MA4J7 Cohomology \& Poincaré Duality Sheet 2 Solutions

Peize Liu

5 Feb 2024

Exercise 2.1

Consider the continuous map exp: $\mathbb{R} \rightarrow S^{1}, t \mapsto \exp (2 \pi \mathrm{i} t)$. Given a singular simplex $\sigma: \Delta^{1} \rightarrow S^{1}$, let $w(\sigma):=(\widetilde{\sigma}(1)-\widetilde{\sigma}(0)) \in \mathbb{R}$, where $\widetilde{\sigma}$ is any continuous map $\widetilde{\sigma}: \Delta^{1} \rightarrow \mathbb{R}$ such that $\sigma=\widetilde{\sigma} \circ \exp$.
(i) Show that $w(\sigma)$ is well-defined in the sense that it does not depends on the choice of $\widetilde{\sigma}$.
(ii) Extend the assignment $\sigma \mapsto w(\sigma)$ by \mathbb{R}-linearity and obtain a 1-cochain $w: C_{1}^{\text {sing }}(S ; \mathbb{R}) \rightarrow \mathbb{R}$.
(iii) Show that $w \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$.
(iv) Show that $w \notin B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$.
(v) Show that $\mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right) \simeq \mathbb{R}$ is generated by w.
(i) Suppose that $\widetilde{\sigma}$ and $\widetilde{\sigma}^{\prime}$ are two liftings of σ. Then by definition we have

$$
\sigma(t)=\exp (2 \pi \mathrm{i} \widetilde{\sigma}(t))=\exp \left(2 \pi \mathrm{i} \widetilde{\sigma}^{\prime}(t)\right)
$$

for all $t \in \Delta^{1} \cong I=[0,1]$. Hence $1=\exp \left(2 \pi \mathrm{i}\left(\widetilde{\sigma}(t)-\widetilde{\sigma}^{\prime}(t)\right)\right)$. It follows that $\widetilde{\sigma}(t)-\widetilde{\sigma}^{\prime}(t) \in \mathbb{Z}$ for all $t \in \Delta^{1}$. Since Δ^{1} is connected, we have $\widetilde{\sigma}-\widetilde{\sigma}^{\prime}$ is constant. In particular,

$$
\widetilde{\sigma}(1)-\widetilde{\sigma}^{\prime}(1)=\widetilde{\sigma}(0)-\widetilde{\sigma}^{\prime}(0) \Longrightarrow \widetilde{\sigma}(1)-\widetilde{\sigma}(0)=\widetilde{\sigma}^{\prime}(1)-\widetilde{\sigma}^{\prime}(0) .
$$

Hence $w(\sigma)$ is well-defined.
(ii) There is nothing to prove here.
(iii) For any singular 2-simplex $\tau: \Delta^{2} \rightarrow S^{1}$,

$$
\begin{aligned}
(\delta w)(\tau) & =w(\partial \tau)=\sum_{i=0}^{2}(-1)^{i} w\left(\left.\tau\right|_{\Delta_{i}^{1}}\right) \\
& =w\left(\left.\tau\right|_{\left[v_{0}, v_{1}\right]}\right)+w\left(\left.\tau\right|_{\left[v_{1}, v_{2}\right]}\right)-w\left(\left.\tau\right|_{\left[v_{0}, v_{2}\right]}\right) \\
& =\widetilde{\tau_{01}}\left(v_{1}\right)-\widetilde{\tau_{01}}\left(v_{0}\right)+\widetilde{\tau_{12}}\left(v_{2}\right)-\widetilde{\tau_{12}}\left(v_{1}\right)-\widetilde{\tau_{02}}\left(v_{2}\right)+\widetilde{\tau_{02}}\left(v_{0}\right)
\end{aligned}
$$

Since \mathbb{R} is a covering space of $S^{1}, \tau: \Delta^{2} \rightarrow S^{1}$ lifts to a continuous map $\widetilde{\tau}: \Delta^{2} \rightarrow \mathbb{R}$, so that $\widetilde{\tau}_{i j}=$ $\left.\widetilde{\tau}\right|_{\left[v_{i-1}, v_{i+1}\right]}: \Delta^{1} \rightarrow \mathbb{R}$ is a lift of $\left.\tau\right|_{\left[v_{i}, v_{j}\right]}: \Delta^{1} \rightarrow S^{1}$. In particular, we have $\widetilde{\tau_{01}}\left(v_{1}\right)=\widetilde{\tau}\left(v_{1}\right)=\widetilde{\tau_{12}}\left(v_{1}\right)$, and similar for v_{0} and v_{2}. Hence $\delta w=0 . w \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$.
(iv) Suppose that $w=\delta u$ for some $u \in C_{\text {sing }}^{0}\left(S^{1} ; \mathbb{R}\right)$. Then, for any $\sigma: \Delta^{1} \rightarrow S^{1}$, we have

$$
w(\sigma)=(\delta u)(\sigma)=u(\partial \sigma)=u(\sigma(1))-u(\sigma(0)) .
$$

