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Exercise 1.1

Let 𝑋 = 𝑆2 × 𝑆4 and 𝑌 = CP3.

1. Show that 𝑋 and 𝑌 are compact and connected.
2. Prove that 𝜋1 (𝑋 ) and 𝜋1 (𝑌 ) are both trivial.
3. Give a CW-complex structure on 𝑋 and on 𝑌 .
4. Using the CW-complex structure, compute the homology groups of 𝑋 and 𝑌 .

1. For 𝑋 , we note that the Euclidean topology on the 𝑛-sphere is compact, because

𝑆𝑛 =
{
𝑥 ∈ R𝑛+1 | ∥𝑥 ∥ = 1

}
is closed and bounded in R𝑛+1, and hence compact by Heine–Borel theorem. It is also connected because
it is path-connected (for two points on 𝑆𝑛 we can connect them with an arc of a great circle). Next, we use
that the product topology on 𝑋1 × 𝑋2 is compact and connected if both 𝑋1, 𝑋2 are compact and connected
to conclude that 𝑋 = 𝑆2 × 𝑆4 is compact and connected.

For 𝑌 = CP3, we have 𝑆7 �
{
𝑧 ∈ C4 | ∥𝑧∥ = 1

}
⊆ C4 a quotient map 𝜋 : 𝑆7 → CP3 such that 𝜋 (𝑧) = 𝜋 (𝑤)

if and only if 𝑧 = 𝜆𝑤 for some 𝜆 ∈ C× . Since 𝑆7 is compact and connected, so is the image CP3 = 𝜋 (𝑆7).

2. For 𝑋 , first we note that 𝑆𝑛 is simply-connected (i.e. 𝜋1 (𝑆𝑛) = {𝑒}) for 𝑛 ⩾ 2. The standard method is to
use Seifert–van Kampen Theorem. Let 𝑎, 𝑏 ∈ 𝑆𝑛 be the north and the south pole of 𝑆𝑛 . Let 𝑈 := 𝑆𝑛 \ {𝑎}
and 𝑉 := 𝑆𝑛 \ {𝑏}. Then 𝑆𝑛 = 𝑈 ∪𝑉 , 𝑈 ∩𝑉 is path-connected for 𝑛 ⩾ 2, and 𝑈 � 𝑉 � R𝑛 . By Seifert–van
Kampen Theorem, 𝜋1 (𝑆𝑛) is isomorphic to the push-out

𝜋1 (𝑈 ) 𝜋1 (𝑈 ∩𝑉 ) 𝜋1 (𝑉 )

Since both 𝜋1 (𝑈 ) and 𝜋1 (𝑉 ) are trivial, the fundamental group 𝜋1 (𝑆𝑛) is also trivial. Next we use that
𝜋1 (𝑋1 × 𝑋2) � 𝜋1 (𝑋 ) × 𝜋1 (𝑌 ) to conclude that 𝜋1 (𝑆2 × 𝑆4) is trivial.

To compute 𝜋1 (𝑌 ), we will assume for now that 𝑌 = CP3 have a cellular decomposition such that it has a
unique 0-cell and no 1-cells (an explicit CW-structure for 𝑌 is given in the next part). For such spaces we
claim that 𝜋1 (𝑌 ) = {𝑒}. The strategy is that attaching an𝑛-cell with 𝑛 ⩾ 3 does not change the fundamental
group.

Let 𝑌 ′ be a CW-complex obtained by attaching an 𝑛-cell 𝑒𝑛 with 𝑛 ⩾ 3 to a CW-complex 𝑌 ′′ via the gluing
map 𝜑 : 𝑆𝑛−1 → 𝑌 ′′. Let 𝑉 be the interior of 𝑒𝑛 and 𝑎 ∈ 𝑉 . Then 𝑈 := 𝑌 ′ \ {𝑎} deformation retracts to
𝑌 ′′, which means 𝜋1 (𝑈 ) = 𝜋1 (𝑌 ′′). Note that 𝑌 ′ = 𝑈 ∪𝑉 and 𝑈 ∩𝑉 ≃ 𝑆𝑛−1 is connected. By Seifert–van
Kampen Theorem, 𝜋1 (𝑌 ′) is isomorphic to the push-out

