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Exercise 1.1
Let X = S% x S* and Y = CP3.

1. Show that X and Y are compact and connected.

2. Prove that 71 (X) and m;(Y) are both trivial.

3. Give a CW-complex structure on X and on Y.

4. Using the CW-complex structure, compute the homology groups of X and Y.

1. For X, we note that the Euclidean topology on the n-sphere is compact, because
S" = {x e R™ | |Ix|| = 1}

is closed and bounded in R™*!, and hence compact by Heine-Borel theorem. It is also connected because
it is path-connected (for two points on S” we can connect them with an arc of a great circle). Next, we use
that the product topology on X; X X, is compact and connected if both Xj, X, are compact and connected
to conclude that X = S x S* is compact and connected.

For Y = CP3, we have §7 = {z eC||lz|l = 1} C C* a quotient map 7 : S7 — CP® such that 7(z) = 7(w)
if and only if z = Aw for some A € C*. Since S is compact and connected, so is the image CP* = 7(57).

2. For X, first we note that S” is simply-connected (i.e. 71(S") = {e}) for n > 2. The standard method is to
use Seifert-van Kampen Theorem. Let a, b € S be the north and the south pole of $”. Let U := 5" \ {a}
and V := 8"\ {b}. Then S" =U UV, U NV is path-connected for n > 2, and U = V = R". By Seifert—van
Kampen Theorem, 71 (S") is isomorphic to the push-out

mU) <— mUNV) — m(V)

Since both 7;(U) and 1 (V) are trivial, the fundamental group ;(S") is also trivial. Next we use that
m(X; X Xp) = m1(X) % 71 (Y) to conclude that 7 (52 x §%) is trivial.

To compute 7;(Y), we will assume for now that Y = CP? have a cellular decomposition such that it has a
unique 0-cell and no 1-cells (an explicit CW-structure for Y is given in the next part). For such spaces we
claim that 7, (Y) = {e}. The strategy is that attaching an n-cell with n > 3 does not change the fundamental
group.

Let Y’ be a CW-complex obtained by attaching an n-cell e” with n > 3 to a CW-complex Y’ via the gluing
map ¢ : S"' — Y”. Let V be the interior of e” and a € V. Then U := Y’ \ {a} deformation retracts to
Y””, which means 7 (U) = m;(Y"”’). Note that Y = U UV and U NV = "7 is connected. By Seifert-van
Kampen Theorem, 71 (Y’) is isomorphic to the push-out

m(Y") ¢—— m(S"") —— m(V)

Since 71 (V) = 7;(R") and 7, (S""!) are trivial, we deduce that 7, (Y’) = m;(Y”’). This in particular shows
that 7; (Y) = 7,(S°) = {e} if Y has only one 0-cell and no 1-cells.

3. For X = §% x $*, we may use the following result (Theorem A.6 in [Hatcher]): if X; is a CW-complex



with cells e, and attaching maps ¢, and X, is a CW-complex with cells es and attaching maps ¢g, then
the product space X; X X has a natural CW-complex structure with cells e, X eg and characteristic maps
®,xPp'. Moreover, if both Xj, X, have at most countably many cells, then the product topology on X; X X,
coincides with the weak topology for the CW-complex.

The CW-complex structure on S™ consists of a 0-cell ¢ and an n-cell e” with attaching map im ¢" = €.

Hence X = S? x S* has the CW-complex structure consisting of a 0-cell €°, a 2-cell e? = €° x €2, a 4-cell
e* = et x e and a 6-cell e® = €% x e*. The attaching maps are induced by the product of the corresponding
characteristic maps.

For Y = CP3, we can in fact inductively construct the CW-complex structure on CP". The base case
CP! = S? is clear — it has a 0-cell €® and a 2-cell e?. Suppose that we have constructed the CW-complex
CP""!. Then let CP" = CP"! U ", where the attaching map ¢ : $?"~! — CP""! is simply the quotient
map. In homogeneous coordinates, we have

cpr! = {[zo : "+ :2zp-1:0]} € CP"*

and D*" = {(zg, ..., zp-1) | 215 211> < 1}. The characteristic map D** — CP" of e is given by

(20, - Zn—1) F— [Zo TR MRV T Yars |Zi|2] .

Therefore Y = CP? has a 0-cell €, a 2-cell €2, a 4-cell e?, and a 6-cell e°, and the attaching maps are given
as described above.

4. For both $? x $* and CP?, the cellular complexes have the following form:

Z > 0 > Z > 0 > Z > 0 > Z

This forces all cellular differentials to be zero. Taking homology, we deduce that

Z, n=0,246;

H, (5% x $*) = H,,(CP?) =
0, otherwise.
Exercise 1.2

Let Pairs be the category of pairs of topological spaces and Ab the category of abelian groups. Fix n a
positive integer. Consider the following functors

F : Pairs » Ab, (X,A) - H,(X,A) G : Pairs - Ab, (X,A) — H,_1(A).

Prove that the connecting homomorphism § : F — G is a natural transformation.

