
Week 4

Recall that the short exact sequence in the Universal Coefficient Theorem is natural: suppose that 𝑓 : 𝑋 → 𝑌 is
a continuous map. Then there is a chain map of short exact sequences:

0 Ext1𝑅 (H𝑛−1 (𝑌 );𝑄) H𝑛 (𝑌 ;𝑄) Hom𝑅 (H𝑛 (𝑌 ), 𝑄) 0

0 Ext1𝑅 (H𝑛−1 (𝑋 );𝑄) H𝑛 (𝑋 ;𝑄) Hom𝑅 (H𝑛 (𝑋 ), 𝑄) 0

ℎ𝑌

ℎ𝑋

(𝑓∗ )∨ 𝑓 ∗ (𝑓∗ )∨

However, the splitting of the short exact sequence is not natural. The dotted lines do not give a commutative
diagram in general. We illustrate this by an example.

0 Ext1𝑅 (H𝑛−1 (𝑌 );𝑄) H𝑛 (𝑌 ;𝑄) Hom𝑅 (H𝑛 (𝑌 ), 𝑄) 0

0 Ext1𝑅 (H𝑛−1 (𝑋 );𝑄) H𝑛 (𝑋 ;𝑄) Hom𝑅 (H𝑛 (𝑋 ), 𝑄) 0

ℎ𝑌

ℎ𝑋

(𝑓∗ )∨ 𝑓 ∗ (𝑓∗ )∨

𝑠𝑌

𝑠𝑋

Moore Spaces

A Moore space𝑀 (𝐺,𝑚) is a topological space with reduced homology groups

H̃𝑛 (𝑀 (𝐺,𝑚)) =
{
𝐺, 𝑛 =𝑚

0, otherwise.

If 𝐺 is finitely generated, by the structure theorem we have 𝐺 � Z⊕𝑟 ⊕ Z/𝑝1 ⊕ · · · ⊕ Z/𝑝𝑠 . If 𝑚 > 0, we can
construct𝑀 (𝐺,𝑚) as the wedge sum

𝑀 (𝐺,𝑚) =
𝑟∨
𝑀 (Z,𝑚) ∨

𝑠∨
𝑖=1

𝑀 (Z/𝑝𝑖 ,𝑚).

𝑀 (Z,𝑚) can be modelled as the𝑚-sphere 𝑆𝑚 . For𝑀 (Z/𝑝,𝑚), we can consider the following construction: let 𝑋
be the CW-complex 𝑆𝑚 ∪𝜑 D𝑚+1, where the attaching map 𝜑 : 𝜕D𝑚+1 � 𝑆𝑚 → 𝑆𝑚 has degree 𝑝 . Therefore the
cellular complex of 𝑋 is given by

· · · 0 Z Z 0 · · ·
𝑚 + 1 𝑚

𝑝

Hence H̃𝑛 (𝑋 ) =
{
Z/𝑝, 𝑛 =𝑚

0, otherwise.
So 𝑋 is a model of𝑀 (Z/𝑝,𝑚). By dualising the chain we obtain the reduced

cellular cohomology H̃
𝑛 (𝑋 ) =

{
Z/𝑝, 𝑛 =𝑚 + 1

0, otherwise.

Now we consider the quotient map 𝑞 : 𝑋 → 𝑋/𝑆𝑚 � 𝑆𝑚+1. Claim: 𝑞 induces zero maps on H̃•, but non-zero
on H̃

𝑚+1. To show it, we consider the relative homology LES and cohomology LES of the good pair (𝑋, 𝑆𝑚). The
relative homology LES gives the homomorphism

𝑞∗ : H𝑛 (𝑋 ) → H𝑛 (𝑋, 𝑆𝑚) � H𝑛 (𝑆𝑚+1).

