does not depends on the choice of 𝜎 .
(ii) Extend the assignment 𝜎 ↦→ 𝑤 (𝜎) by R-linearity and obtain a 1-cochain𝑤 : 𝐶sing

1 (𝑆 ;R) → R.
(iii) Show that𝑤 ∈ 𝑍 1

sing
(
𝑆1;R

)
.

(iv) Show that𝑤 ∉ 𝐵1
sing

(
𝑆1;R

)
.

(v) Show that H1
sing

(
𝑆1;R

)
≃ R is generated by𝑤 .

(i) Suppose that 𝜎 and 𝜎 ′ are two liftings of 𝜎 . Then by definition we have

𝜎 (𝑡) = exp(2𝜋 i𝜎 (𝑡)) = exp(2𝜋 i𝜎 ′ (𝑡))

for all 𝑡 ∈ Δ1 � 𝐼 = [0, 1]. Hence 1 = exp(2𝜋 i(𝜎 (𝑡) − 𝜎 ′ (𝑡))). It follows that 𝜎 (𝑡) − 𝜎 ′ (𝑡) ∈ Z for all 𝑡 ∈ Δ1.
Since Δ1 is connected, we have 𝜎 − 𝜎 ′ is constant. In particular,

𝜎 (1) − 𝜎 ′ (1) = 𝜎 (0) − 𝜎 ′ (0) =⇒ 𝜎 (1) − 𝜎 (0) = 𝜎 ′ (1) − 𝜎 ′ (0).

Hence𝑤 (𝜎) is well-defined.

(ii) There is nothing to prove here.

(iii) For any singular 2-simplex 𝜏 : Δ2 → 𝑆1,

(𝛿𝑤)(𝜏) = 𝑤 (𝜕𝜏) =
2∑

𝑖=0

(−1)𝑖𝑤 (𝜏 |Δ1
𝑖
)

= 𝑤 (𝜏 | [𝑣0,𝑣1 ]) +𝑤 (𝜏 | [𝑣1,𝑣2 ]) −𝑤 (𝜏 | [𝑣0,𝑣2 ])
= 𝜏01 (𝑣1) − 𝜏01 (𝑣0) + 𝜏12 (𝑣2) − 𝜏12 (𝑣1) − 𝜏02 (𝑣2) + 𝜏02 (𝑣0)

Since R is a covering space of 𝑆1, 𝜏 : Δ2 → 𝑆1 lifts to a continuous map 𝜏 : Δ2 → R, so that 𝜏𝑖 𝑗 =
𝜏 | [𝑣𝑖−1,𝑣𝑖+1 ] : Δ1 → R is a lift of 𝜏 | [𝑣𝑖 ,𝑣𝑗 ] : Δ1 → 𝑆1. In particular, we have 𝜏01 (𝑣1) = 𝜏 (𝑣1) = 𝜏12 (𝑣1), and
similar for 𝑣0 and 𝑣2. Hence 𝛿𝑤 = 0. 𝑤 ∈ 𝑍 1

sing (𝑆1;R).

(iv) Suppose that𝑤 = 𝛿𝑢 for some 𝑢 ∈ 𝐶0
sing (𝑆1;R). Then, for any 𝜎 : Δ1 → 𝑆1, we have

𝑤 (𝜎) = (𝛿𝑢)(𝜎) = 𝑢 (𝜕𝜎) = 𝑢 (𝜎 (1)) − 𝑢 (𝜎 (0)) .

In particular if 𝜎1 : Δ1 � [0, 1] → 𝑆1 is given by 𝜎1 (𝑡) = exp(2𝜋 i𝑡), then 𝜎1 (0) = 𝜎1 (1) and hence𝑤 (𝜎1) = 0.
On the other hand, 𝜎1 : [0, 1] → R, 𝜎1 (𝑡) = 𝑡 is a lift of 𝜎1, which implies that 𝑤 (𝜎1) = 𝜎1 (1) − 𝜎1 (0) = 1.
This is a contradiction. Hence𝑤 ∉ 𝐵1

sing (𝑆1;R).

