
Week 6

Computation of Ext groups

Example 1.1

1. Ext•Z (Z,Z/𝑛);
2. Ext•Z (Z/𝑚,Z/𝑛);
3. Ext•Z/4 (Z/2,Z/2). Why do the higher Ext groups not vanish?
4. Ext•Z (𝐴,Q) for any Z-module 𝐴.

1. Ext𝑖Z (Z,Z/𝑛) = 0 for all 𝑖 > 0 because Z is free.

2. Z/𝑚 admits the following free resolution:

0 Z Z
2 1 0

𝑚

Applying the functor HomZ (−,Z/𝑛), we have

HomZ (Z,Z/𝑛) HomZ (Z,Z/𝑛) 0

0 1 2

𝜑

where the homomorphism 𝜑 is given by 𝑓 ↦→ 𝑚 · 𝑓 . Note that HomZ (Z,Z/𝑛) � Z/𝑛 by the isomorphism
𝑓 ↦→ 𝑓 (1).

• HomZ (Z/𝑚,Z/𝑛) = ker𝜑 � {[𝑘] ∈ Z/𝑛 : 𝑛 | 𝑚𝑘} � Z/gcd(𝑚,𝑛).

• Ext1Z (Z/𝑚,Z/𝑛) = coker𝜑 �
Z/𝑛

𝑚 · Z/𝑛 � Z/gcd(𝑚,𝑛).

• Ext𝑖Z (Z/𝑚,Z/𝑛) = 0 for 𝑖 ⩾ 2.

(Use Bezout’s lemma to justify the claimed isomorphisms.)

3. Z/2 admits the following free resolution as a Z/4-module:

· · · Z/4 Z/4 Z/4 Z/4
3 2 1 0

2 2 2

Applying the functor HomZ/4 (−,Z/2), we have

· · · HomZ/4 (Z/4,Z/2) HomZ/4 (Z/4,Z/2) HomZ/4 (Z/4,Z/2) HomZ/4 (Z/4,Z/2)
3 2 1 0

2 2 2

which is isomorphic to the cochain complex

· · · Z/2 Z/2 Z/2 Z/2
3 2 1 0

0 0 0

Hence Ext𝑛Z/4 (Z/2,Z/2) � Z/2 for all 𝑛 ⩾ 0.

4. Since Z is a PID, 𝐴 admits a free resolution:

· · · 0 𝐹1 𝐹0

2 1 0

𝜑

We claim that 𝜑∗ : HomZ (𝐹0,Q) → HomZ (𝐹1,Q) is an surjective. Let {𝑥𝛼 }𝛼∈𝐼 be a basis of 𝐹1 and {𝑦𝛽 }𝛽∈ 𝐽
a basis of 𝐹0. Then HomZ (𝐹0,Q) � (Q⊕ 𝐽 )∗ and HomZ (𝐹1,Q) � (Q⊕𝐼 )∗ are Q-vector spaces. Since 𝜑 is
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injective, we identify 𝐹1 as a submodule of 𝐹0, and hence Q⊕𝐼 as a Q-vector subspace of Q⊕ 𝐽 . Then there
exists a splitting Q⊕ 𝐽 � 𝑉 ⊕ Q⊕𝐼 . For 𝑓 ∈ (𝑄⊕𝐼 )∗, we define 𝑔 by extension by zero, that is,

𝑔(𝑣) :=
{
𝑓 (𝑣), 𝑣 ∈ Q⊕𝐼

0, 𝑣 ∈ 𝑉
(extend by linearity.)

Then 𝑓 = 𝜑∗ (𝑔). Hence 𝜑∗ is surjective. As a result, Ext1Z (𝐴,Q) = coker𝜑 = 0.

Remark. In fact Ext𝑛𝑅 (𝐴, 𝐼 ) = 0 for 𝑛 > 0 if 𝐼 is an injective 𝑅-module. For Z-modules, this is equivalent to 𝐼
being divisible.

Submodule of a free module over a PID
If 𝑅 is a PID, then it admits a two-step free resolution, and hence Ext𝑖𝑅 (𝐴, 𝐵) = 0 for all 𝐴, 𝐵 and 𝑖 ⩾ 2. This relies
on the fact that a submodule of a free 𝑅-module is also free. If the module is finitely generated, we can use the
structure theorem to deduce this. The general case needs the argument by Zorn’s lemma.

Theorem. Every 𝑅-submodule of a free 𝑅-module𝑀 is free when 𝑅 is a PID.