Note that H𝑛 (𝑋 ) = 0 for 𝑛 ≠ 0,𝑚 and H𝑛 (𝑆𝑚+1) = 0 for 𝑛 ≠ 0,𝑚 + 1. Hence 𝑞∗ is zero on H𝑛 for 𝑛 > 0.
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From the relative cohomology LES, we have

0 Z Z Z/𝑝 0

· · · H𝑚 (𝑋 ) H𝑚 (𝑆𝑚) H𝑚+1 (𝑆𝑚+1) H𝑚+1 (𝑋 ) H𝑚+1 (𝑆𝑚) · · ·𝑖∗ 𝛿 𝑞∗ 𝑖∗

𝑝

The map 𝑞∗ : H𝑚+1 (𝑆𝑚+1) → H𝑚+1 (𝑋 ) is the quotient map Z ↠ Z/𝑝 , which is non-zero. Claim: 𝑞 induces a
chain map between the SESs of UCT of H𝑚+1, but not on the splitting of the SESs.

0 Ext1Z (H𝑚 (𝑆𝑚+1),Z) H𝑚+1 (𝑆𝑚+1) HomZ (H𝑚+1 (𝑆𝑚+1),Z) 0

0 Ext1Z (H𝑚 (𝑋 ),Z) H𝑚+1 (𝑋 ) HomZ (H𝑚+1 (𝑋 ),Z) 0

0 0 Z Z 0

0 Z/𝑝 Z/𝑝 0 0

(𝑞∗ )∗ 𝑞∗ (𝑞∗ )∗

0 ∼

0

∼ 0

0𝑞∗

Note that the solid lines form a commutative diagram. But it is impossible to construct splittings such that the
following diagram commutes:

Z Z

Z/𝑝 0

∼

𝑞∗

Back to the general discussion of Moore spaces. The question is how to construct 𝑀 (𝐺,𝑚) if 𝐺 is not finitely
generated. The idea is similar to above but involves infinitely many cells. First we take a free resolution of
𝐺 :

0
⊕

𝛼∈𝐼 Z𝑥𝛼
⊕

𝛽∈ 𝐽 Z𝑦𝛽 𝐺 0𝜎

where 𝜎 (𝑥𝛼 ) =
∑

𝛽 𝑑𝛼𝛽𝑦𝛽 and 𝐺 � coker𝜑 . We can realise this construction as a cellular chain complex. Let
𝑋𝑚 =

∨
𝛽∈ 𝐽 𝑆

𝑚 . For each 𝛼 ∈ 𝐼 , we attach an (𝑚 + 1)-cell 𝑒𝑚+1 to 𝑋𝑚 , with the attaching map 𝜑𝛼 : 𝑆𝑚𝛼 → 𝑋𝑚

is such that the composition 𝑆𝑚𝛼
𝜑𝛼−−→ 𝑋𝑚

𝑞𝛽−−→ 𝑆𝑚
𝛽

has degree 𝑑𝛼𝛽 . The resulting cellular chain complex is exactly
given by

· · · 0
⊕

𝛼∈𝐼 Z𝑥𝛼
⊕

𝛽∈ 𝐽 Z𝑦𝛽 0 · · ·

𝑚 + 1 𝑚

𝜎

Hence H̃𝑛 (𝑋 ) =
{
coker𝜎 � 𝐺, 𝑛 =𝑚

0, otherwise.

Using Moore spaces, we can construct a CW-complex 𝑋 such that H𝑛 (𝑋 ) � 𝐺𝑛 for 𝑛 > 0 and any prescribed
Abelian groups𝐺𝑛 .

Eilenberg–MacLane Spaces
An Eilenberg–MacLane space 𝐾 (𝐺,𝑚) is a topological space with homotopy groups

𝜋𝑛 (𝐾 (𝐺,𝑚)) =
{
𝐺, 𝑛 =𝑚

0, otherwise.

When𝑚 = 1, the Eilenberg–MacLane space 𝐾 (𝐺, 1) can also be characterised as a topological space with funda-
mental group 𝐺 and contractible universal cover. We shall see that, in some sense, 𝐾 (𝐺, 1) ‘represents’ the first
cohomology functor H1 (−,𝐺).
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