MA4J7 Cohomology \& Poincaré Duality Sheet 4 Solutions

Peize Liu

4 Mar 2024

Exercise 4.1

Let R be a commutative ring. Let $\phi: A \times B \rightarrow C$ be a R-bilinear pairing. Show that the exists a unique R-linear map $\bar{\phi}: A \otimes_{R} B \rightarrow C$ such that $\bar{\phi}(a \otimes b)=\phi(a, b)$.

Remark. This is the universal property of the tensor product of two R-modules, which characterises the tensor product uniquely up to a unique isomorphism.

Recall that we define $A \otimes_{R} B$ as the R-module $R^{A \times B} / N$, where $R^{A \times B}$ is the free R-module with basis $\{(a, b) \mid a \in$ $A, b \in B\}$, and N is the submodule of U generated by

$$
\left\{\begin{array}{c|c}
\left(a+a^{\prime}, b\right)-(a, b)-\left(a^{\prime}, b\right), & a, a^{\prime} \in A \\
\left(a, b+b^{\prime}\right)-(a, b)-\left(a, b^{\prime}\right), & b, b^{\prime} \in B \\
(r a, b)-r(a, b), & r \in R
\end{array}\right\} .
$$

And we denote that image of $(a, b) \in U$ in $A \otimes_{R} B$ as $a \otimes b$. This gives an R-bilinear map $\sigma: A \times B \rightarrow A \otimes B$.
For an R-bilinear map $\phi: A \times B \rightarrow C$, it induces the R-linear map $\widetilde{\phi}: R^{A \times B} \rightarrow C$,

$$
\widetilde{\phi}\left(\sum_{i} r_{i}\left(a_{i}, b_{i}\right)\right)=\sum_{i} r_{i} \phi\left(a_{i}, b_{i}\right)
$$

Since ϕ is bilinear, we have that

$$
\begin{aligned}
& \widetilde{\phi}\left(\left(a+a^{\prime}, b\right)-(a, b)-\left(a^{\prime}, b\right)\right)=\phi\left(a+a^{\prime}, b\right)-\phi(a, b)=\phi\left(a^{\prime}, b\right)=0 \\
& \widetilde{\phi}\left(\left(a, b+b^{\prime}\right)-(a, b)-\left(a, b^{\prime}\right)\right)=\phi\left(a, b+b^{\prime}\right)-\phi(a, b)=\phi\left(a, b^{\prime}\right)=0 \\
& \widetilde{\phi}((r a, b)-r(a, b))=\phi(r a, b)-r \phi(a, b)=0 \\
& \widetilde{\phi}((a, r b)-r(a, b))=\phi(a, r b)-r \phi(a, b)=0
\end{aligned}
$$

for any $a, a^{\prime} \in A, \underline{b}, b^{\prime} \in B$, and $r \in R$. So $N \subseteq \underset{\sim}{\operatorname{ker}} \widetilde{\phi}$. It follows from the universal property of quotient that there is a unique map $\bar{\phi}: R^{A \times B} / N \rightarrow C$ such that $\widetilde{\phi}=\bar{\phi} \circ \pi$. In plain words, this means we define $\bar{\phi}\left(\sum_{i} r_{i} a_{i} \otimes b_{i}\right)=$ $\widetilde{\phi}\left(\sum_{i} r_{i}\left(a_{i}, b_{i}\right)\right)$ and $N \subseteq \operatorname{ker} \widetilde{\phi}$ ensures that $\bar{\phi}\left(\sum_{i} r_{i} a_{i} \otimes b_{j}\right)=\bar{\phi}\left(\sum_{j} r_{j} a_{j} \otimes b_{j}\right)$ if $\sum_{i} r_{i} a_{i} \otimes b_{j}=\sum_{j} r_{j} a_{j} \otimes b_{j}$, and hence $\bar{\phi}$ is well-defined.

