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Exercise 4.1

Let R be a commutative ring. Let ¢ : A X B — C be a R-bilinear pairing. Show that the exists a unique
R-linear map ¢ : A ®r B — C such that ¢(a ® b) = ¢(a, b).

Remark. This is the universal property of the tensor product of two R-modules, which characterises the tensor
product uniquely up to a unique isomorphism.
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Recall that we define A ®g B as the R-module R4*B /N, where R4*B is the free R-module with basis {(a,b) | a €
A, b € B}, and N is the submodule of U generated by

(a+a’,b)—(ab)—(da,b),

(@b+b) - (@b) - (ab) | @9 P
(ra,b) —r(a,b) b,b' € B,
’ P reR

(a,rb) —r(a,b)
And we denote that image of (a,b) € U in A®g B as a®b. This gives an R-bilinear map 6: AXB — A®B.

For an R-bilinear map ¢ : A X B — C, it induces the R-linear map 5: RAXB _,

g(z ri(a;, bi)) = Z ri(ai, b;).
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Since ¢ is bilinear, we have that

$((a+a’,b) - (ab) - (d,b)) = p(a+d’,b) - $(a,b) = $(a’,b) = 0

$((a.b+b) = (a,b) = (a,b) = p(ab+b) - $(ab) = $(a,b') =0

$((ra.b) = r(a.b)) = $(ra,b) ~ré(a,b) = 0

$((a,rb) —r(a b)) = $(a,rb) — r¢(a,b) = 0
foranya,a’ € A,b,b’ € B,andr € R. So N C ker ¢ It follows from the universal property of quotient that there
is a unique map b RAXB/N — C such that gﬁ ng o . In plain words, this means we define ¢(Zl ria; ® b;) =

(/’J(Z, ri(ai, b;)) and N C kergb ensures thatgb(Z, ria; ® bj) = ¢(Z] rjaj ® bj) if ¥;ria; ® bj = ¥ ;rja; ® bj, and
hence ¢ is well-defined.

Uniqueness is clear: ifa(a ®b) = al(a ®b) = ¢(a,b), then (¢ ¢ )(a® b) =0forallac Aand b € B. ButAQ®B
is generated by {a® b | a € A, b € B}. We must have ¢ — ¢ = 0. Hence ¢ is unique.



Exercise 4.2
Let R be a commutative ring. Let A and B be two Z-graded commutative R-algebras. Show that A ®g B
is also a Z-graded commutative R-algebra with deg(a ® b) := deg(a) + deg(b) and (a ® D) - (¢’ ®D’) :=
(_1)deg(b) deg(a’) 54’ Qbb'.

We have the following things to check:

1. A ®g Bis a Z-graded R-module.

Write A = (B, A; and B = @jez Bj. Then the requirement that |a ® b| = |a| + |b| induces a natural
grading on A ®g B, given by
AQrB= @ @(A, ®RBj).
nez i+j=n

2. The product on A ®g B is well-defined.
We need the following lemma as preparation:

Lemma. (Tensor product is associative.) Let A, B, C be R-modules. Then there exists a natural
isomorphism (A ®g B) @r C = A Qg (B®g C).

Proof. « Let¢: (AQ®g B) X C — D be an R-bilinear map.
« It induces an R-trilinear map ¢’ : AXBXC — Dby ¢’(a,b,c) = ¢p(a® b, c).

« For each a € A, consider the R-bilinear map ¢, : BXC — D, ¢, (b,c) = ¢’(a,b,c) = p(a®b,c).
By universal property of tensor product, there exists a unique R-linear map ¢,: B® C — D
such that ¢,(b ® ¢) = ¢’(a, b, c).

« Now ¢p"": AX (B®g C)_—> D,¢"(a,b®c) = E;U) ®c) = ¢’£a, b, ¢) is R-bilinear. So there exists
a unique R-linearmap ¢ : A®gr (B®RC) — Dsuchthat¢ (a® (b®c)) =¢'(a,b,c).

« Since 5”(a ® (b®c)) = p(a®b,c), again by universal property of tensor product, we have an
natural isomorphism (A ®g B) @ C = A®g (B®g C). O

By the lemma, we can write A ® B ® A ® B without brackets unambiguously. Consider the R-tetralinear
map p: AXBXAXB — AQ®g B defined by

u(a, b, b') = (-1 (aa’ @ bb").

By the lemma, p induces the R-linear map i : (A ®r B) ®r (A ®g B) — A ®g B, which then induces the
R-bilinear map m : (A ®g B) X (A ®g B) — A ®g B, given by the R-bilinear extension of the following
product:

(a®b)- (@ ®@b)=m(a®bd @b) =p(aba,b)=(-1)"(aa @ bb").

