MA4J7 Cohomology \& Poincaré Duality Sheet 1 Solutions

Peize Liu

15 Jan 2024

Exercise 1.1

Let $X=S^{2} \times S^{4}$ and $Y=\mathbb{C P}^{3}$.

1. Show that X and Y are compact and connected.
2. Prove that $\pi_{1}(X)$ and $\pi_{1}(Y)$ are both trivial.
3. Give a CW-complex structure on X and on Y.
4. Using the CW-complex structure, compute the homology groups of X and Y.
5. For X, we note that the Euclidean topology on the n-sphere is compact, because

$$
S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}
$$

is closed and bounded in \mathbb{R}^{n+1}, and hence compact by Heine-Borel theorem. It is also connected because it is path-connected (for two points on S^{n} we can connect them with an arc of a great circle). Next, we use that the product topology on $X_{1} \times X_{2}$ is compact and connected if both X_{1}, X_{2} are compact and connected to conclude that $X=S^{2} \times S^{4}$ is compact and connected.

For $Y=\mathbb{C P}^{3}$, we have $S^{7} \cong\left\{z \in \mathbb{C}^{4} \mid\|z\|=1\right\} \subseteq \mathbb{C}^{4}$ a quotient map $\pi: S^{7} \rightarrow \mathbb{C P}^{3}$ such that $\pi(z)=\pi(w)$ if and only if $z=\lambda w$ for some $\lambda \in \mathbb{C}^{\times}$. Since S^{7} is compact and connected, so is the image $\mathbb{C P}^{3}=\pi\left(S^{7}\right)$.
2. For X, first we note that S^{n} is simply-connected (i.e. $\pi_{1}\left(S^{n}\right)=\{e\}$) for $n \geqslant 2$. The standard method is to use Seifert-van Kampen Theorem. Let $a, b \in S^{n}$ be the north and the south pole of S^{n}. Let $U:=S^{n} \backslash\{a\}$ and $V:=S^{n} \backslash\{b\}$. Then $S^{n}=U \cup V, U \cap V$ is path-connected for $n \geqslant 2$, and $U \cong V \cong \mathbb{R}^{n}$. By Seifert-van Kampen Theorem, $\pi_{1}\left(S^{n}\right)$ is isomorphic to the push-out

$$
\pi_{1}(U) \longleftarrow \pi_{1}(U \cap V) \longrightarrow \pi_{1}(V)
$$

Since both $\pi_{1}(U)$ and $\pi_{1}(V)$ are trivial, the fundamental group $\pi_{1}\left(S^{n}\right)$ is also trivial. Next we use that $\pi_{1}\left(X_{1} \times X_{2}\right) \cong \pi_{1}(X) \times \pi_{1}(Y)$ to conclude that $\pi_{1}\left(S^{2} \times S^{4}\right)$ is trivial.

To compute $\pi_{1}(Y)$, we will assume for now that $Y=\mathbb{C P}^{3}$ have a cellular decomposition such that it has a unique 0 -cell and no 1-cells (an explicit CW-structure for Y is given in the next part). For such spaces we claim that $\pi_{1}(Y)=\{e\}$. The strategy is that attaching an n-cell with $n \geqslant 3$ does not change the fundamental group.

Let Y^{\prime} be a CW-complex obtained by attaching an n-cell e^{n} with $n \geqslant 3$ to a CW-complex $Y^{\prime \prime}$ via the gluing $\operatorname{map} \varphi: S^{n-1} \rightarrow Y^{\prime \prime}$. Let V be the interior of e^{n} and $a \in V$. Then $U:=Y^{\prime} \backslash\{a\}$ deformation retracts to $Y^{\prime \prime}$, which means $\pi_{1}(U)=\pi_{1}\left(Y^{\prime \prime}\right)$. Note that $Y^{\prime}=U \cup V$ and $U \cap V \simeq S^{n-1}$ is connected. By Seifert-van Kampen Theorem, $\pi_{1}\left(Y^{\prime}\right)$ is isomorphic to the push-out

$$
\pi_{1}\left(Y^{\prime \prime}\right) \longleftarrow \pi_{1}\left(S^{n-1}\right) \longrightarrow \pi_{1}(V)
$$