Uniqueness is clear: if $\bar{\phi}(a \otimes b)=\bar{\phi}^{\prime}(a \otimes b)=\phi(a, b)$, then $\left(\bar{\phi}-\bar{\phi}^{\prime}\right)(a \otimes b)=0$ for all $a \in A$ and $b \in B$. But $A \otimes B$ is generated by $\{a \otimes b \mid a \in A, b \in B\}$. We must have $\bar{\phi}-\bar{\phi}^{\prime}=0$. Hence $\bar{\phi}$ is unique.

Exercise 4.2

Let R be a commutative ring. Let A and B be two \mathbb{Z}-graded commutative R-algebras. Show that $A \otimes_{R} B$ is also a \mathbb{Z}-graded commutative R-algebra with $\operatorname{deg}(a \otimes b):=\operatorname{deg}(a)+\operatorname{deg}(b)$ and $(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right):=$ $(-1)^{\operatorname{deg}(b) \operatorname{deg}\left(a^{\prime}\right)} a a^{\prime} \otimes b b^{\prime}$.

We have the following things to check:

1. $A \otimes_{R} B$ is a \mathbb{Z}-graded R-module.

Write $A=\bigoplus_{i \in \mathbb{Z}} A_{i}$ and $B=\bigoplus_{j \in \mathbb{Z}} B_{j}$. Then the requirement that $|a \otimes b|=|a|+|b|$ induces a natural grading on $A \otimes_{R} B$, given by

$$
A \otimes_{R} B=\bigoplus_{n \in \mathbb{Z}} \bigoplus_{i+j=n}\left(A_{i} \otimes_{R} B_{j}\right)
$$

2. The product on $A \otimes_{R} B$ is well-defined.

We need the following lemma as preparation:
Lemma. (Tensor product is associative.) Let A, B, C be R-modules. Then there exists a natural isomorphism $\left(A \otimes_{R} B\right) \otimes_{R} C \cong A \otimes_{R}\left(B \otimes_{R} C\right)$.

Proof. - Let $\phi:\left(A \otimes_{R} B\right) \times C \rightarrow D$ be an R-bilinear map.

- It induces an R-trilinear map $\phi^{\prime}: A \times B \times C \rightarrow D$ by $\phi^{\prime}(a, b, c)=\phi(a \otimes b, c)$.
- For each $a \in A$, consider the R-bilinear map $\phi_{a}^{\prime}: B \times C \rightarrow D, \phi_{a}^{\prime}(b, c)=\phi^{\prime}(a, b, c)=\phi(a \otimes b, c)$. By universal property of tensor product, there exists a unique R-linear map $\bar{\phi}_{a}^{\prime}: B \otimes_{R} C \rightarrow D$ such that $\bar{\phi}_{a}^{\prime}(b \otimes c)=\phi^{\prime}(a, b, c)$.
- Now $\phi^{\prime \prime}: A \times\left(B \otimes_{R} C\right) \rightarrow D, \phi^{\prime \prime}(a, b \otimes c)=\bar{\phi}_{a}^{\prime}(b \otimes c)=\phi^{\prime}(a, b, c)$ is R-bilinear. So there exists a unique R-linear map $\bar{\phi}^{\prime \prime}: A \otimes_{R}\left(B \otimes_{R} C\right) \rightarrow D$ such that $\bar{\phi}^{\prime \prime}(a \otimes(b \otimes c))=\phi^{\prime}(a, b, c)$.
- Since $\bar{\phi}^{\prime \prime}(a \otimes(b \otimes c))=\phi(a \otimes b, c)$, again by universal property of tensor product, we have an natural isomorphism $\left(A \otimes_{R} B\right) \otimes_{R} C \cong A \otimes_{R}\left(B \otimes_{R} C\right)$.

