MA4J7 Cohomology & Poincaré Duality Sheet 2 Solutions

Peize Liu

5 Feb 2024

Exercise 2.1

Consider the continuous map $\exp : \mathbb{R} \to S^1, t \mapsto \exp(2\pi i t)$. Given a singular simplex $\sigma : \Delta^1 \to S^1$, let $w(\sigma) := (\tilde{\sigma}(1) - \tilde{\sigma}(0)) \in \mathbb{R}$, where $\tilde{\sigma}$ is any continuous map $\tilde{\sigma} : \Delta^1 \to \mathbb{R}$ such that $\sigma = \tilde{\sigma} \circ \exp$.

- (i) Show that $w(\sigma)$ is well-defined in the sense that it does not depends on the choice of $\tilde{\sigma}$.
- (ii) Extend the assignment $\sigma \mapsto w(\sigma)$ by \mathbb{R} -linearity and obtain a 1-cochain $w : C_1^{\text{sing}}(S; \mathbb{R}) \to \mathbb{R}$.
- (iii) Show that $w \in Z^1_{\text{sing}}(S^1; \mathbb{R})$.
- (iv) Show that $w \notin B^1_{\text{sing}}(S^1; \mathbb{R})$.
- (v) Show that $H^1_{\text{sing}}(S^1; \mathbb{R}) \simeq \mathbb{R}$ is generated by w.

(i) Suppose that $\tilde{\sigma}$ and $\tilde{\sigma}'$ are two liftings of σ . Then by definition we have

$$\sigma(t) = \exp(2\pi i \widetilde{\sigma}(t)) = \exp(2\pi i \widetilde{\sigma}'(t))$$

for all $t \in \Delta^1 \cong I = [0, 1]$. Hence $1 = \exp(2\pi i(\tilde{\sigma}(t) - \tilde{\sigma}'(t)))$. It follows that $\tilde{\sigma}(t) - \tilde{\sigma}'(t) \in \mathbb{Z}$ for all $t \in \Delta^1$. Since Δ^1 is connected, we have $\tilde{\sigma} - \tilde{\sigma}'$ is constant. In particular,

$$\widetilde{\sigma}(1) - \widetilde{\sigma}'(1) = \widetilde{\sigma}(0) - \widetilde{\sigma}'(0) \implies \widetilde{\sigma}(1) - \widetilde{\sigma}(0) = \widetilde{\sigma}'(1) - \widetilde{\sigma}'(0)$$

Hence $w(\sigma)$ is well-defined.

- (ii) There is nothing to prove here.
- (iii) For any singular 2-simplex $\tau : \Delta^2 \to S^1$,

$$(\delta w)(\tau) = w(\partial \tau) = \sum_{i=0}^{2} (-1)^{i} w(\tau|_{\Delta_{i}^{1}})$$

= $w(\tau|_{[v_{0},v_{1}]}) + w(\tau|_{[v_{1},v_{2}]}) - w(\tau|_{[v_{0},v_{2}]})$
= $\widetilde{\tau_{01}}(v_{1}) - \widetilde{\tau_{01}}(v_{0}) + \widetilde{\tau_{12}}(v_{2}) - \widetilde{\tau_{12}}(v_{1}) - \widetilde{\tau_{02}}(v_{2}) + \widetilde{\tau_{02}}(v_{0})$

Since \mathbb{R} is a covering space of S^1 , $\tau : \Delta^2 \to S^1$ lifts to a continuous map $\tilde{\tau} : \Delta^2 \to \mathbb{R}$, so that $\tilde{\tau}_{ij} = \tilde{\tau}|_{[v_{i-1},v_{i+1}]} : \Delta^1 \to \mathbb{R}$ is a lift of $\tau|_{[v_i,v_j]} : \Delta^1 \to S^1$. In particular, we have $\tilde{\tau}_{01}(v_1) = \tilde{\tau}(v_1) = \tilde{\tau}_{12}(v_1)$, and similar for v_0 and v_2 . Hence $\delta w = 0$. $w \in Z^1_{\text{sing}}(S^1; \mathbb{R})$.

(iv) Suppose that $w = \delta u$ for some $u \in C^0_{sing}(S^1; \mathbb{R})$. Then, for any $\sigma \colon \Delta^1 \to S^1$, we have

$$w(\sigma) = (\delta u)(\sigma) = u(\partial \sigma) = u(\sigma(1)) - u(\sigma(0)).$$

In particular if $\sigma_1: \Delta^1 \cong [0, 1] \to S^1$ is given by $\sigma_1(t) = \exp(2\pi i t)$, then $\sigma_1(0) = \sigma_1(1)$ and hence $w(\sigma_1) = 0$. On the other hand, $\tilde{\sigma}_1: [0, 1] \to \mathbb{R}$, $\tilde{\sigma}_1(t) = t$ is a lift of σ_1 , which implies that $w(\sigma_1) = \tilde{\sigma}_1(1) - \tilde{\sigma}_1(0) = 1$. This is a contradiction. Hence $w \notin B^1_{sing}(S^1; \mathbb{R})$.