𝜋1 (𝑌 ′′) 𝜋1 (𝑆𝑛−1) 𝜋1 (𝑉 )

Since 𝜋1 (𝑉 ) � 𝜋1 (R𝑛) and 𝜋1 (𝑆𝑛−1) are trivial, we deduce that 𝜋1 (𝑌 ′) � 𝜋1 (𝑌 ′′). This in particular shows
that 𝜋1 (𝑌 ) � 𝜋1 (𝑆0) � {𝑒} if 𝑌 has only one 0-cell and no 1-cells.

3. For 𝑋 = 𝑆2 × 𝑆4, we may use the following result (Theorem A.6 in [Hatcher]): if 𝑋1 is a CW-complex
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with cells 𝑒𝛼 and attaching maps 𝜑𝛼 , and 𝑋2 is a CW-complex with cells 𝑒𝛽 and attaching maps 𝜑𝛽 , then
the product space 𝑋1 × 𝑋2 has a natural CW-complex structure with cells 𝑒𝛼 × 𝑒𝛽 and characteristic maps
Φ𝛼 ×Φ𝛽

1. Moreover, if both𝑋1, 𝑋2 have at most countably many cells, then the product topology on𝑋1×𝑋2

coincides with the weak topology for the CW-complex.

The CW-complex structure on 𝑆𝑛 consists of a 0-cell 𝑒0 and an 𝑛-cell 𝑒𝑛 with attaching map im𝜑𝑛 = 𝑒0.
Hence 𝑋 = 𝑆2 × 𝑆4 has the CW-complex structure consisting of a 0-cell 𝑒0, a 2-cell 𝑒2 � 𝑒0 × 𝑒2, a 4-cell
𝑒4 � 𝑒4 × 𝑒0, and a 6-cell 𝑒6 � 𝑒2 × 𝑒4. The attaching maps are induced by the product of the corresponding
characteristic maps.

For 𝑌 = CP3, we can in fact inductively construct the CW-complex structure on CP𝑛 . The base case
CP1 � 𝑆2 is clear — it has a 0-cell 𝑒0 and a 2-cell 𝑒2. Suppose that we have constructed the CW-complex
CP𝑛−1. Then let CP𝑛 = CP𝑛−1 ∪ 𝑒2𝑛 , where the attaching map 𝜑 : 𝑆2𝑛−1 → CP𝑛−1 is simply the quotient
map. In homogeneous coordinates, we have

CP𝑛−1 = {[𝑧0 : · · · : 𝑧𝑛−1 : 0]} ⊆ CP𝑛

and D2𝑛 �
{
(𝑧0, ..., 𝑧𝑛−1) |

∑𝑛−1
𝑖=0 |𝑧𝑖 |2 ⩽ 1

}
. The characteristic map D2𝑛 → CP𝑛 of 𝑒𝑛 is given by

(𝑧0, ..., 𝑧𝑛−1) ↦−→
[
𝑧0 : · · · : 𝑧𝑛−1 :

√
1 −∑𝑛−1

𝑖=0 |𝑧𝑖 |2
]
.

Therefore 𝑌 = CP3 has a 0-cell 𝑒0, a 2-cell 𝑒2, a 4-cell 𝑒4, and a 6-cell 𝑒6, and the attaching maps are given
as described above.

4. For both 𝑆2 × 𝑆4 and CP3, the cellular complexes have the following form:

Z 0 Z 0 Z 0 Z

This forces all cellular differentials to be zero. Taking homology, we deduce that

H𝑛 (𝑆2 × 𝑆4) � H𝑛 (CP3) �
{
Z, 𝑛 = 0, 2, 4, 6;

0, otherwise.

Exercise 1.2

Let Pairs be the category of pairs of topological spaces and Ab the category of abelian groups. Fix 𝑛 a
positive integer. Consider the following functors

𝐹 : Pairs→ Ab, (𝑋,𝐴) ↦→ 𝐻𝑛 (𝑋,𝐴) 𝐺 : Pairs→ Ab, (𝑋,𝐴) ↦→ 𝐻𝑛−1 (𝐴).

