MA4J7 Cohomology \& Poincaré Duality Sheet 3 Solutions

Peize Liu

19 Feb 2024

Exercise 3.1

Let X be a topological space and R a commutative ring with unit. Let $\epsilon \in C^{0}(X ; R)$ be the augmentation homomorphism: for all singular zero-simplices σ^{0} we have $\epsilon\left(\sigma^{0}\right)=1_{R}$. Prove that the cup product at the level of cochains is R-linear in both variables, associative, and has $\epsilon \in C^{0}(X ; R)$ as its identity element.

Recall that the cup product is defined on singular cochains by

$$
(\varphi \smile \psi)(\sigma)=\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \psi\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right), \quad \varphi \in C^{k}(X ; R), \psi \in C^{\ell}(X ; R), \sigma \in C_{k+\ell}(X) .
$$

R-linearity: For $a_{i}, b_{i} \in R, \varphi_{i} \in C^{k}(X ; R), \psi_{i} \in C^{\ell}(X ; R)$

$$
\begin{aligned}
\left(\sum_{i=1}^{n} a_{i} \varphi_{i}-\psi\right)(\sigma) & =\left(\sum_{i=1}^{n} a_{i} \varphi_{i}\right)\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \psi\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right) \\
& =\sum_{i=1}^{n} a_{i} \varphi_{i}\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \psi\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right) \\
& =\sum_{i=1}^{n} a_{i}\left(\varphi_{i} \smile \psi\right)(\sigma) ; \\
\left(\varphi \smile \sum_{i=1}^{n} b_{i} \psi_{i}\right)(\sigma) & =\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right)\left(\sum_{i=1}^{n} b_{i} \psi_{i}\right)\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right) \\
& =\sum_{i=1}^{n} b_{i} \varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \psi_{i}\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right) \\
& =\sum_{i=1}^{n} b_{i}\left(\varphi \smile \psi_{i}\right)(\sigma) .
\end{aligned}
$$

Associativity: For $\varphi \in C^{i}(X ; R), \psi \in C^{j}(X ; R), \chi \in C^{k}(X ; R), \sigma \in C_{i+j+k}(X)$,

$$
\begin{aligned}
(\varphi \smile(\psi \smile \chi))(\sigma) & =\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{i}\right]}\right)(\psi \smile \chi)\left(\left.\sigma\right|_{\left[v_{i}, \ldots, v_{i+j+k}\right]}\right) \\
& =\varphi\left(\left.\right|_{\left[v_{0}, \ldots, v_{i}\right]}\right) \psi\left(\left.\left(\left.\sigma\right|_{\left[v_{i}, \ldots, v_{i+j+k}\right]}\right)\right|_{\left[v_{0}, \ldots, v_{j}\right]}\right) \chi\left(\left.\left(\left.\sigma\right|_{\left[v_{i}, \ldots, v_{i+j+k}\right]}\right)\right|_{\left[v_{j}, \ldots, v_{j+k}\right]}\right) \\
& =\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{i}\right]}\right) \psi\left(\left.\sigma\right|_{\left[v_{i}, \ldots, v_{i+j}\right]}\right) \chi\left(\left.\sigma\right|_{\left[v_{i+j}, \ldots, v_{i+j+k}\right]}\right) \\
& =\varphi\left(\left.\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{i+j}\right]}\right)\right|_{\left[v_{0}, \ldots, v_{i}\right]}\right) \psi\left(\left.\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{i+j}\right]}\right)\right|_{\left[v_{i}, \ldots, v_{i+j}\right]}\right) \chi\left(\left.\sigma\right|_{\left[v_{i+j}, \ldots, v_{i+j+k}\right]}\right) \\
& =(\varphi \smile \psi)\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{i+j}\right]}\right) \chi\left(\left.\sigma\right|_{\left[v_{i+j}, \ldots, v_{i+j+k}\right]}\right) \\
& =((\varphi \smile \psi) \smile \chi)(\sigma) .
\end{aligned}
$$

