Week 6

Computation of Ext groups

Example 1.1

1. Ext3(Z,Z/n);
2. Ext3(Z/m,Z[n);

3. Ext7 , (Z/2,7Z/2). Why do the higher Ext groups not vanish?

4. Ext3 (A, Q) for any Z-module A.
1. Ext}(Z,Z/n) = 0 for all i > 0 because Z is free.

2. Z/m admits the following free resolution:

0—7Z 237
2 1 0

Applying the functor Homz(—, Z/n), we have

Homz(Z,Z/n) - Homz(Z,Z/n) —— 0
0 1 2

where the homomorphism ¢ is given by f + m - f. Note that Homyz(Z, Z/n) = Z/n by the isomorphism
frefQ).
« Homz(Z/m,Z/n) =ker¢ = {[k] € Z/n:n | mk} = Z/gcd(m, n).

Z/n

« Ext}(Z/m,Z/n) = coker ¢ = AT

= Z/ged(m, n).

. Ext%(Z/m,Z/n) =0fori> 2.
(Use Bezout’s lemma to justify the claimed isomorphisms.)

3. Z/2 admits the following free resolution as a Z/4-module:

s Z)4 —25 7/4 —25 7/4 —2 5 7/4
3 2 1 0

Applying the functor Homgz/4(—, Z/2), we have

-+ ¢—— Homg4(Z/4,Z/2) <2— Homgz4(Z/4,Z/2) <>— Homy4(Z/4,Z/2) <2— Homz(Z/4,Z/2)
3 2 1 0

which is isomorphic to the cochain complex

- 4 Z)2 21— 7/2 ¢ 7/2 2 7)2
3 2 1 0

Hence Ext”

Z/4(Z/2,Z/2) = 7Z/2foralln > 0.

4. Since Z is a PID, A admits a free resolution:

We claim that ¢* : Homgz(Fp, Q) — Homz(Fy, Q) is an surjective. Let {x, } s be a basis of Fi and {yg}pc;
a basis of Fy. Then Homgz(Fy, Q) = (Q%/)* and Homz(F;, Q) = (Q®)* are Q-vector spaces. Since ¢ is



injective, we identify F; as a submodule of Fy, and hence Q®' as a Q-vector subspace of Q%/. Then there
exists a splitting Q¥ = V & Q®.. For f € (Q®)*, we define g by extension by zero, that s,

ol
g(v) := {f(v), veQ (extend by linearity.)

0, veV
Then f = ¢*(g). Hence ¢ is surjective. As a result, Ext}, (A, Q) = coker ¢ = 0.

Remark. In fact Ext?2 (A, I) = 0for n > 01if I is an injective R-module. For Z-modules, this is equivalent to I
being divisible.

Submodule of a free module over a PID

If R is a PID, then it admits a two-step free resolution, and hence Extj2 (A,B) =0 forall A,Band i > 2. This relies
on the fact that a submodule of a free R-module is also free. If the module is finitely generated, we can use the
structure theorem to deduce this. The general case needs the argument by Zorn’s lemma.

Theorem. Every R-submodule of a free R-module M is free when R is a PID.
Proof. Let N be a R-submodule of M. Let X be a basis of M. We consider the set S of triplets (Y, Z, b), where
e ZCYCX;

« Ny :=NnN @Ry is free;
yey

« b: Z — N is a map such that im b is a basis of Ny.

Equip S with the partial order
(Y, Z,b) <s (Y,Z',b') < (YCY)A(ZCZ)A (b’iZ =b)

S is non-empty, as (3,2,2) € S. Let {(Y;,Z;,b;)}iey be achainin S. Let Y = |J;Y;, Z := |J; Z; and
b = U; bi. We claim that (Y,Z,b) € S. Indeed Z C Y. The union imb = |J;imb; is clearly linearly
independent and spans Ny. Hence Ny is free.

Now by Zorn’s Lemma, S has a maximal element, which will be denoted again by (Y, Z, b). Hopefully it
does not cause any ambiguity in the subsequent discussions.

We claim that Y = X. Suppose for contradiction that it is not. Then we take x € X \ Y. Consider the ideal

I:=qa€eR: ax+€BRy NN #@
yey

If I = {0}, then Nyy(x} = NN @Ry@Rx = Ny. We have (Y,Z,b) <s (Y N {x},Z,b). Thisis a
yey
contradiction.

Suppose that I # {0}. Since R is a PID, I = {c) for some ¢ € R. Pick

m=cx+Za,~y,~e cx+ZRy NN
i yey

We claim that Nyy(x} = Ny ® Rm. For n € Nyy(x}, n = 2; bjy} + rx for some b,b; € R and y} € Y. Then
by definition r € (c). Let r = sc for some s € R. Hence

n:ijy}+scx:sm+ (ijy;- —Zaiyi) € Ny + Rm
J J

1



It is clear that Ny N Rm = {0} as Y U {x} is linearly independent.

Z''=ZU{x}L, Y =YU{x},and b’ : Z/ — N which satisfies
(Y,Z,b) <s (Y',Z’,b’). This is a contradiction.

In conclusion, we have X = Y. Hence Ny = NN @ Rx = N is free.

yex

This proves our claim. Now we let
b’|, = band b'(x) = m. We have



