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We are going to construct some p-stable bundles!

Serre’s Construction
Slogan. On a surface S, points (0-dimensional subschemes) on S — rank 2 vector bundles.

We start with a variety X and a torsion-free sheaf F of rank 1. Then the reflexive hull L := F” is a line bundle,
and ¥, := F ® L" is an ideal sheaf of a subscheme Z C X of codimension > 2. Thatis, F =L ® .%7.

Note that every torsion-free sheaf has a filtration by torsion-free sheaves of rank 1. In particular, every rank 2
torsion-free sheaf E admits an extension:

0 —> L,®Fy, —>E—3 L, @5, —0

Question. When is E a vector bundle?

It is clear that E cannot be locally free unless L; ® .7z, is aline bundle, i.e. Z; is empty. Therefore we are interested
in the pair (L, Z), where L € Pic X and Z C X is a subscheme of codimension > 2, such that the extension

0 > Ox > E »L® Iz —— 0 (%)

produces a vector bundle E or rank 2. We will have a satisfactory result for the case of surface S.

Definition 0.1. Let K € PicS and Z C S a 0-dimensional local complete intersection subscheme. We say that
the pair (K, Z) satisfies the Cayley-Bacharach property, if, for any subscheme Z’ C Z with ((Z") = ¢(Z) — 1,
and a section s € H(S, K), s|z = 0 implies that s|z = 0.

Remark. 1. IfH%(S, K) = 0, then (CB) is satisfied for any Z;

2. IfH°(S,K) = 4, for a generic Z with ¢(Z) > {, the sheaf K ® .7 has no non-trivial sections, and hence
(K, Z) satisfies (CB).

Proposition 0.2

Let S be a surface and Z C S a 0-dimensional local complete intersection subscheme. The sheaf E in () is
locally free if and only if (L ® ws, Z) satisfies the Cayley-Bacharach property.

Proof. “ &= ”: Assume the Cayley-Bacharach property does not hold, i.e. there exist a subscheme Z’ C Z and
a section s € H (S,L ® ws) such that £ (Z’) = £(Z) — 1 and s|, = 0 but s|, # 0. We have to show that
given any extension £ : 0 - L — E — M ® ¥z — 0 the sheaf E is not locally free.

Use the exact sequence 0 — ¥z — Fz» — O, — 0 induced by the inclusion Z’ C Z and the assumption
to show that H! (5,L ® ws ® Fz) — H!(S,L ® ws ® .Fz/) is injective. The dual of this map is the nat-
ural homomorphism Ext! (L ® .77/, Os) — Ext! (L ® .7, Os) which is, therefore, surjective. Hence any



extension ¢ fits into a commutative diagram of the form

0 0
1 1
0 > Og > E >L® F; ——> 0
l N <4
0 > Og > E > L Fy —— 0
1 N
O Oy
1 1
0 0

Since Os and L ® .z are torsion-free, so is E’. Hence the sequence 0 — E — E’ — O, — 0 is non-split
and E cannot be locally free.

«

= ”: Using that Z is a local complete intersection, we can show that there are only finitely many
Z' € Z such that £(Z") = ¢(Z) — 1. Suppose now that

E:0>50s >E—>L®F7,—0

is anon-locally free extension. Then there exists a non-split exact sequence 0 — E — E’ — O, — 0 where
x € S is a singular point of E. The saturation of Os in E’ can differ from Os only in the point x. Since Os is
locally free, it is saturated in E” as well. Thus we get a commutative diagram of the above form. Hence, the
extension class ¢ is contained in the image of the homomorphism Ext! (L ® %7/, Os) — Ext! (L ® 77, Os).

Since the Cayley-Bacharach property ensures that the map Ext! (L ® .77/, Os) — Ext' (L ® %7, Os) is not
surjective, we can choose ¢ such that it is not contained in the image of this map for any of the finitely
many Z’ that could occur. The corresponding E will be locally free. O

Example 0.3. Every point on P? gives rise to a y-semi-stable vector bundle E, of rank 2.

Proof. Let S = P? and x € P?. Claim: Ext!(.%,, Os) = k.

Short exact sequence: 0 — %, (-3) — Os(-3) — O, — 0. Long exact sequence:
0=H’(0s(-3)) — H*(Ox) —— H'(Jx(-3)) — H'(0s(-3)) =0

Hence k = H°(0,) = H' (7 (-3)) = Ext!(%, Os) by Serre duality.