Identity: For $\varphi \in C^{k}(X ; R)$,

$$
\begin{aligned}
& (\varphi \smile \epsilon)(\sigma)=\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \epsilon\left(\left.\sigma\right|_{\left[v_{k}\right]}\right)=\varphi(\sigma) \cdot 1_{R}=\varphi(\sigma) ; \\
& (\epsilon \smile \varphi)(\sigma)=\epsilon\left(\left.\sigma\right|_{\left[v_{0}\right]}\right) \varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right)=1_{R} \cdot \varphi(\sigma)=\varphi(\sigma) .
\end{aligned}
$$

Exercise 3.2

(i) Give a Δ-complex structure on the torus $T^{2}=S^{1} \times S^{1}$.
(ii) Using (i), describe the simplicial chain complex associated to the Δ-complex structure of item (i) (with $R=\mathbb{Z}$).
(iii) Using (ii), compute the homology groups of T^{2}.
(iv) Using (i) and (ii), describe the simplicial cochain complex associated to the Δ-complex structure of item (i) (with $R=Q=\mathbb{Z}$).
(v) Using (iv), compute the cohomology groups of T^{2}.
(vi) Compute the cohomology ring $H^{*}\left(T^{2} ; \mathbb{Z}\right)$.

Δ-complex structure for T^{2}

(ii) - 0-simplex: v.

- 1-simplices: $a, b, c: \partial a=\partial b=\partial c=v-v=0$.
- 2-simplices: $D_{1}, D_{2}: \partial D_{1}=\partial D_{2}=a+b-c$.

Therefore the simplicial chain complex is given by:

(iii) Denote by $\varphi: \mathbb{Z} D_{1} \oplus \mathbb{Z} D_{2} \rightarrow \mathbb{Z} a \oplus \mathbb{Z} b \oplus \mathbb{Z} c$ the linear map associated to the matrix $\left(\begin{array}{cc}1 & 1 \\ 1 & 1 \\ -1 & -1\end{array}\right)$. Then

- $\mathrm{H}_{0}\left(T^{2}\right)=\mathbb{Z} v \cong \mathbb{Z}$;
- $\mathrm{H}_{1}\left(T^{2}\right)=\operatorname{coker} \varphi=\frac{\mathbb{Z} a \oplus \mathbb{Z} b \oplus \mathbb{Z} c}{\langle a+b-c\rangle} \cong \mathbb{Z}^{2}$, with a, b being the generators.
- $\mathrm{H}_{2}\left(T^{2}\right)=\operatorname{ker} \varphi=\mathbb{Z}\left(D_{1}-D_{2}\right) \cong \mathbb{Z}$.
- $\mathrm{H}_{i}\left(T^{2}\right)=0$ for $i \neq 0,1,2$.
(iv) Applying the functor $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Z})$ to the simplicial chain complex:

(v) $\quad \mathrm{H}^{0}\left(T^{2} ; \mathbb{Z}\right)=\mathbb{Z} v^{*} \cong \mathbb{Z}$;
- $\mathrm{H}^{1}\left(T^{2} ; \mathbb{Z}\right)=\operatorname{ker} \varphi^{*}=\mathbb{Z}\left(a^{*}+c^{*}\right) \oplus \mathbb{Z}\left(b^{*}+c^{*}\right) \cong \mathbb{Z}^{2} ;$
- $\mathrm{H}^{2}\left(T^{2} ; \mathbb{Z}\right)=\operatorname{coker} \varphi^{*}=\frac{\mathbb{Z} D_{1}^{*} \oplus \mathbb{Z} D_{2}}{\left\langle D_{1}+D_{2}\right\rangle} \cong \mathbb{Z}$, with $D_{1}^{*}=-D_{2}^{*}$ being the generator.
- $\mathrm{H}^{i}\left(T^{2} ; \mathbb{Z}\right)=0$ for $i \neq 0,1,2$.
(vi) Let $\alpha^{*}:=a^{*}+c^{*}$ and $\beta^{*}:=b^{*}+c^{*}$ be the generators of $\mathrm{H}^{1}\left(T^{2} ; \mathbb{Z}\right)$. We need to compute the cup product of them. Note that $2\left(\alpha^{*} \smile \alpha^{*}\right)=2\left(\beta^{*} \smile \beta^{*}\right)=0 \in \mathrm{H}^{2}\left(T^{2} ; \mathbb{Z}\right)$ by graded commutativity. Since $\mathrm{H}^{2}\left(T^{2} ; \mathbb{Z}\right)$ has
no torsion, we must have $\alpha^{*} \smile \alpha^{*}=\beta^{*} \smile \beta^{*}=0$. It remains to compute $\alpha^{*} \smile \beta^{*}$. We use the definition:

$$
\begin{aligned}
& \left(\alpha^{*} \smile \beta^{*}\right)\left(D_{1}\right)=\alpha^{*}\left(\left.D_{1}\right|_{\left[v_{0}, v_{1}\right]}\right) \beta^{*}\left(D_{1-}\left[v_{1}, v_{2}\right]\right)=\alpha^{*}(a) \beta^{*}(b)=1 ; \\
& \left(\alpha^{*} \smile \beta^{*}\right)\left(D_{2}\right)=\alpha^{*}\left(\left.D_{2}\right|_{\left[v_{0}, v_{1}\right]}\right) \beta^{*}\left(D_{2-}\left[v_{1}, v_{2}\right]\right)=\alpha^{*}(b) \beta^{*}(a)=0 .
\end{aligned}
$$

Hence $\alpha^{*} \smile \beta^{*}=D_{1}^{*}$ on the cochain level. We lift this to cohomology and deduce that $\mathrm{H}^{2}\left(T^{2} ; \mathbb{Z}\right)=\mathbb{Z} D_{1}^{*}$ is generated by $\alpha^{*} \smile \beta^{*}$. In conclusion, we have the isomorphism as graded rings:

$$
H^{\bullet}\left(T^{2} ; \mathbb{Z}\right) \cong \frac{\mathbb{Z}\langle x, y\rangle}{\left\langle x^{2}, y^{2}, x y+y x\right\rangle} \cong \frac{\mathbb{Z}[x]}{\left\langle x^{2}\right\rangle} \otimes_{\mathbb{Z}} \frac{\mathbb{Z}[y]}{\left\langle y^{2}\right\rangle} \cong \Lambda^{\bullet}(\mathbb{Z} x \oplus \mathbb{Z} y), \quad|x|=|y|=1
$$

Another way to visualise this cup product computation is through intersection theory ${ }^{1}$: let $\alpha, \beta \in \mathrm{H}_{1}\left(T^{2}\right)$ be the Poincaré duals of α^{*}, β^{*} respectively. They are represented by the 1 -cycles α, β as shown in the diagram:

We identify $\mathrm{H}^{2}\left(T^{2} ; \mathbb{Z}\right)$ with \mathbb{Z} by $D_{1}^{*} \mapsto 1$. Then the cup product $\alpha^{*} \smile \beta^{*}$ is the same as the intersection product $\alpha \cdot \beta$, which is the number of intersection points of the cycles α and β, counted with signs and multiplicities.

From the diagram, we observe that $\alpha \cdot \beta=1$, as they intersect transversely at one point. $\alpha \cdot \alpha=0$ because we can deform α to α^{\prime} within the same homology class such that α and α^{\prime} are disjoint cycles. Similarly $\beta \cdot \beta=0$. This visualisation is verified by our previous computation:

$$
\alpha^{*} \smile \alpha^{*}=\beta^{*} \smile \beta^{*}=0, \quad \alpha^{*} \smile \beta^{*}=D_{1}^{*} .
$$

[^0]
[^0]: ${ }^{1}$ We do not make this rigourous, so it is only for intuition and visualisation purpose.