Since $\pi_{1}(V) \cong \pi_{1}\left(\mathbb{R}^{n}\right)$ and $\pi_{1}\left(S^{n-1}\right)$ are trivial, we deduce that $\pi_{1}\left(Y^{\prime}\right) \cong \pi_{1}\left(Y^{\prime \prime}\right)$. This in particular shows that $\pi_{1}(Y) \cong \pi_{1}\left(S^{0}\right) \cong\{e\}$ if Y has only one 0 -cell and no 1-cells.
3. For $X=S^{2} \times S^{4}$, we may use the following result (Theorem A. 6 in [Hatcher]): if X_{1} is a CW-complex
with cells e_{α} and attaching maps φ_{α}, and X_{2} is a CW-complex with cells e_{β} and attaching maps φ_{β}, then the product space $X_{1} \times X_{2}$ has a natural CW-complex structure with cells $e_{\alpha} \times e_{\beta}$ and characteristic maps $\Phi_{\alpha} \times \Phi_{\beta}{ }^{1}$. Moreover, if both X_{1}, X_{2} have at most countably many cells, then the product topology on $X_{1} \times X_{2}$ coincides with the weak topology for the CW-complex.

The CW-complex structure on S^{n} consists of a 0 -cell e^{0} and an n-cell e^{n} with attaching map $\operatorname{im} \varphi^{n}=e^{0}$. Hence $X=S^{2} \times S^{4}$ has the CW-complex structure consisting of a 0 -cell e^{0}, a 2 -cell $e^{2} \cong e^{0} \times e^{2}$, a 4-cell $e^{4} \cong e^{4} \times e^{0}$, and a 6 -cell $e^{6} \cong e^{2} \times e^{4}$. The attaching maps are induced by the product of the corresponding characteristic maps.

For $Y=\mathbb{C P}^{3}$, we can in fact inductively construct the CW-complex structure on $\mathbb{C} \mathbb{P}^{n}$. The base case $\mathbb{C P}^{1} \cong S^{2}$ is clear - it has a 0 -cell e^{0} and a 2 -cell e^{2}. Suppose that we have constructed the CW-complex $\mathbb{C} \mathbb{P}^{n-1}$. Then let $\mathbb{C P}^{n}=\mathbb{C P}^{n-1} \cup e^{2 n}$, where the attaching map $\varphi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$ is simply the quotient map. In homogeneous coordinates, we have

$$
\mathbb{C P}^{n-1}=\left\{\left[z_{0}: \cdots: z_{n-1}: 0\right]\right\} \subseteq \mathbb{C P}^{n}
$$

and $\mathbb{D}^{2 n} \cong\left\{\left.\left(z_{0}, \ldots, z_{n-1}\right)\left|\sum_{i=0}^{n-1}\right| z_{i}\right|^{2} \leqslant 1\right\}$. The characteristic map $\mathbb{D}^{2 n} \rightarrow \mathbb{C P}^{n}$ of e^{n} is given by

$$
\left(z_{0}, \ldots, z_{n-1}\right) \longmapsto\left[z_{0}: \cdots: z_{n-1}: \sqrt{1-\sum_{i=0}^{n-1}\left|z_{i}\right|^{2}}\right]
$$

Therefore $Y=\mathbb{C P} \mathbb{P}^{3}$ has a 0 -cell e^{0}, a 2 -cell e^{2}, a 4-cell e^{4}, and a 6-cell e^{6}, and the attaching maps are given as described above.
4. For both $S^{2} \times S^{4}$ and $\mathbb{C P}^{3}$, the cellular complexes have the following form:

$$
\mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z}
$$

This forces all cellular differentials to be zero. Taking homology, we deduce that

$$
\mathrm{H}_{n}\left(S^{2} \times S^{4}\right) \cong \mathrm{H}_{n}\left(\mathbb{C P}^{3}\right) \cong \begin{cases}\mathbb{Z}, & n=0,2,4,6 \\ 0, & \text { otherwise }\end{cases}
$$

Exercise 1.2

Let Pairs be the category of pairs of topological spaces and $A b$ the category of abelian groups. Fix n a positive integer. Consider the following functors

$$
F: \text { Pairs } \rightarrow \mathrm{Ab}, \quad(X, A) \mapsto H_{n}(X, A) \quad G: \text { Pairs } \rightarrow \mathrm{Ab}, \quad(X, A) \mapsto H_{n-1}(A) .
$$

Prove that the connecting homomorphism $\delta: F \rightarrow G$ is a natural transformation.