Therefore there exists a unique non-split extension up to scalars:

0 >@S )Ex )jx )0

Note that H(ws) = H°(0s(-3)) = 0, so Ey is a vector bundle. Ey is y-semi-stable because p(E,) =0. O

Serre’s construction can produce p-stable rank 2 vector bundles with prescribed ¢; and large c,.

Consider the extension (x). The Chern class of E can be computed by the product formula:

ci(E) = ci1(L); c2(E) = £(2).

Proposition 0.4

Let (S, H) be a smooth polarised surface. For L € Pic S, there exists an integer ¢, such that, for Z a generic
{-tuple of points with ¢ > ¢, the extension (*) produces a p-stable rank 2 vector bundle E with ¢; (E) = ¢;(L)
and ¢, (E) = /.

Proof. We will take ¢y := max{/¢;, {,} where {1, {, will be defined below.



1. Twisting L by Os(nH) we may assume that L is sufficiently positive. Let £, := h®(L®ws). If£(Z) > ¢,
then a generic Z satisfies (CB) by the remark above. Hence E is a vector bundle.

2. Suppose M C E were a destabilizing line bundle. It follows from the inequality
1
p(M) > p(E) = Sei(L) - H > 0= (0s)

that M ¢ Os. Thus the composite homomorphism M — E — L ® ¥ is non-zero. It vanishes along
a divisor D with Z € D and

deg D = p(L) — p(M) < %cl(L) H=d

Let ¢, := dim Y, where Y is the Hilbert scheme that parametrizes effective divisors on S of degree < d.
An argument of Hilbert schemes shows that if £(Z) > ¢, then for a generic Z, a divisor D containing
Z and having degree < d does not exist. This leads to a contradiction and hence E is p-stable. O

Now we look at a 3-fold example.

Example 0.5. Fano 3-fold Xj4 of index 1 and genus 8.

First there exists a smooth elliptic curve C C Xj4 of degree 5 (Lemma 4.9.5 of [IP99]). Let H = —Kx be the ample
generator of Pic X14. Consider the Serre’s construction:

0 > Ox > E > Ox(H) ® Jc — 0

E is a rank 2 vector bundle, globally generated, p-stable, with h’(E) = 6, ¢;(E) = H and ¢, (E) = C. (For the proof
we might need to give a geometric description of E more than just Serre’s construction...See [Gus83].) It is called the
Mukai bundle on Xj4 (as a vector bundle with these properties is in fact unique).

The Mukai bundle E on X;4 determines a morphism ®f : X14 — Gr (2, 6). Here Gr (2, 6) is a 8-dimensional Fano
variety of coindex 3 (i.e. index 6) and degree 14 in the Pliicker embedding P!*. The diagram

@
Xis —=—% Gr(2,6)

Qg |£ lPlﬁcker

P < P*2, }PM

is Cartesian ([Muk92]). Therefore Xy is a transversal linear section of Gr (2, 6) in P*4.

Elementary Transformation

Let S be a smooth surface and C C S an effective divisor, with 1 : C < S the inclusion map. Let F € Vect(S)
and G € Vect(C). We say that E € Vect(S) is obtained by an elementary transformation of F along G if there
exists an exact sequence

0 > E > F > G > 0

The local-freeness of E is much easier than that in the Serre’s construction:

Lemma 0.6
Suppose that F € Vect(S) and G € Vect(C) are locally free. Then E := ker(F —» 1.G) is also locally free.
Proof. Recall from Section 1.1 that it suffices to prove that the projective dimension of E is
pd(E) := max{pd(Ey) | x € S} = 0.

Since F is locally free, pd(E) = max{0, pd(:.G) — 1}, so it suffices to prove that pd(:.G) < 1. Indeed, we



have a locally free resolution

0 —— 0s(-C) > Os > 1.0c > 0
So pd(1:0c¢) < 1. Locally we have 1.G = t*@?(rkG). So pd(1.G) < 1. o
By product formula and Hirzebruch-Riemann—-Roch, the Chern class of E is given by
¢1(E) = c1(F) — (tkG)Cs
c2(E) = c2(F) — (tkG)C - ¢1(F) + %(rkG)C~ ((rkG)C + Kx) + x(G)

= ¢y(F) +deg G — (tkG)C - ¢1 (F) + %(rkG)(rkG —1)C?,

Proposition 0.7

Every vector bundle E € Vect(S) of rank r it obtained by an elementary transformation of 0" (nH) with
n > 0 along a line bundle on a smooth curve C C X.