By the lemma, we can write $A \otimes B \otimes A \otimes B$ without brackets unambiguously. Consider the R-tetralinear map $\mu: A \times B \times A \times B \rightarrow A \otimes_{R} B$ defined by

$$
\mu\left(a, b, a^{\prime}, b^{\prime}\right)=(-1)^{|a| \cdot|b|}\left(a a^{\prime} \otimes b b^{\prime}\right)
$$

By the lemma, μ induces the R-linear map $\bar{\mu}:\left(A \otimes_{R} B\right) \otimes_{R}\left(A \otimes_{R} B\right) \rightarrow A \otimes_{R} B$, which then induces the R-bilinear map $m:\left(A \otimes_{R} B\right) \times\left(A \otimes_{R} B\right) \rightarrow A \otimes_{R} B$, given by the R-bilinear extension of the following product:

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=m\left(a \otimes b, a^{\prime} \otimes b^{\prime}\right)=\mu\left(a, b, a^{\prime}, b^{\prime}\right)=(-1)^{|a| \cdot|b|}\left(a a^{\prime} \otimes b b^{\prime}\right)
$$

So the multiplication is well-defined.
3. $A \otimes_{R} B$ is a \mathbb{Z}-graded R-algebra.

We have checked that the product is R-bilinear. It is clear that $1_{A} \otimes 1_{B}$ is the multiplicative identity. Next we check that the product is associative.

$$
\begin{aligned}
\left((a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)\right) \cdot\left(a^{\prime \prime} \otimes b^{\prime \prime}\right) & =-1^{|b| \cdot\left|a^{\prime}\right|}\left(a a^{\prime} \otimes b b^{\prime}\right) \cdot\left(a^{\prime \prime} \otimes b^{\prime \prime}\right) \\
& =-1^{|b| \cdot|\cdot| a^{\prime}\left|+\left|b b^{\prime}\right| \cdot\right| a^{\prime \prime} \mid} a a^{\prime} a^{\prime \prime} \otimes b b^{\prime} b^{\prime \prime} \\
& =-1^{|b| \cdot\left|a^{\prime} a^{\prime \prime}\right|+|b| \cdot\left|a^{\prime \prime}\right|} a a^{\prime} a^{\prime \prime} \otimes b b^{\prime} b^{\prime \prime} \\
& =-1^{|b| \cdot\left|a^{\prime \prime}\right|}(a \otimes b) \cdot\left(a^{\prime} a^{\prime \prime} \otimes b^{\prime} b^{\prime \prime}\right) \\
& =(a \otimes b) \cdot\left(\left(a^{\prime} \otimes b^{\prime}\right) \cdot\left(a^{\prime \prime} \otimes b^{\prime \prime}\right)\right) .
\end{aligned}
$$

It remains to check that the product respects the grading: $\left(A_{i} \otimes_{R} B_{j}\right) \cdot\left(A_{k} \cdot B_{\ell}\right) \subseteq A_{i+k} \otimes_{R} B_{j+\ell}$. Indeed,

$$
\left|\left(a_{i} \otimes b_{j}\right)\left(a_{k} \otimes b_{\ell}\right)\right|=\left|(-1)^{j k} a_{i} a_{k} \otimes b_{j} b_{\ell}\right|=i+j+k+\ell=\left|a_{i} \otimes b_{j}\right|+\left|a_{k} \otimes b_{\ell}\right|
$$

4. The product on $A \otimes_{R} B$ is \mathbb{Z}-graded commutative.

For $c_{m} \in\left(A \otimes_{R} B\right)_{m}$ and $c_{n} \in\left(A \otimes_{R} B\right)_{n}$, we need to show that $c_{m} c_{n}=(-1)^{m n} c_{n} c_{m}$. Note that a general $c_{m} \in\left(A \otimes_{R} B\right)_{m}$ takes the form

$$
c_{m}=\sum_{i+j=m} \underbrace{c_{m}^{(i j)}}_{\in A_{i} \otimes_{R} B_{j}}=\sum_{i+j=m} \sum_{k} r_{i j}^{(k)} \underbrace{a_{i}^{(k)}}_{\in A_{i}} \otimes \underbrace{b_{j}^{(k)}}_{\in B_{j}}
$$