Recall the a natural transformation (or a morphism of functors) $\eta: F \rightarrow G$ is a collection of morphisms $\eta_{X}: F X \rightarrow G X$ for each object $X \in \operatorname{Obj} \mathrm{C}$, such that, for any morphism $f: X \rightarrow Y$, the following diagram commutes:

Next we recall the definition of the relative homology. A pair of topological spaces (X, A) is a space X with a subspace $A \subseteq X$. Let C • (X) be the (singular/cellular) chain complex of X. The inclusion map $\iota: A \hookrightarrow X$ induces

[^0]the inclusion of complexes $C_{\bullet}(A) \hookrightarrow C_{\bullet}(X)$ and hence the short exact sequence of chain complexes:
$$
0 \longrightarrow C_{\bullet}(A) \xrightarrow{\iota_{*}} C_{\bullet}(X) \longrightarrow C_{\bullet}(X, A) \longrightarrow 0
$$
where $C_{\bullet}(X, A):=$ coker l. The associated long exact sequence for relative homology takes the form:
$$
\cdots \longrightarrow \mathrm{H}_{n}(A) \longrightarrow \mathrm{H}_{n}(X) \longrightarrow \mathrm{H}_{n}(X, A) \xrightarrow{\delta_{X, A}} \mathrm{H}_{n-1}(A) \longrightarrow \cdots
$$

A morphism $f:(X, A) \rightarrow(Y, B)$ in Pairs is a continuous map $f: X \rightarrow Y$ such that $f(A) \subseteq B$. That is, we have a commutative diagram:

Using the functoriality of C_{\bullet}, f induces the morphism between two short exact sequences:

We claim that this could be extends to a morphism between the long exact sequences:

Then it follows from the claim that δ is a natural transformation. More specifically, we need to check the commutativity of the square at the right-hand side.

In fact, the connecting homomorphism in the relative LES has a direct topological interpretation: it maps the class $[\alpha]$ of a relative cycle $\alpha \in Z_{n}(X, A)$ to the class [$\partial \alpha$] of its boundary $\partial \alpha \in Z_{n-1}(A)$. Since the continuous $\operatorname{map} f:(X, A) \rightarrow(Y, B)$ commutes with the boundary operator, then

$$
f_{*} \delta_{X, A}([\alpha])=f_{*}[\partial \alpha]=\left[\partial\left(f_{*} \alpha\right)\right]=\delta_{Y, B} f_{*}[\alpha] .
$$

Alternative, the functoriality of any connecting homomorphism in the LES can be verified by standard diagram chasing. Recall the construction of the connecting morphism δ by snake lemma. In general. suppose that we have a short exact sequence of chain complexes $0 \longrightarrow A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow{g_{\bullet}} C_{\bullet} \longrightarrow 0$. Then the connecting morphism $\delta: \mathrm{H}_{n}\left(C_{\bullet}\right) \rightarrow \mathrm{H}_{n-1}\left(A_{\bullet}\right)$ is given by $[c] \longmapsto\left[f_{n-1}^{-1}\left(d_{n}^{B}(b)\right)\right]$, where $b \in g_{n}^{-1}(c)$.

Suppose that there is a morphism between two short exact sequences:

Then we can check:

$$
\varphi_{n-1}(\delta(c))=\varphi_{n-1}\left(f_{n-1}^{-1}\left(d_{n}^{B}(b)\right)\right)=\left(f_{n-1}^{\prime}\right)^{-1}\left(\psi_{n-1}\left(d_{n}^{B}(b)\right)\right)=\left(f_{n-1}^{\prime}\right)^{-1}\left(d_{n}^{B^{\prime}}\left(\psi_{n}(b)\right)\right) .
$$

Since $c=g_{n}(b)$, we have that $g_{n}^{\prime}\left(\psi_{n}(b)\right)=\chi_{n}\left(g_{n}(b)\right)=\chi_{n}(c)$. Hence $\varphi_{n-1}(\delta(c))=\delta^{\prime}\left(\chi_{n}(c)\right)$. We deduce that $\varphi_{n-1} \circ \delta=\delta^{\prime} \circ \chi_{n}$, verifying the commutativity as desired.

Exercise 1.3

Suppose that $A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of abelian groups. Prove that $A^{*} \leftarrow B^{*} \leftarrow C^{*} \leftarrow 0$ is also exact.