Proof. For n > 0, E’ := E'(nH) is globally generated of rank r. Let V be a linear subspace of H’(E’) of dimension
r. The evaluation morphism V' ® Os — E’ has full rank away from a closed subscheme C of codimension
1, which is a smooth curve. Therefore for generic choice of V, we have a short exact sequence

where L is a line bundle on C. Dualising the sequence and twisting by Os(nH) yields
0 —> E—— 03" (nH) — L' —— 0

where L’ == &xt' (L, Os(nH)) = 1.(L’® Oc(C + nH)) is a line bundle on C. Therefore E is obtained by an
elementary transformation of @f’ (nH) along L' ® Oc(C + nH). O

Proposition 0.8

Let (S, H) be a smooth polarised surface. For L € PicS, r > 2, and ¢y € Z, there exists a p-stable vector
bundle E with rk(E) = r, ¢1(E) = ¢1(L), and c3(E) > co.

Proof. Let C be a smooth curve. According to the Grothendieck Lemma 1.7.9, the torsion free quotients F of OF"
with p(F) < %C - H and rk(F) < r form a bounded family C.

Now dim Hom (O?’ , Oc(nH)) grows much faster than dim Hom (F, Oc(nH)) for any F in the family C.
Thus, if n is sufficiently large, a general homomorphism ¢ : OF" — Oc(nH) is surjective and does not
factor through any F € C. Let E be the kernel of ¢. Then E is locally free with det(E) = Ox(—C) and
c(E)=nH-C>0.

In order to see that E is p-stable, let E C E be a saturated proper subsheaf, let F” be the saturation of E” in
OZ" and consider the subsheaf F’/E’ C Oc(nH). If F'/E’ is nonzero, then det (E’) = det (F') ® Os(-C),
hence

C-H C-H

p(E) =p(F) - ——= <0

@ < mE " HE

and we are done. If on the other hand F’/E’ = 0 then F := OF"/E’ is torsion free and ¢ factors through F.



By construction F cannot be contained in C, hence p(F) > %C - H. It follows that

r—rk (E")
1k (E)

r—rk(E’) r-1 C-H
rk (E") r C-H<- r = HE).

p(E) = p(F) < =

So E is indeed p-stable.

For arbitrary L € PicS, pick m > 0 such that L'(rmH) is very ample and let C € |L'(rmH)|. If E is
a p-stable bundle constructed as above then ¢;(E) = —C = ¢;(L) — rmH. Then E(mH) is p-stable with
¢1(E) = ¢1(L) and large c;. O

Lazarsfeld—-Mukai Bundles

We shall use elementary transformations to produce a special type of vector bundle on a K3 surface, following
the beautiful paper [Laz86].

Theorem 0.9. Lazarsfeld—-Mukai Bundles

Suppose that (S, H) is a K3 surface of genus g = rs, where r,s € Z,, and Pic S = ZH. There exists a unique
stable vector bundle E on S with

rk (E) =r, c; (E) =H, chy (E) =s-—r.

Moreover, E is globally generated, p-stable, Kl (s, E) =r+s,and h! (S,E) = h? (S,E) =0.

Spoiler: the uniqueness will be treated in Section 6.1! We only show existence this time.

Remark. The Lazarsfeld~Mukai bundle E on the K3 surface S;_; of genus g therefore determines a morphism
®r : Syy_p — Gr (r,r +s). This plays an important réle in the classification of Fano 3-folds.

Let C be a non-singular curve on the K3 surface S. Suppose that L is a globally generated line bundle on C with
degL =d and h°(C,L) =t +1. The surjection H (C, L) ®c Oc —» L lifts to S:

0 —> F —= H°(C,L) ® Os — 1,LL — 0 (0.1)

where 1 : C < Sis the inclusion and F := ker (H’ (C, L) ® Os —» 1.L). Note that F is obtained by the elementary
transformation of @;B (+1) along L, and hence is locally free. We call the dual bundle E := F" the Lazarsfeld-
Mukai bundle associated to (C, L).

Lemma 0.10
The Lazarsfeld-Mukai bundle E is locally free, with
tk(E) =h°(L), ¢, (E)=C, c3(E)=degL, h°(E)=h"(L)+h'(L), h'(E)=h*(E)=0.
If moreover L” ® wc is globally generated, then E is also globally generated.
Proof. E is locally free because F is. Note that E fits into the dual sequence of (0.1):
0 —— H°(C,L) ® Os — E —— 1,(LY ® wc) — 0 (0.2)
The Chern class and cohomology groups of E can be computed by that. O

The Lazarsfeld-Mukai bundles are closely related to Brill-Noether theory on K3 surfaces. We recall Brill-Noether
theory on curves.