Since the product is bilinear, it suffices to verify $c_{m} c_{n}=(-1)^{m n} c_{n} c_{m}$ with the assumption that $c_{m}=a_{i} \otimes b_{j}$ and $c_{n}=a_{k} \otimes b_{\ell}$, where $i+j=m$ and $k+\ell=n$. Indeed,

$$
\begin{aligned}
c_{m} c_{n} & =\left(a_{i} \otimes b_{j}\right)\left(a_{k} \otimes b_{\ell}\right) \\
& =(-1)^{j k} a_{i} a_{k} \otimes b_{j} b_{\ell} \\
& =(-1)^{j k+i k+j \ell} a_{k} a_{i} \otimes b_{\ell} b_{j} \\
& =(-1)^{(i+j)(k+\ell)}\left(a_{k} \otimes b_{\ell}\right)\left(a_{i} \otimes b_{j}\right) \\
& =(-1)^{m n} c_{n} c_{m} .
\end{aligned}
$$

Exercise 4.3

Show that the cross product map $\mathrm{H}^{\bullet}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathrm{H}^{\bullet}(Y ; \mathbb{Z}) \rightarrow \mathrm{H}^{\bullet}(X \times Y ; \mathbb{Z})$ is not an isomorphism when X and Y are infinite discrete sets. Which assumption of the Künneth formula does not hold?

If X is an infinite discrete set, then $X=\coprod_{x \in X}\{x\}$, and hence

$$
\mathrm{H}^{\bullet}(X ; \mathbb{Z})=\prod_{x \in X} \mathrm{H}^{\bullet}(\{x\} ; \mathbb{Z})=\prod_{x \in X} \mathrm{H}^{0}(\{x\} ; \mathbb{Z})=\prod_{x \in X} \mathbb{Z} \mathbf{1}_{\{x\}}
$$

Here $\mathbf{1}_{x}: X \rightarrow \mathbb{Z}$ is the indicator function on x, i.e.

$$
\mathbf{1}_{\{x\}}\left(x^{\prime}\right)=\delta\left(x, x^{\prime}\right)= \begin{cases}1, & x=x^{\prime} \\ 0, & x \neq x^{\prime}\end{cases}
$$

Similarly $\mathrm{H}^{\bullet}(Y ; \mathbb{Z})=\prod_{y \in Y} \mathbb{Z} \mathbf{1}_{\{y\}}$, and $\mathrm{H}^{\bullet}(X \times Y ; \mathbb{Z})=\prod_{(x, y) \in X \times Y} \mathbb{Z} \mathbf{1}_{\{(x, y)\}}$. The cross product of $\mathbf{1}_{\{x\}}$ and $\mathbf{1}_{\{y\}}$ is given by

$$
\begin{aligned}
\left(\pi_{1}^{*} 1_{\{x\}} \smile \pi_{2}^{*} 1_{\{y\}}\right)\left(x^{\prime}, y^{\prime}\right) & =\left(\mathbf{1}_{\{x\} \times Y} \smile \mathbf{1}_{X \times\{y\}}\right)\left(x^{\prime} y^{\prime}\right) \\
& =\mathbf{1}_{\{x\} \times Y}\left(x^{\prime}, y^{\prime}\right) \mathbf{1}_{X \times\{y\}}\left(x^{\prime}, y^{\prime}\right) \\
& =\delta\left(x, x^{\prime}\right) \delta\left(y, y^{\prime}\right) \\
& =\mathbf{1}_{\{(x, y)\}}\left(x^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