(v) By (iii) and (iv), 𝑤 define a non-zero class [𝑤] ∈ H1
sing (𝑆1;R). It suffices to show that H1

sing (𝑆1;R) is one-
dimensional. There are a lot of ways: cohomological Mayer–Vietoris, universal coefficient theorem, or
direct computation by definition.
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• Cohomological Mayer–Vietoris sequence: Let 𝑎,𝑏 ∈ 𝑆1 be two distinct points. Put 𝐴 := 𝑆1 \ {𝑎}
and 𝐵 := 𝑆1 \ {𝑏}. Then𝐴, 𝐵 � R are contractible, and𝐴∩𝐵 = {𝑎,𝑏} consists of two points. Consider
the cohomological reduced Mayer–Vietoris long exact sequence:

· · · H̃
0 (𝐴;R) ⊕ H̃

0 (𝐵;R) H̃
0 (𝐴 ∩ 𝐵;R) H̃

1 (𝑆1;R) H̃
1 (𝐴;R) ⊕ H̃

1 (𝐵;R) · · ·

Since H̃
• (𝐴;R) = H̃

• (𝐵;R) = 0, we have H̃
1 (𝑆1;R) � H̃

0 (𝐴 ∩ 𝐵;R) = R. Hence H1
sing (𝑆1;R) �

H̃
1 (𝑆1;R) � R and it is generated by [𝑤].

• Universal coefficient theorem: we have an isomorphism

H1
sing (𝑆1;R) � HomZ (H1 (𝑆1),R) ⊕ Ext1Z (H0 (𝑆1),R).

Note that H0 (𝑆1) � Z is free and H1 (𝑆1) � Z. We deduce that H1
sing (𝑆1;R) � R.

• Proof by definition: We claim that 𝑍 1
sing (𝑆1;R) = R𝑤 ⊕ 𝐵1

sing (𝑆1;R). The only non-trivial part is to
show 𝑍 1

sing (𝑆1;R) ⊆ R𝑤 + 𝐵1
sing (𝑆1;R). Let 𝛼 ∈ 𝑍 1

sing (𝑆1;R). Consider the singular simplex

𝜎𝑠 : Δ
1 → 𝑆1; 𝜎𝑠 (𝑡) = e2𝜋 i𝑠𝑡 .

Let 𝛽 := 𝛼 − 𝛼 (𝜎1)𝑤 ∈ 𝑍 1
sing (𝑆1;R). Note that 𝛽 (𝜎1) = 𝛼 (𝜎1) − 𝛼 (𝜎1)𝑤 (𝜎1) = 0. We claim that 𝛽 ∈

𝐵1
sing (𝑆1;R). Let 𝑢 ∈ 𝐶0

sing (𝑆1;R) be such that 𝑢 (e2𝜋 i𝑠 ) = 𝛽 (𝜎𝑠 ) for 𝑠 ∈ [0, 1]. Since 𝛽 ∈ 𝑍 1
sing (𝑆1;R),

then 𝛽 (𝜎𝑠 ) = 𝛽 (𝜎𝑠′ ) +𝛽 (𝜎𝑠−𝑠′ ); and since 𝛽 (𝜎1) = 0, we have 𝛽 (𝜎𝑠 ) = 𝛽 (𝜎𝑠′ ) if 𝑠 ≡ 𝑠′ mod Z. It suffices
to show that 𝛽 (𝜎) = 𝑢 (𝑠1) − 𝑢 (𝑠0) for any 𝜎 : Δ1 → 𝑆1, where 𝑠0 := 𝜎 (0) and 𝑠1 := 𝜎 (1). Choose a
lift 𝜎 : Δ1 → R and put 𝑠′𝑖 := 𝜎 (𝑖) for 𝑖 = 0, 1. Then 𝑠𝑖 ≡ 𝑠′𝑖 mod Z. Consider the singular 2-simplex
𝜏 : Δ2 → 𝑆1 defined by its lift 𝜏 : Δ2 → R, given by

𝜏 (𝑥,𝑦) = (1 − 𝑦)𝜎̃
(

𝑥

1 − 𝑦

)
,

where the 2-simplex is modelled as follows:

Since 𝛽 ∈ 𝑍 1
sing (𝑆1;R), we have

0 = 𝛿𝛽 (𝜏) = 𝛽 (𝜕𝜏) = 𝛽 (𝜎𝑠′0 ) + 𝛽 (𝜎) − 𝛽 (𝜎𝑠′1 ) = 𝛽 (𝜎𝑠0 ) + 𝛽 (𝜎) − 𝛽 (𝜎𝑠1 ) = 𝛽 (𝜎) − 𝑢 (𝑠1) + 𝑢 (𝑠0).