In particular if $\sigma_{1}: \Delta^{1} \cong[0,1] \rightarrow S^{1}$ is given by $\sigma_{1}(t)=\exp (2 \pi \mathrm{it})$, then $\sigma_{1}(0)=\sigma_{1}(1)$ and hence $w\left(\sigma_{1}\right)=0$. On the other hand, $\widetilde{\sigma}_{1}:[0,1] \rightarrow \mathbb{R}, \widetilde{\sigma}_{1}(t)=t$ is a lift of σ_{1}, which implies that $w\left(\sigma_{1}\right)=\widetilde{\sigma}_{1}(1)-\widetilde{\sigma}_{1}(0)=1$. This is a contradiction. Hence $w \notin B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$.
(v) By (iii) and (iv), w define a non-zero class $[w] \in \mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. It suffices to show that $\mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$ is onedimensional. There are a lot of ways: cohomological Mayer-Vietoris, universal coefficient theorem, or direct computation by definition.

- Cohomological Mayer-Vietoris sequence: Let $a, b \in S^{1}$ be two distinct points. Put $A:=S^{1} \backslash\{a\}$ and $B:=S^{1} \backslash\{b\}$. Then $A, B \cong \mathbb{R}$ are contractible, and $A \cap B=\{a, b\}$ consists of two points. Consider the cohomological reduced Mayer-Vietoris long exact sequence:

$$
\cdots \rightarrow \widetilde{\mathrm{H}}^{0}(A ; \mathbb{R}) \oplus \widetilde{\mathrm{H}}^{0}(B ; \mathbb{R}) \rightarrow \widetilde{\mathrm{H}}^{0}(A \cap B ; \mathbb{R}) \rightarrow \widetilde{\mathrm{H}}^{1}\left(S^{1} ; \mathbb{R}\right) \rightarrow \widetilde{\mathrm{H}}^{1}(A ; \mathbb{R}) \oplus \widetilde{\mathrm{H}}^{1}(B ; \mathbb{R}) \rightarrow \cdots
$$

Since $\widetilde{\mathrm{H}}^{\bullet}(A ; \mathbb{R})=\widetilde{\mathrm{H}}^{\bullet}(B ; \mathbb{R})=0$, we have $\widetilde{\mathrm{H}}^{1}\left(S^{1} ; \mathbb{R}\right) \cong \widetilde{\mathrm{H}}^{0}(A \cap B ; \mathbb{R})=\mathbb{R}$. Hence $\mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right) \cong$ $\widetilde{\mathrm{H}}^{1}\left(S^{1} ; \mathbb{R}\right) \cong \mathbb{R}$ and it is generated by $[w]$.

- Universal coefficient theorem: we have an isomorphism

$$
\mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right) \cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathrm{H}_{1}\left(S^{1}\right), \mathbb{R}\right) \oplus \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{H}_{0}\left(S^{1}\right), \mathbb{R}\right)
$$

Note that $\mathrm{H}_{0}\left(S^{1}\right) \cong \mathbb{Z}$ is free and $\mathrm{H}_{1}\left(S^{1}\right) \cong \mathbb{Z}$. We deduce that $\mathrm{H}_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right) \cong \mathbb{R}$.

- Proof by definition: We claim that $Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)=\mathbb{R} w \oplus B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. The only non-trivial part is to show $Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right) \subseteq \mathbb{R} w+B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. Let $\alpha \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. Consider the singular simplex

$$
\sigma_{s}: \Delta^{1} \rightarrow S^{1} ; \quad \sigma_{s}(t)=\mathrm{e}^{2 \pi \mathrm{i} s t}
$$

Let $\beta:=\alpha-\alpha\left(\sigma_{1}\right) w \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. Note that $\beta\left(\sigma_{1}\right)=\alpha\left(\sigma_{1}\right)-\alpha\left(\sigma_{1}\right) w\left(\sigma_{1}\right)=0$. We claim that $\beta \in$ $B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. Let $u \in C_{\text {sing }}^{0}\left(S^{1} ; \mathbb{R}\right)$ be such that $u\left(\mathrm{e}^{2 \pi \mathrm{is}}\right)=\beta\left(\sigma_{s}\right)$ for $s \in[0,1]$. Since $\beta \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$, then $\beta\left(\sigma_{s}\right)=\beta\left(\sigma_{s^{\prime}}\right)+\beta\left(\sigma_{s-s^{\prime}}\right)$; and since $\beta\left(\sigma_{1}\right)=0$, we have $\beta\left(\sigma_{s}\right)=\beta\left(\sigma_{s^{\prime}}\right)$ if $s \equiv s^{\prime} \bmod \mathbb{Z}$. It suffices to show that $\beta(\sigma)=u\left(s_{1}\right)-u\left(s_{0}\right)$ for any $\sigma: \Delta^{1} \rightarrow S^{1}$, where $s_{0}:=\sigma(0)$ and $s_{1}:=\sigma(1)$. Choose a lift $\tilde{\sigma}: \Delta^{1} \rightarrow \mathbb{R}$ and put $s_{i}^{\prime}:=\tilde{\sigma}(i)$ for $i=0,1$. Then $s_{i} \equiv s_{i}^{\prime} \bmod \mathbb{Z}$. Consider the singular 2-simplex $\tau: \Delta^{2} \rightarrow S^{1}$ defined by its lift $\tilde{\tau}: \Delta^{2} \rightarrow \mathbb{R}$, given by

$$
\widetilde{\tau}(x, y)=(1-y) \widetilde{\sigma}\left(\frac{x}{1-y}\right)
$$

where the 2 -simplex is modelled as follows:

Since $\beta \in Z_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$, we have

$$
0=\delta \beta(\tau)=\beta(\partial \tau)=\beta\left(\sigma_{s_{0}^{\prime}}\right)+\beta(\sigma)-\beta\left(\sigma_{s_{1}^{\prime}}\right)=\beta\left(\sigma_{s_{0}}\right)+\beta(\sigma)-\beta\left(\sigma_{s_{1}}\right)=\beta(\sigma)-u\left(s_{1}\right)+u\left(s_{0}\right)
$$

Hence $\beta(\sigma)=u\left(s_{1}\right)-u\left(s_{0}\right)=\delta u(\sigma)$. It follows that $\beta \in B_{\text {sing }}^{1}\left(S^{1} ; \mathbb{R}\right)$. This finishes the proof. (Ithink the argument could be simplified.)

Exercise 2.2

Let $f: S^{n} \rightarrow S^{n}$ be a continuous map. Review the definition of the degree of f from Section 2.2 (page 134) of Hatcher. Now, prove that that the degrees of the following two homomorphisms are equal:

$$
f_{n}: \mathrm{H}_{n}\left(S^{n}\right) \rightarrow \mathrm{H}_{n}\left(S^{n}\right) \quad f^{n}: \mathrm{H}^{n}\left(S^{n} ; \mathbb{Z}\right) \rightarrow \mathrm{H}^{n}\left(S^{n} ; \mathbb{Z}\right)
$$

Recall that the sphere S^{n} has the homology groups

$$
\mathrm{H}_{k}\left(S^{n}\right)= \begin{cases}\mathbb{Z}, & k=0, n \\ 0, & \text { otherwise }\end{cases}
$$

The continuous map $f: S^{n} \rightarrow S^{n}$ induces the group homomorphism $f_{*}: \mathrm{H}_{n}\left(S^{n}\right) \rightarrow \mathrm{H}_{n}\left(S^{n}\right)$, which is uniquely determined by the image $f_{*}(\alpha)$, where $\alpha \in \mathrm{H}_{n}\left(S^{n}\right) \cong \mathbb{Z}$ is any chosen generator. The integer $f_{*}(\alpha) \in \mathrm{H}_{n}\left(S^{n}\right) \cong \mathbb{Z}$ is called the degree of f, denoted by $\operatorname{deg} f$.
To show that f_{n} and f^{n} are "equal", we must first identify $\mathrm{H}^{n}\left(S^{n}\right)$ and $\mathrm{H}_{n}\left(S^{n}\right)$ with \mathbb{Z} by choosing generators. Consider the cellular chain complex $C_{\bullet}^{\mathrm{CW}}\left(S^{n}\right): S^{n}$ has a unique n-cell α and no other k-cells for $k>0$. The cellular chain complex is given by

Hence $\mathrm{H}_{n}\left(S^{n}\right)=\mathbb{Z} \alpha . f: S^{n} \rightarrow S^{n}$ induces f_{n} by $f_{n}(\alpha)=\operatorname{deg} f \cdot \alpha \in \mathrm{H}_{n}\left(S^{n}\right)$. By dualisation, the cellular cochain complex is given by

where $\alpha^{*} \in \operatorname{Hom}\left(C_{n}^{\mathrm{CW}}\left(S^{n}\right), \mathbb{Z}\right)$ is the cocycle such that $\alpha^{*}(\alpha)=1$. The cellular cohomology $\mathrm{H}^{n}\left(S^{n}\right)=\mathbb{Z} \alpha^{*}$. Now f^{n} acts by

$$
f^{n}\left(\alpha^{*}\right)(k \alpha)=\alpha^{*} \circ f_{n}(k \alpha)=\alpha^{*}(k \operatorname{deg} f \cdot \alpha)=k \operatorname{deg} f=\operatorname{deg} f \cdot \alpha^{*}(k \alpha) .
$$

Hence $f^{n}\left(\alpha^{*}\right)=\operatorname{deg} f \cdot \alpha^{*}$. So both f_{n} and f^{n} acts as multiplication by $\operatorname{deg} f \in \mathbb{Z}$.
In fact, the result can be summarised as a commutative diagram:

So f^{n} should be regarded as the dual map (i.e. transpose) of f_{n}. This also holds for general space X with $\mathrm{H}_{n-1}(X)$ free (by universal coefficient theorem).