Hence the cross product is induced by $\mathbf{1}_{\{x\}} \otimes \mathbf{1}_{\{y\}} \longmapsto \mathbf{1}_{\{(x, y)\}}$.
We claim that $\mathrm{H}^{\bullet}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathrm{H}^{\bullet}(Y ; \mathbb{Z}) \rightarrow \mathrm{H}^{\bullet}(X \times Y ; \mathbb{Z})$ is not surjective. Since X and Y are infinite sets. we may take countable subsets $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{y_{i}\right\}_{i \in \mathbb{N}}$ of them respectively, and consider

$$
\varphi:=\prod_{i \in \mathbb{N}} \mathbf{1}_{\left\{\left(x_{i}, y_{i}\right)\right\}} \in \mathrm{H}^{0}(X \times Y ; \mathbb{Z}) .
$$

Suppose that φ is in the image of the cross product. Then $\varphi=\sum_{i=1}^{k} n_{i} \alpha_{i} \times \beta_{i}$, where $n_{i} \in \mathbb{Z}, \alpha_{i} \in \mathrm{H}^{0}(X ; \mathbb{Z})$ and $\beta_{i} \in \mathrm{H}^{0}(Y ; \mathbb{Z})$. Note that the support, $\operatorname{supp} \varphi=\bigcup_{i=1}^{k} \operatorname{supp}\left(\alpha_{i} \times \beta_{i}\right)$ is infinite. It follows that there is some
$i \in\{1, \ldots, k\}$ such that $\operatorname{supp}\left(\alpha_{i} \times \beta_{i}\right)$ is infinite. But $\operatorname{supp}\left(\alpha_{i} \times \beta_{i}\right)=\operatorname{supp}(\alpha)_{i} \times \operatorname{supp}\left(\beta_{i}\right) \in X \times Y$ is a rectangular set, and by our construction of φ, the only rectangular subsets of $\operatorname{supp}(\varphi)$ are the singletons $\left\{\left(x_{i}, y_{i}\right)\right\}$, which is a contradiction. This finishes the proof that the cross product is not an isomorphism.

The reason that the Künneth formula does not apply is that neither $\mathrm{H}^{\bullet}(X ; \mathbb{Z})$ nor $\mathrm{H}^{\bullet}(Y ; \mathbb{Z})$ is finitely generated, and $\mathrm{H}^{0}(Y ; \mathbb{Z})=\prod_{y \in Y} \mathbb{Z} \mathbf{1}_{\{y\}}$ is not a free \mathbb{Z}-module.

Here is a quick proof that $\mathrm{H}^{0}(Y ; \mathbb{Z})$ is not free, adapted from math. stackexchange.com/questions/500607/.
Suppose that $\mathrm{H}^{0}(Y ; \mathbb{Z})$ is free. Then its submodule $M:=\prod_{i=1}^{\infty} \mathbb{Z}$ is also free. Consider the submodule of M :

$$
S:=\left\{\left(a_{i}\right)_{i=1}^{\infty} \in M: \forall m \in \mathbb{N} \exists N \in \mathbb{N} \forall n \geqslant N\left(p^{m} \mid a_{n}\right)\right\},
$$

where $p \in \mathbb{Z}$ is some prime. It follows that S is also free, and there is an injective \mathbb{Z}-linear map $M \hookrightarrow S$ given by multiplication by the sequence $\left(p^{i}\right)_{i=1}^{\infty}$. The cardinality of M is $\aleph_{0}^{\aleph_{0}}$, which is uncountable. Hence S is also uncountable. As a free \mathbb{Z}-module, any basis of S is uncountable (because $\mathbb{Z}^{\oplus \mathbb{N}}$ is countable).

On the other hand, $S / p S$ is naturally a \mathbb{Z} / p-vector space. By definition of S, every sequence in $S / p S$ has a representative $\left(a_{i}\right)_{i=1}^{\infty}$ with finitely many non-zero terms. In particular, $S / p S \cong(\mathbb{Z} / p)^{\oplus \mathbb{N}}$ is countable. But any \mathbb{Z}-basis of S descends to a \mathbb{Z} / p-basis of $S / p S$. So $S / p S$ is a countable vector space with uncountable dimension, which is absurd.