Definition 0.11. Suppose that C is a non-singular projective curve of genus g, and L is a line bundle on a with
degL =dand h’ (C,L) = t + 1. We define the Brill-Noether number to be

plg.t,d) =g—(t+1)(g—d+1t) =g—h"(C,L)h' (C,L) =h°’ (C,we) —h° (C,L)h° (C,wc ® L).
It is the expected dimension of the Brill-Noether loci
Wi(C) :={L € PicC | h’(C,L) > t +1, degL = d},

which is a subvariety of Pic? C. It is proven by Kempf and Kleiman-Laksov that WI(C) # @ for p(g,t,d) > 0. If
Wd’ (C) = @ whenever p(g,t,d) < 0, then C is said to be Brill-Noether general.

Proposition 0.12. [Laz86]

Suppose that C is a non-singular curve on a K3 surface S such that all curves in |C| are integral. Then C is
Brill-Noether general.

Proof. It suffices to prove that for all line bundle L on C, we have p(L) := g — h’ (C,L) h' (C,L) > 0. First we
assume that both L and LY ® wc are globally generated. Let E be the Lazarsfeld—-Mukai bundle associated
to (C, L). We claim that E is simple, i.e. Hom (E, E) = C.

Suppose that E is not simple. Then we pick any vy : E — E which is not a scalar multiple of id. Let A be
the eigenvalue of vy(x) for some x € E and consider v := vy — Aid. Then

deto € H’ (detE¥ ® det E) = H® (Ox)

vanishes at x, and hence is identically zero. It follows that rk (kerv) > 1. Let N := im o and M, := coker v.
Put M := My/T1(M,), where T;(M,) is the maximal torsion subsheaf of M,. We have

C=c1(E)=c1(N)+c1 (M) +c1 (T1(Mp))

in the Picard group of S. Since E is globally generated by Lemma 0.10, N and M are also globally generated
being quotients of E. Then det N = Os(C;) and det M = Os(C;) for some effective curves C;, C,. The
torsion-free sheaves N, M are trivial if and only if they have vanishing first Chern class, and they cannot
be trivial, as H° (S, EY) = 0. Hence C;,C; # 0. Then C = C; + C; + ¢; (T(M,)) is not integral, which is a
contradiction.

Since E is simple, we have y(E,E) = 2 — dim Ext! (E,E) < 2. On the other hand, by Lemma 0.10 we have
1
x(E,E) =21k (E) 5 c1 (E)2 —cy (E) +1k (E)| —c1 (E)2 = 2(¢ + D(g—-1-d+1t)—(2g-2)=2-2p(L).

Therefore p(L) > 0 as desired.

Return to the general case. Let D; be the base locus of L and D, the base locus of (L(-D;))" ® wc
respectively. Then L’ := L(D; — D;) and L’V ® wc are globally generated. And we have

p(L) > p(L(=D1)) = p((L(=D1))* ® wxc) > p((L(=D1))" ® wc ® Oc(~Dz)) = p(L(D; = Dy)) > 0. O
The proposition particularly applies to the case when h generates the Picard group of S:

Corollary 0.13

Suppose that (S, H) is a polarised K3 surface with PicS = ZH. Then every curve in |H| is Brill-Noether
general.

Proof of Theorem 0.9. Let L be a line bundle on C € |H| with h’ (L) = r and h' (L) = s. Such line bundle exists



because

p(L)=g-h"(C,L)h* (C,L) = 0.

By Corollary 0.13, C is Brill-Noether general, which implies that both L and L"® w¢ are globally generated.
Indeed, if D is the base locus of L, then h® (L) = h® (L(=D)) and deg L(—~D) < deg L, which implies that
p(L(=D)) < 0. This is a contradiction. Similar for L” ® wc.

By Lemma 0.10, the Lazarsfeld—Mukai bundle E associated to (C, L) is globally generated, with numerical
invariants

1
tk(E)y=r, c (E)=h, chz(E)zéhz—degL:s—r, W (S,E)=r+s, H!(S,E)=H?(S,E)=0.

It remains to prove that E is py-stable. We will prove the p-stability of F := E". Suppose that F/ C F is
a locally free subsheaf of F of rank r’ < r. As in the proof of Proposition 0.12, we can show that F’" is
globally generated and (det F’)” = Og(C;) for some non-trivial curve C; C X. Since PicS = Zh, C; = kh
for some k € Z,. We have

deg F’ kh? h* degF
= — _— = = F).
rk (F") r’ < r  rk(F) HE) .

p(F') =
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