Prove that the connecting homomorphism 𝛿 : 𝐹 → 𝐺 is a natural transformation.

Recall the a natural transformation (or a morphism of functors) 𝜂 : 𝐹 → 𝐺 is a collection of morphisms
𝜂𝑋 : 𝐹𝑋 → 𝐺𝑋 for each object 𝑋 ∈ ObjC, such that, for any morphism 𝑓 : 𝑋 → 𝑌 , the following diagram
commutes:

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝜂𝑋

𝐹 (𝑓 )
𝜂𝑌

𝐺 (𝑓 )

Next we recall the definition of the relative homology. A pair of topological spaces (𝑋,𝐴) is a space 𝑋 with a
subspace 𝐴 ⊆ 𝑋 . Let 𝐶• (𝑋 ) be the (singular/cellular) chain complex of 𝑋 . The inclusion map 𝜄 : 𝐴 ↩→ 𝑋 induces

1Suppose that 𝜑𝛼 : 𝑆𝑛−1 � 𝜕D𝑛
𝛼 → 𝑋𝑛−1 is the attaching map. Then the characteristic map Φ𝛼 : D𝑛

𝛼 → 𝑋 is the composition
D𝑛
𝛼 → 𝑋𝑛−1 ⊔⨿𝛽 D𝑛

𝛽 → 𝑋𝑛 ↩→ 𝑋 , and the 𝑛-cell 𝑒𝑛𝛼 := imΦ𝛼 .
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the inclusion of complexes 𝐶• (𝐴) ↩→ 𝐶• (𝑋 ) and hence the short exact sequence of chain complexes:

0 𝐶• (𝐴) 𝐶• (𝑋 ) 𝐶• (𝑋,𝐴) 0
𝜄∗

where 𝐶• (𝑋,𝐴) := coker 𝜄. The associated long exact sequence for relative homology takes the form:

· · · H𝑛 (𝐴) H𝑛 (𝑋 ) H𝑛 (𝑋,𝐴) H𝑛−1 (𝐴) · · ·𝛿𝑋,𝐴

A morphism 𝑓 : (𝑋,𝐴) → (𝑌, 𝐵) in Pairs is a continuous map 𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝐴) ⊆ 𝐵. That is, we have a
commutative diagram:

𝐴 𝑋

𝐵 𝑌

𝑓 𝑓

Using the functoriality of 𝐶•, 𝑓 induces the morphism between two short exact sequences:

0 𝐶• (𝐴) 𝐶• (𝑋 ) 𝐶• (𝑋,𝐴) 0

0 𝐶• (𝐵) 𝐶• (𝑌 ) 𝐶• (𝑌, 𝐵) 0

We claim that this could be extends to a morphism between the long exact sequences:

· · · H𝑛 (𝐴) H𝑛 (𝑋 ) H𝑛 (𝑋,𝐴) H𝑛−1 (𝐴) · · ·

· · · H𝑛 (𝐵) H𝑛 (𝑌 ) H𝑛 (𝑌, 𝐵) H𝑛−1 (𝐵) · · ·

𝛿𝑋,𝐴

𝛿𝑌,𝐵

Then it follows from the claim that 𝛿 is a natural transformation. More specifically, we need to check the com-
mutativity of the square at the right-hand side.

In fact, the connecting homomorphism in the relative LES has a direct topological interpretation: it maps the
class [𝛼] of a relative cycle 𝛼 ∈ 𝑍𝑛 (𝑋,𝐴) to the class [𝜕𝛼] of its boundary 𝜕𝛼 ∈ 𝑍𝑛−1 (𝐴). Since the continuous
map 𝑓 : (𝑋,𝐴) → (𝑌, 𝐵) commutes with the boundary operator, then

𝑓∗𝛿𝑋,𝐴 ([𝛼]) = 𝑓∗ [𝜕𝛼] = [𝜕(𝑓∗𝛼)] = 𝛿𝑌,𝐵 𝑓∗ [𝛼] .