(v) By (iii) and (iv), w define a non-zero class [w] ∈ H¹_{sing}(S¹; ℝ). It suffices to show that H¹_{sing}(S¹; ℝ) is onedimensional. There are a lot of ways: cohomological Mayer–Vietoris, universal coefficient theorem, or direct computation by definition. • Cohomological Mayer–Vietoris sequence: Let $a, b \in S^1$ be two distinct points. Put $A := S^1 \setminus \{a\}$ and $B := S^1 \setminus \{b\}$. Then $A, B \cong \mathbb{R}$ are contractible, and $A \cap B = \{a, b\}$ consists of two points. Consider the cohomological reduced Mayer–Vietoris long exact sequence:

$$\cdots \to \widetilde{H}^{0}(A;\mathbb{R}) \oplus \widetilde{H}^{0}(B;\mathbb{R}) \to \widetilde{H}^{0}(A \cap B;\mathbb{R}) \to \widetilde{H}^{1}(S^{1};\mathbb{R}) \to \widetilde{H}^{1}(A;\mathbb{R}) \oplus \widetilde{H}^{1}(B;\mathbb{R}) \to \cdots$$

Since $\widetilde{H}^{\bullet}(A; \mathbb{R}) = \widetilde{H}^{\bullet}(B; \mathbb{R}) = 0$, we have $\widetilde{H}^{1}(S^{1}; \mathbb{R}) \cong \widetilde{H}^{0}(A \cap B; \mathbb{R}) = \mathbb{R}$. Hence $H^{1}_{sing}(S^{1}; \mathbb{R}) \cong \widetilde{H}^{1}(S^{1}; \mathbb{R}) \cong \mathbb{R}$ and it is generated by [w].

• Universal coefficient theorem: we have an isomorphism

$$\mathrm{H}^{1}_{\mathrm{sing}}(S^{1};\mathbb{R}) \cong \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{1}(S^{1}),\mathbb{R}) \oplus \mathrm{Ext}^{1}_{\mathbb{Z}}(\mathrm{H}_{0}(S^{1}),\mathbb{R}).$$

Note that $H_0(S^1) \cong \mathbb{Z}$ is free and $H_1(S^1) \cong \mathbb{Z}$. We deduce that $H^1_{\text{sing}}(S^1; \mathbb{R}) \cong \mathbb{R}$.

• **Proof by definition**: We claim that $Z_{\text{sing}}^1(S^1; \mathbb{R}) = \mathbb{R}w \oplus B_{\text{sing}}^1(S^1; \mathbb{R})$. The only non-trivial part is to show $Z_{\text{sing}}^1(S^1; \mathbb{R}) \subseteq \mathbb{R}w + B_{\text{sing}}^1(S^1; \mathbb{R})$. Let $\alpha \in Z_{\text{sing}}^1(S^1; \mathbb{R})$. Consider the singular simplex

$$\sigma_s: \Delta^1 \to S^1; \qquad \sigma_s(t) = e^{2\pi i s t}.$$

Let $\beta := \alpha - \alpha(\sigma_1)w \in Z^1_{\text{sing}}(S^1; \mathbb{R})$. Note that $\beta(\sigma_1) = \alpha(\sigma_1) - \alpha(\sigma_1)w(\sigma_1) = 0$. We claim that $\beta \in B^1_{\text{sing}}(S^1; \mathbb{R})$. Let $u \in C^0_{\text{sing}}(S^1; \mathbb{R})$ be such that $u(e^{2\pi is}) = \beta(\sigma_s)$ for $s \in [0, 1]$. Since $\beta \in Z^1_{\text{sing}}(S^1; \mathbb{R})$, then $\beta(\sigma_s) = \beta(\sigma_{s'}) + \beta(\sigma_{s-s'})$; and since $\beta(\sigma_1) = 0$, we have $\beta(\sigma_s) = \beta(\sigma_{s'})$ if $s \equiv s' \mod \mathbb{Z}$. It suffices to show that $\beta(\sigma) = u(s_1) - u(s_0)$ for any $\sigma : \Delta^1 \to S^1$, where $s_0 := \sigma(0)$ and $s_1 := \sigma(1)$. Choose a lift $\tilde{\sigma} : \Delta^1 \to \mathbb{R}$ and put $s'_i := \tilde{\sigma}(i)$ for i = 0, 1. Then $s_i \equiv s'_i \mod \mathbb{Z}$. Consider the singular 2-simplex $\tau : \Delta^2 \to S^1$ defined by its lift $\tilde{\tau} : \Delta^2 \to \mathbb{R}$, given by

$$\widetilde{\tau}(x,y) = (1-y)\widetilde{\sigma}\left(\frac{x}{1-y}\right),$$

where the 2-simplex is modelled as follows:

Since $\beta \in Z^1_{\text{sing}}(S^1; \mathbb{R})$, we have

$$0 = \delta\beta(\tau) = \beta(\partial\tau) = \beta(\sigma_{s_0'}) + \beta(\sigma) - \beta(\sigma_{s_1'}) = \beta(\sigma_{s_0}) + \beta(\sigma) - \beta(\sigma_{s_1}) = \beta(\sigma) - u(s_1) + u(s_0).$$

Hence $\beta(\sigma) = u(s_1) - u(s_0) = \delta u(\sigma)$. It follows that $\beta \in B^1_{\text{sing}}(S^1; \mathbb{R})$. This finishes the proof. (*I think the argument could be simplified.*)

Exercise 2.2

Let $f : S^n \to S^n$ be a continuous map. Review the definition of the degree of f from Section 2.2 (page 134) of Hatcher. Now, prove that the degrees of the following two homomorphisms are equal:

$$f_n: \mathrm{H}_n(S^n) \to \mathrm{H}_n(S^n) \quad f^n: \mathrm{H}^n(S^n; \mathbb{Z}) \to \mathrm{H}^n(S^n; \mathbb{Z}).$$

Recall that the sphere S^n has the homology groups

$$\mathbf{H}_k(S^n) = \begin{cases} \mathbb{Z}, & k = 0, n; \\ 0, & \text{otherwise.} \end{cases}$$

The continuous map $f : S^n \to S^n$ induces the group homomorphism $f_* : H_n(S^n) \to H_n(S^n)$, which is uniquely determined by the image $f_*(\alpha)$, where $\alpha \in H_n(S^n) \cong \mathbb{Z}$ is any chosen generator. The integer $f_*(\alpha) \in H_n(S^n) \cong \mathbb{Z}$ is called the degree of f, denoted by deg f.

To show that f_n and f^n are "equal", we must first identify $H^n(S^n)$ and $H_n(S^n)$ with \mathbb{Z} by choosing generators. Consider the cellular chain complex $C^{CW}_{\bullet}(S^n)$: S^n has a unique *n*-cell α and no other *k*-cells for k > 0. The cellular chain complex is given by

$$0 \longrightarrow \mathbb{Z}\alpha \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

$$n+1 \qquad n \qquad n-1 \qquad 1 \qquad 0$$

Hence $H_n(S^n) = \mathbb{Z}\alpha$. $f: S^n \to S^n$ induces f_n by $f_n(\alpha) = \deg f \cdot \alpha \in H_n(S^n)$. By dualisation, the cellular cochain complex is given by

$$0 \longrightarrow \mathbb{Z}\alpha^* \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

$$n+1 \qquad n \qquad n-1 \qquad 1 \qquad 0$$

where $\alpha^* \in \text{Hom}(C_n^{CW}(S^n), \mathbb{Z})$ is the cocycle such that $\alpha^*(\alpha) = 1$. The cellular cohomology $H^n(S^n) = \mathbb{Z}\alpha^*$. Now f^n acts by

$$f^{n}(\alpha^{*})(k\alpha) = \alpha^{*} \circ f_{n}(k\alpha) = \alpha^{*}(k \deg f \cdot \alpha) = k \deg f = \deg f \cdot \alpha^{*}(k\alpha).$$

Hence $f^n(\alpha^*) = \deg f \cdot \alpha^*$. So both f_n and f^n acts as multiplication by $\deg f \in \mathbb{Z}$.

In fact, the result can be summarised as a commutative diagram:

$$\begin{array}{ccc} \mathrm{H}^{n}(S^{n}) & \stackrel{\sim}{\longrightarrow} & \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{n}(S^{n}), \mathbb{Z}) \\ & & \downarrow^{f^{n}} & & \downarrow^{(f_{n})^{*}} \\ \mathrm{H}^{n}(S^{n}) & \stackrel{\sim}{\longrightarrow} & \mathrm{Hom}_{\mathbb{Z}}(\mathrm{H}_{n}(S^{n}), \mathbb{Z}) \end{array}$$

So f^n should be regarded as the dual map (i.e. transpose) of f_n . This also holds for general space X with $H_{n-1}(X)$ free (by universal coefficient theorem).