Recall the a natural transformation (or a morphism of functors) n : F — G is a collection of morphisms
nx : FX — GX for each object X € ObjC, such that, for any morphism f : X — Y, the following diagram
commutes:

FX -5 GXx

F(f)l lG )]

Next we recall the definition of the relative homology. A pair of topological spaces (X, A) is a space X with a
subspace A C X. Let C,(X) be the (singular/cellular) chain complex of X. The inclusion map :: A < X induces

ISuppose that ¢y : S?7! = 9D% — X! is the attaching map. Then the characteristic map ®, : D% — X is the composition
D2 — X" 1y Lg Dz — X" < X, and the n-cell e} := im ®.



the inclusion of complexes Co(A) < Co(X) and hence the short exact sequence of chain complexes:

L

0 — Cu(A)

— Co(X) > Co(X,A) — 0

where C, (X, A) := coker 1. The associated long exact sequence for relative homology takes the form:

8x.A
—> Hn(A) —> Hn(X) —> Hn(X>A) —> anl(A) —>

A morphism f: (X,A) — (Y, B) in Pairs is a continuous map f: X — Y such that f(A) C B. That is, we have a
commutative diagram:

A——X

f% . ;Lf

Using the functoriality of C,, f induces the morphism between two short exact sequences:

0 —— C.(A) > Co(X) s Co(X,A) —— 0

l l !

0 —— C.(B) > Co(Y) > Co(Y,B) —— 0

We claim that this could be extends to a morphism between the long exact sequences:

Sx,A
e —— Hn(A) — Hn(X) — Hn(X>A) — Hn—l(A) —_—

l l l l

dy.B

Then it follows from the claim that § is a natural transformation. More specifically, we need to check the com-
mutativity of the square at the right-hand side.

In fact, the connecting homomorphism in the relative LES has a direct topological interpretation: it maps the
class [@] of a relative cycle a € Z,,(X, A) to the class [da] of its boundary da € Z,_1(A). Since the continuous
map f: (X,A) — (Y, B) commutes with the boundary operator, then

fdxallal) = filoal = [o(fia)] = byfilal.

Alternative, the functoriality of any connecting homomorphism in the LES can be verified by standard diagram
chasing. Recall the construction of the connecting morphism 6 by snake lemma. In general. suppose that we have

a short exact sequence of chain complexes 0 — A, L) B, -5 C, —> 0. Then the connecting morphism
é: Hy(C,) — Hy—1(As) is given by [c] — [_ﬁl__ll(df(b))], where b € g;l(c).

fn 9n .
An > By Cn > 0
ld;;* iz ldg
fn-1 9n-1
0 7 An 1 Bn 1 ) Cn—l

~
)
L]

~
[e=)

Then we can check:

Pn-1(8(0)) = @1 (F;1(d2 (1)) = (f1_) ' Wn=1(dB (1)) = () " (dE (Yu(D))).



Since ¢ = g,(b), we have that g},(¥n (b)) = xn(gn(b)) = yn(c). Hence ¢,—1(5(c)) = & (yn(c)). We deduce that
@n—1008 =& o yp, verifying the commutativity as desired.

’ / ’
0 & An+1 & Bn+1 & CrH—l & 0
‘/V ‘V XV
~ £ ~ g ~
H1 +1
0 ) An+1 ) Bn+1 ) Cn+1 ) 0
iA 4 B ’ C /
O n+l Al’l l:‘,n+1 Bl’l dn+l Cl’l 0
~ ~ ~
B g
0 > Ap > Bn > Cn > 0
JA 4 1B / 3C /
O un A,171 un B,171 an Cn71 0
(/JV 1/'/% AV
~ 1 ~ P ~
n-1 -1
0 > An—l > Bn—l > Cn—l > 0
~ ~ ~

Exercise 1.3

Suppose that A - B — C — 0 is an exact sequence of abelian groups. Prove that A* « B* <« C* « 0 is
also exact.

For a homomorphism f: A — B, the dual homomorphism f*: B* — A* is given by f*(g) := g o f for any
g € B* = Hom(B,G). Let A i) B i) C — 0 be an exact sequence. That is, g is surjective and kerg = im f.

To show that the dualised sequence 0 — C* i) B* L) A™ is exact, we need to show that (1) g* is injective; (2)
img* = ker f*.

(1) Let ¢ € kerg* so that g*(¢) = ¢ o g = 0. For any ¢ € C, there exists b € B with b = g(c) by surjectivity of
g. Then ¢(c) = (¢ o g)(b) = 0. Hence ¢ = 0, proving that g* is injective.

(2) Since g o f =0, the dualisation is f* o g* = 0. Hence im g* C ker f*.

Conversely, let € ker f*. For any a € A, f*(¢)(a) = (¢ o f)(a) = 0. Hence imf C kery. Since
im f = kerg, this means kerg C kery. Define y € C* by y(c) = /(b) for some b € g '(c). This is
well-defined: indeed, if g(b) = g(b") = c for b,b’ € B, then b — b’ € kerg C ker . Hence y/(b) = ¢/(b’). In
particular, we have ¥ = y o g = g*(y), showing that ¥ € im g*. We conclude that ker f* = im g*.



Exercise 1.4

Suppose that 0 - A — B — C — 0 is a split short exact sequence of abelian groups. Prove that
0 « A* « B* « C* « 0is again a split short exact sequence.

Recall the splitting lemma: we say that the short exact sequence 0 — A i) B c—ois split, if the follow-
ing equivalent conditions are satisfied:

(1) There exists an isomorphism of short exact sequences:

f g

0 > A > B > C >0
0 yA——>AeC—">C >0

where 1: A < A& C is the inclusion and 7 : A ® C - C is the projection.
(2) There exists a retractionr: B — A (i.e.r o f =1idy).

(3) There exists a sections: C — B (i.e.gos =idc).

Back to the question, by Exercise 1.3 we know that 0 — C* 2y B L) A* is exact. Since r o f = id4, dualisation

gives f*or* = id4-. Hence f™ is surjective. Therefore we have the short exact sequence 0 — C* 2y B* L) A" — 0.

It is split, because r* : A* — B* provides a section for f*: B* — A*.