Alternative, the functoriality of any connecting homomorphism in the LES can be verified by standard diagram
chasing. Recall the construction of the connectingmorphism 𝛿 by snake lemma. In general. suppose that we have

a short exact sequence of chain complexes 0 𝐴• 𝐵• 𝐶• 0
𝑓• 𝑔• . Then the connecting morphism

𝛿 : H𝑛 (𝐶•) → H𝑛−1 (𝐴•) is given by [𝑐] ↦−→ [𝑓 −1𝑛−1 (𝑑𝐵𝑛 (𝑏))], where 𝑏 ∈ 𝑔−1𝑛 (𝑐).

𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝐴𝑛−1 𝐵𝑛−1 𝐶𝑛−1

𝑓𝑛 𝑔𝑛

𝑑𝐴
𝑛 𝑑𝐵

𝑛 𝑑𝐶𝑛
𝑔𝑛−1𝑓𝑛−1

Suppose that there is a morphism between two short exact sequences:

0 𝐴• 𝐵• 𝐶• 0

0 𝐴′• 𝐵′• 𝐶′• 0

𝑓• 𝑔•

𝜑• 𝜓• 𝜒•

𝑔′•𝑓 ′•

Then we can check:

𝜑𝑛−1 (𝛿 (𝑐)) = 𝜑𝑛−1 (𝑓 −1𝑛−1 (𝑑𝐵𝑛 (𝑏))) = (𝑓 ′𝑛−1)−1 (𝜓𝑛−1 (𝑑𝐵𝑛 (𝑏))) = (𝑓 ′𝑛−1)−1 (𝑑𝐵
′

𝑛 (𝜓𝑛 (𝑏))) .
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Since 𝑐 = 𝑔𝑛 (𝑏), we have that 𝑔′𝑛 (𝜓𝑛 (𝑏)) = 𝜒𝑛 (𝑔𝑛 (𝑏)) = 𝜒𝑛 (𝑐). Hence 𝜑𝑛−1 (𝛿 (𝑐)) = 𝛿 ′ (𝜒𝑛 (𝑐)). We deduce that
𝜑𝑛−1 ◦ 𝛿 = 𝛿 ′ ◦ 𝜒𝑛 , verifying the commutativity as desired.

...
...

...

...
...

...

0 𝐴′𝑛+1 𝐵′𝑛+1 𝐶′𝑛+1 0

0 𝐴𝑛+1 𝐵𝑛+1 𝐶𝑛+1 0

0 𝐴′𝑛 𝐵′𝑛 𝐶′𝑛 0

0 𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝐴′𝑛−1 𝐵′𝑛−1 𝐶′𝑛−1 0

0 𝐴𝑛−1 𝐵𝑛−1 𝐶𝑛−1 0

...
...

...

...
...

...

𝜑𝑛+1 𝜓𝑛+1 𝜒𝑛+1

𝜑𝑛 𝜓𝑛 𝜒𝑛

𝜑𝑛−1 𝜓𝑛−1 𝜒𝑛−1

𝑓𝑛+1 𝑔𝑛+1

𝑓𝑛 𝑔𝑛

𝑓𝑛−1 𝑔𝑛−1

𝑑𝐴
𝑛+1

𝑑𝐴
𝑛

𝑑𝐵
𝑛+1

𝑑𝐵
𝑛

𝑑𝐶𝑛+1

𝑑𝐶𝑛

Exercise 1.3

Suppose that 𝐴 → 𝐵 → 𝐶 → 0 is an exact sequence of abelian groups. Prove that 𝐴∗ ← 𝐵∗ ← 𝐶∗ ← 0 is
also exact.

For a homomorphism 𝑓 : 𝐴 → 𝐵, the dual homomorphism 𝑓 ∗ : 𝐵∗ → 𝐴∗ is given by 𝑓 ∗ (𝑔) := 𝑔 ◦ 𝑓 for any

𝑔 ∈ 𝐵∗ = Hom(𝐵,𝐺). Let 𝐴 𝐵 𝐶 0
𝑓 𝑔 be an exact sequence. That is, 𝑔 is surjective and ker𝑔 = im 𝑓 .