Proof. Let 𝑁 be a 𝑅-submodule of𝑀 . Let 𝑋 be a basis of𝑀 . We consider the set S of triplets (𝑌, 𝑍, 𝑏), where

• 𝑍 ⊆ 𝑌 ⊆ 𝑋 ;

• 𝑁𝑌 := 𝑁 ∩
⊕
𝑦∈𝑌

𝑅𝑦 is free;

• 𝑏 : 𝑍 → 𝑁 is a map such that im𝑏 is a basis of 𝑁𝑌 .

Equip S with the partial order

(𝑌, 𝑍, 𝑏) ⩽S (𝑌 ′, 𝑍 ′, 𝑏′) ⇐⇒ (𝑌 ⊆ 𝑌 ′) ∧ (𝑍 ⊆ 𝑍 ′) ∧ (𝑏′
��
𝑍
= 𝑏)

S is non-empty, as (∅,∅,∅) ∈ S . Let {(𝑌𝑖 , 𝑍𝑖 , 𝑏𝑖 )}𝑖∈𝐼 be a chain in S . Let 𝑌 :=
⋃

𝑖 𝑌𝑖 , 𝑍 :=
⋃

𝑖 𝑍𝑖 and
𝑏 =

⋃
𝑖 𝑏𝑖 . We claim that (𝑌, 𝑍, 𝑏) ∈ S . Indeed 𝑍 ⊆ 𝑌 . The union im𝑏 =

⋃
𝑖 im𝑏𝑖 is clearly linearly

independent and spans 𝑁𝑌 . Hence 𝑁𝑌 is free.

Now by Zorn’s Lemma, S has a maximal element, which will be denoted again by (𝑌, 𝑍, 𝑏). Hopefully it
does not cause any ambiguity in the subsequent discussions.

We claim that 𝑌 = 𝑋 . Suppose for contradiction that it is not. Then we take 𝑥 ∈ 𝑋 \𝑌 . Consider the ideal

𝐼 :=

𝑎 ∈ 𝑅 :
©«𝑎𝑥 +

⊕
𝑦∈𝑌

𝑅𝑦
ª®¬ ∩ 𝑁 ≠ ∅


If 𝐼 = {0}, then 𝑁𝑌∪{𝑥 } = 𝑁 ∩ ©«

⊕
𝑦∈𝑌

𝑅𝑦 ⊕ 𝑅𝑥ª®¬ = 𝑁𝑌 . We have (𝑌, 𝑍, 𝑏) <S (𝑌 ∩ {𝑥}, 𝑍, 𝑏). This is a

contradiction.

Suppose that 𝐼 ≠ {0}. Since 𝑅 is a PID, 𝐼 = ⟨𝑐⟩ for some 𝑐 ∈ 𝑅. Pick

𝑚 = 𝑐𝑥 +
∑
𝑖

𝑎𝑖𝑦𝑖 ∈ ©«𝑐𝑥 +
∑
𝑦∈𝑌

𝑅𝑦
ª®¬ ∩ 𝑁

We claim that 𝑁𝑌∪{𝑥 } = 𝑁𝑌 ⊕ 𝑅𝑚. For 𝑛 ∈ 𝑁𝑌∪{𝑥 } , 𝑛 =
∑

𝑗 𝑏 𝑗𝑦
′
𝑗 + 𝑟𝑥 for some 𝑏, 𝑏𝑖 ∈ 𝑅 and 𝑦′𝑗 ∈ 𝑌 . Then

by definition 𝑟 ∈ ⟨𝑐⟩. Let 𝑟 = 𝑠𝑐 for some 𝑠 ∈ 𝑅. Hence

𝑛 =
∑
𝑗

𝑏 𝑗𝑦
′
𝑗 + 𝑠𝑐𝑥 = 𝑠𝑚 +

(∑
𝑗

𝑏 𝑗𝑦
′
𝑗 −

∑
𝑖

𝑎𝑖𝑦𝑖

)
∈ 𝑁𝑌 + 𝑅𝑚
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It is clear that 𝑁𝑌 ∩ 𝑅𝑚 = {0} as 𝑌 ∪ {𝑥} is linearly independent. This proves our claim. Now we let
𝑍 ′ = 𝑍 ∪ {𝑥}, 𝑌 ′ = 𝑌 ∪ {𝑥}, and 𝑏′ : 𝑍 ′ → 𝑁 which satisfies 𝑏′

��
𝑍

= 𝑏 and 𝑏′ (𝑥) = 𝑚. We have
(𝑌, 𝑍, 𝑏) <S (𝑌 ′, 𝑍 ′, 𝑏′). This is a contradiction.

In conclusion, we have 𝑋 = 𝑌 . Hence 𝑁𝑌 = 𝑁 ∩
⊕
𝑦∈𝑋

𝑅𝑥 = 𝑁 is free. □
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