Hence 𝛽 (𝜎) = 𝑢 (𝑠1) − 𝑢 (𝑠0) = 𝛿𝑢 (𝜎). It follows that 𝛽 ∈ 𝐵1
sing (𝑆1;R). This finishes the proof. (I think

the argument could be simplified.)

Exercise 2.2

Let 𝑓 : 𝑆𝑛 → 𝑆𝑛 be a continuous map. Review the definition of the degree of 𝑓 from Section 2.2 (page 134)
of Hatcher. Now, prove that that the degrees of the following two homomorphisms are equal:

𝑓𝑛 : H𝑛 (𝑆𝑛) → H𝑛 (𝑆𝑛) 𝑓 𝑛 : H𝑛 (𝑆𝑛 ;Z) → H𝑛 (𝑆𝑛 ;Z) .
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Recall that the sphere 𝑆𝑛 has the homology groups

H𝑘 (𝑆𝑛) =
{
Z, 𝑘 = 0, 𝑛;

0, otherwise.

The continuous map 𝑓 : 𝑆𝑛 → 𝑆𝑛 induces the group homomorphism 𝑓∗ : H𝑛 (𝑆𝑛) → H𝑛 (𝑆𝑛), which is uniquely
determined by the image 𝑓∗ (𝛼), where 𝛼 ∈ H𝑛 (𝑆𝑛) � Z is any chosen generator. The integer 𝑓∗ (𝛼) ∈ H𝑛 (𝑆𝑛) � Z
is called the degree of 𝑓 , denoted by deg 𝑓 .

To show that 𝑓𝑛 and 𝑓 𝑛 are “equal”, we must first identify H𝑛 (𝑆𝑛) and H𝑛 (𝑆𝑛) with Z by choosing generators.
Consider the cellular chain complex𝐶CW

• (𝑆𝑛): 𝑆𝑛 has a unique 𝑛-cell 𝛼 and no other 𝑘-cells for 𝑘 > 0. The cellular
chain complex is given by

0 Z𝛼 0 · · · 0 Z 0

𝑛 + 1 𝑛 𝑛 − 1 1 0

Hence H𝑛 (𝑆𝑛) = Z𝛼 . 𝑓 : 𝑆𝑛 → 𝑆𝑛 induces 𝑓𝑛 by 𝑓𝑛 (𝛼) = deg 𝑓 · 𝛼 ∈ H𝑛 (𝑆𝑛). By dualisation, the cellular cochain
complex is given by

0 Z𝛼∗ 0 · · · 0 Z 0

𝑛 + 1 𝑛 𝑛 − 1 1 0

where 𝛼∗ ∈ Hom(𝐶CW
𝑛 (𝑆𝑛),Z) is the cocycle such that 𝛼∗ (𝛼) = 1. The cellular cohomology H𝑛 (𝑆𝑛) = Z𝛼∗. Now

𝑓 𝑛 acts by
𝑓 𝑛 (𝛼∗)(𝑘𝛼) = 𝛼∗ ◦ 𝑓𝑛 (𝑘𝛼) = 𝛼∗ (𝑘 deg 𝑓 · 𝛼) = 𝑘 deg 𝑓 = deg 𝑓 · 𝛼∗ (𝑘𝛼).

Hence 𝑓 𝑛 (𝛼∗) = deg 𝑓 · 𝛼∗. So both 𝑓𝑛 and 𝑓 𝑛 acts as multiplication by deg 𝑓 ∈ Z.

In fact, the result can be summarised as a commutative diagram:

H𝑛 (𝑆𝑛) HomZ (H𝑛 (𝑆𝑛),Z)

H𝑛 (𝑆𝑛) HomZ (H𝑛 (𝑆𝑛),Z)

∼

∼
𝑓 𝑛 (𝑓𝑛 )∗

So 𝑓 𝑛 should be regarded as the dual map (i.e. transpose) of 𝑓𝑛 . This also holds for general space 𝑋 with H𝑛−1 (𝑋 )
free (by universal coefficient theorem).
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