To show that the dualised sequence 0 𝐶∗ 𝐵∗ 𝐴∗
𝑔∗ 𝑓 ∗ is exact, we need to show that (1) 𝑔∗ is injective; (2)

im𝑔∗ = ker 𝑓 ∗.

(1) Let 𝜑 ∈ ker𝑔∗ so that 𝑔∗ (𝜑) = 𝜑 ◦ 𝑔 = 0. For any 𝑐 ∈ 𝐶 , there exists 𝑏 ∈ 𝐵 with 𝑏 = 𝑔(𝑐) by surjectivity of
𝑔. Then 𝜑 (𝑐) = (𝜑 ◦ 𝑔)(𝑏) = 0. Hence 𝜑 = 0, proving that 𝑔∗ is injective.

(2) Since 𝑔 ◦ 𝑓 = 0, the dualisation is 𝑓 ∗ ◦ 𝑔∗ = 0. Hence im𝑔∗ ⊆ ker 𝑓 ∗.

Conversely, let 𝜓 ∈ ker 𝑓 ∗. For any 𝑎 ∈ 𝐴, 𝑓 ∗ (𝜓 ) (𝑎) = (𝜓 ◦ 𝑓 ) (𝑎) = 0. Hence im 𝑓 ⊆ ker𝜓 . Since
im 𝑓 = ker𝑔, this means ker𝑔 ⊆ ker𝜓 . Define 𝜒 ∈ 𝐶∗ by 𝜒 (𝑐) = 𝜓 (𝑏) for some 𝑏 ∈ 𝑔−1 (𝑐). This is
well-defined: indeed, if 𝑔(𝑏) = 𝑔(𝑏′) = 𝑐 for 𝑏, 𝑏′ ∈ 𝐵, then 𝑏 − 𝑏′ ∈ ker𝑔 ⊆ ker𝜓 . Hence 𝜓 (𝑏) = 𝜓 (𝑏′). In
particular, we have𝜓 = 𝜒 ◦ 𝑔 = 𝑔∗ (𝜒), showing that𝜓 ∈ im𝑔∗. We conclude that ker 𝑓 ∗ = im𝑔∗.
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Exercise 1.4

Suppose that 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a split short exact sequence of abelian groups. Prove that
0← 𝐴∗ ← 𝐵∗ ← 𝐶∗ ← 0 is again a split short exact sequence.

Recall the splitting lemma: we say that the short exact sequence 0 𝐴 𝐵 𝐶 0
𝑓 𝑔 is split, if the follow-

ing equivalent conditions are satisfied:

(1) There exists an isomorphism of short exact sequences:

0 𝐴 𝐵 𝐶 0

0 𝐴 𝐴 ⊕ 𝐶 𝐶 0

𝑓 𝑔

𝜄 𝜋

≃

where 𝜄 : 𝐴 ↩→ 𝐴 ⊕ 𝐶 is the inclusion and 𝜋 : 𝐴 ⊕ 𝐶 ↠ 𝐶 is the projection.

(2) There exists a retraction 𝑟 : 𝐵 → 𝐴 (i.e. 𝑟 ◦ 𝑓 = id𝐴).

(3) There exists a section 𝑠 : 𝐶 → 𝐵 (i.e. 𝑔 ◦ 𝑠 = id𝐶 ).

Back to the question, by Exercise 1.3 we know that 0 𝐶∗ 𝐵∗ 𝐴∗
𝑔∗ 𝑓 ∗ is exact. Since 𝑟 ◦ 𝑓 = id𝐴, dualisation

gives 𝑓 ∗◦𝑟 ∗ = id𝐴∗ . Hence 𝑓 ∗ is surjective. Thereforewe have the short exact sequence 0 𝐶∗ 𝐵∗ 𝐴∗ 0
𝑔∗ 𝑓 ∗ .

It is split, because 𝑟 ∗ : 𝐴∗ → 𝐵∗ provides a section for 𝑓 ∗ : 𝐵∗ → 𝐴∗.
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