So the multiplication is well-defined.
3. A®g Bis aZ-graded R-algebra.

We have checked that the product is R-bilinear. It is clear that 14 ® 1p is the multiplicative identity. Next
we check that the product is associative.

((a®b)-(a ®b))-(a" ®b") =-1""1"laa’ @ b') - (a"" ® b"")
N G PN
= — 1P g g7 @ bl b
= -1l (a @ b) - (d'a” @ b'b")
=(a®@b)-((d®b)-(d"®b")).



It remains to check that the product respects the grading: (A; ®g B;) - (A - B¢) € Ajsk ®r Bjis. Indeed,

[(a; ® bj)(ax ® be)| = |(=1) a;a, ® bjbg| =i+ j+k+{=|a;®b;| +|a ® by|.

4. The product on A ®g B is Z-graded commutative.

For ¢y, € (A ®R B);y and ¢, € (A ®g B),,, we need to show that ¢y, = (—1)™"¢, ¢, Note that a general
¢m € (A ®g B),, takes the form

ij k k k
m= Y @ =3 T o g b
i+j=m i+j=m k —_—— ——
€A;®RB; €A; €B;

Since the product is bilinear, it suffices to verify c,c, = (—1)™"cpcy, with the assumption that ¢, = a; ® b;
and ¢, = ax ® by, where i + j = m and k + £ = n. Indeed,

cmen = (a; ® bj)(ax ® by)
= (-1)*a;a; ® bjby
= (~1)7%+ik4iL g, g, @ byb;
= (-1) ™ ®D (g, @ by) (a; ® b))

= (-1)™ccm.

Exercise 4.3

Show that the cross product map H*(X;Z) ®z H*(Y;Z) — H*(X X Y;Z) is not an isomorphism when X
and Y are infinite discrete sets. Which assumption of the Kiinneth formula does not hold?

If X is an infinite discrete set, then X = [[,x{x}, and hence
H'(X:Z) = [ [H(xh2) = [ [ H((xh2) = | [ 21y
xeX xeX xeX
Here 1, : X — Z is the indicator function on x, i.e.

1, x=x

0, x#x’

1y (x") =6(x,x") = {

Similarly H*(Y;Z) = [[yey Z1(yy, and H*(X X Y3 Z) = [](x,y)exxy Z1{(x,y)}- The cross product of 1(,} and 1(y
is given by
(M 1) = 1) (Y = (Liaxy = Lxxqyy) ('Y)
= 1gxy (X, Y ) Ixx 4y (2, ¥)
=6(x,x")8(y, y)
=y (7).

Hence the cross product is induced by 1(x} ® 1(y} F 1{(x,y)}-

We claim that H*(X;Z) ®z H*(Y;Z) — H*(X X Y;Z) is not surjective. Since X and Y are infinite sets. we may
take countable subsets {x;};en and {y;};en of them respectively, and consider

Q= l_[ L (xiyn)} € HO(X xXY;Z).
ieN

Suppose that ¢ is in the image of the cross product. Then ¢ = Zle nio; X B;, where n; € Z, a; € H'(X;Z)
and f; € H(Y;Z). Note that the support, supp ¢ = Uf;l supp(e; X f;) is infinite. It follows that there is some



i € {1,...,k} such that supp(a; X f;) is infinite. But supp(a; X f;) = supp(a); X supp(f;) € X X Y is a rectangular
set, and by our construction of ¢, the only rectangular subsets of supp(¢) are the singletons {(x;, y;)}, which is
a contradiction. This finishes the proof that the cross product is not an isomorphism.

The reason that the Kiinneth formula does not apply is that neither H*(X;Z) nor H*(Y; Z) is finitely generated,
and H(Y;Z) = [Tyey Z1(y) is not a free Z-module.

Here is a quick proof that H’(Y; Z) is not free, adapted from math . stackexchange . com/questions/500607/.

Suppose that H(Y;Z) is free. Then its submodule M := [[%, Z is also free. Consider the submodule of M:
S={(a)2, eM: Yme NIN eNVn> N (p" | an)},

where p € Z is some prime. It follows that S is also free, and there is an injective Z-linear map M < S given
by multiplication by the sequence (p')$,. The cardinality of M is N which is uncountable. Hence S is also
uncountable. As a free Z-module, any basis of S is uncountable (because Z®" is countable).

On the other hand, S/pS is naturally a Z/p-vector space. By definition of S, every sequence in S/pS has a
representative (q;)%2, with finitely many non-zero terms. In particular, S/pS = (Z/p)®" is countable. But any
Z-basis of S descends to a Z/p-basis of S/pS. So S/pS is a countable vector space with uncountable dimension,
which is absurd.


math.stackexchange.com/questions/500607/