For a homomorphism $f: A \rightarrow B$, the dual homomorphism $f^{*}: B^{*} \rightarrow A^{*}$ is given by $f^{*}(g):=g \circ f$ for any $g \in B^{*}=\operatorname{Hom}(B, G)$. Let $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be an exact sequence. That is, g is surjective and $\operatorname{ker} g=\operatorname{im} f$. To show that the dualised sequence $0 \rightarrow C^{*} \xrightarrow{g^{*}} B^{*} \xrightarrow{f^{*}} A^{*}$ is exact, we need to show that (1) g^{*} is injective; (2) $\operatorname{im} g^{*}=\operatorname{ker} f^{*}$.
(1) Let $\varphi \in \operatorname{ker} g^{*}$ so that $g^{*}(\varphi)=\varphi \circ g=0$. For any $c \in C$, there exists $b \in B$ with $b=g(c)$ by surjectivity of g. Then $\varphi(c)=(\varphi \circ g)(b)=0$. Hence $\varphi=0$, proving that g^{*} is injective.
(2) Since $g \circ f=0$, the dualisation is $f^{*} \circ g^{*}=0$. Hence $\operatorname{im} g^{*} \subseteq \operatorname{ker} f^{*}$.

Conversely, let $\psi \in \operatorname{ker} f^{*}$. For any $a \in A, f^{*}(\psi)(a)=(\psi \circ f)(a)=0$. Hence $\operatorname{im} f \subseteq \operatorname{ker} \psi$. Since $\operatorname{im} f=\operatorname{ker} g$, this means $\operatorname{ker} g \subseteq \operatorname{ker} \psi$. Define $\chi \in C^{*}$ by $\chi(c)=\psi(b)$ for some $b \in g^{-1}(c)$. This is well-defined: indeed, if $g(b)=g\left(b^{\prime}\right)=c$ for $b, b^{\prime} \in B$, then $b-b^{\prime} \in \operatorname{ker} g \subseteq \operatorname{ker} \psi$. Hence $\psi(b)=\psi\left(b^{\prime}\right)$. In particular, we have $\psi=\chi \circ g=g^{*}(\chi)$, showing that $\psi \in \operatorname{im} g^{*}$. We conclude that ker $f^{*}=\operatorname{im} g^{*}$.

Exercise 1.4

Suppose that $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a split short exact sequence of abelian groups. Prove that $0 \leftarrow A^{*} \leftarrow B^{*} \leftarrow C^{*} \leftarrow 0$ is again a split short exact sequence.

Recall the splitting lemma: we say that the short exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is split, if the following equivalent conditions are satisfied:
(1) There exists an isomorphism of short exact sequences:

where $\iota: A \hookrightarrow A \oplus C$ is the inclusion and $\pi: A \oplus C \rightarrow C$ is the projection.
(2) There exists a retraction $r: B \rightarrow A$ (i.e. $r \circ f=\operatorname{id}_{A}$).
(3) There exists a section $s: C \rightarrow B$ (i.e. $g \circ s=\mathrm{id}_{C}$).

Back to the question, by Exercise 1.3 we know that $0 \rightarrow C^{*} \xrightarrow{g^{*}} B^{*} \xrightarrow{f^{*}} A^{*}$ is exact. Since $r \circ f=\operatorname{id}_{A}$, dualisation gives $f^{*} \circ r^{*}=\operatorname{id}_{A^{*}}$. Hence f^{*} is surjective. Therefore we have the short exact sequence $0 \rightarrow C^{*} \xrightarrow{g^{*}} B^{*} \xrightarrow{f^{*}} A^{*} \rightarrow 0$. It is split, because $r^{*}: A^{*} \rightarrow B^{*}$ provides a section for $f^{*}: B^{*} \rightarrow A^{*}$.

[^0]: ${ }^{1}$ Suppose that $\varphi_{\alpha}: S^{n-1} \cong \partial \mathbb{D}_{\alpha}^{n} \rightarrow X^{n-1}$ is the attaching map. Then the characteristic map $\Phi_{\alpha}: \mathbb{D}_{\alpha}^{n} \rightarrow X$ is the composition $\mathbb{D}_{\alpha}^{n} \rightarrow X^{n-1} \sqcup \coprod_{\beta} \mathbb{D}_{\beta}^{n} \rightarrow X^{n} \hookrightarrow X$, and the n-cell $e_{\alpha}^{n}:=\operatorname{im} \Phi_{\alpha}$.

