Constructions of μ -Stable Bundles

Peize Liu

27 Dec 2023

We are going to construct some μ -stable bundles!

Serre's Construction

Slogan. On a surface *S*, points (0-dimensional subschemes) on $S \rightarrow rank \ 2$ vector bundles.

We start with a variety X and a torsion-free sheaf F of rank 1. Then the reflexive hull $L := F^{\sim}$ is a line bundle, and $\mathscr{I}_Z := F \otimes L^{\sim}$ is an ideal sheaf of a subscheme $Z \subseteq X$ of codimension ≥ 2 . That is, $F = L \otimes \mathscr{I}_Z$.

Note that every torsion-free sheaf has a filtration by torsion-free sheaves of rank 1. In particular, every rank 2 torsion-free sheaf *E* admits an extension:

 $0 \longrightarrow L_1 \otimes \mathscr{F}_{Z_1} \longrightarrow E \longrightarrow L_2 \otimes \mathscr{F}_{Z_2} \longrightarrow 0$

Question. *When is E a vector bundle?*

It is clear that *E* cannot be locally free unless $L_1 \otimes \mathscr{I}_{Z_1}$ is a line bundle, i.e. Z_1 is empty. Therefore we are interested in the pair (L, Z), where $L \in \text{Pic } X$ and $Z \subseteq X$ is a subscheme of codimension ≥ 2 , such that the extension

 $0 \longrightarrow \mathcal{O}_X \longrightarrow E \longrightarrow L \otimes \mathcal{F}_Z \longrightarrow 0 \tag{(*)}$

produces a vector bundle *E* or rank 2. We will have a satisfactory result for the case of surface *S*.

Definition 0.1. Let $K \in \text{Pic } S$ and $Z \subseteq S$ a 0-dimensional local complete intersection subscheme. We say that the pair (K, Z) satisfies the **Cayley–Bacharach property**, if, for any subscheme $Z' \subseteq Z$ with $\ell(Z') = \ell(Z) - 1$, and a section $s \in H^0(S, K)$, $s|_{Z'} = 0$ implies that $s|_Z = 0$.

Remark. 1. If $H^0(S, K) = 0$, then (CB) is satisfied for any Z;

2. If $H^0(S, K) = \ell$, for a generic Z with $\ell(Z) > \ell$, the sheaf $K \otimes \mathscr{I}_Z$ has no non-trivial sections, and hence (K, Z) satisfies (CB).

Proposition 0.2

Let *S* be a surface and $Z \subseteq S$ a 0-dimensional local complete intersection subscheme. The sheaf *E* in (*) is locally free if and only if $(L \otimes \omega_S, Z)$ satisfies the Cayley–Bacharach property.

Proof. " \Leftarrow ": Assume the Cayley–Bacharach property does not hold, i.e. there exist a subscheme $Z' \subseteq Z$ and a section $s \in H^0(S, L \otimes \omega_S)$ such that $\ell(Z') = \ell(Z) - 1$ and $s|_{Z'} = 0$ but $s|_Z \neq 0$. We have to show that given any extension $\xi : 0 \to L \to E \to M \otimes \mathscr{I}_Z \to 0$ the sheaf *E* is not locally free.

Use the exact sequence $0 \to \mathscr{I}_Z \to \mathscr{I}_{Z'} \to \mathscr{O}_x \to 0$ induced by the inclusion $Z' \subseteq Z$ and the assumption to show that $\mathrm{H}^1(S, L \otimes \omega_S \otimes \mathscr{I}_Z) \to \mathrm{H}^1(S, L \otimes \omega_S \otimes \mathscr{I}_{Z'})$ is injective. The dual of this map is the natural homomorphism $\mathrm{Ext}^1(L \otimes \mathscr{I}_{Z'}, \mathscr{O}_S) \to \mathrm{Ext}^1(L \otimes \mathscr{I}_Z, \mathscr{O}_S)$ which is, therefore, surjective. Hence any extension ξ fits into a commutative diagram of the form

Since \mathcal{O}_S and $L \otimes \mathcal{I}_{Z'}$ are torsion-free, so is E'. Hence the sequence $0 \to E \to E' \to \mathcal{O}_x \to 0$ is non-split and E cannot be locally free.

" \implies ": Using that Z is a local complete intersection, we can show that there are only finitely many $Z' \subseteq Z$ such that $\ell(Z') = \ell(Z) - 1$. Suppose now that

$$\xi: 0 \to \mathcal{O}_S \to E \to L \otimes \mathcal{I}_Z \to 0$$

is a non-locally free extension. Then there exists a non-split exact sequence $0 \to E \to E' \to \mathcal{O}_x \to 0$ where $x \in S$ is a singular point of E. The saturation of \mathcal{O}_S in E' can differ from \mathcal{O}_S only in the point x. Since \mathcal{O}_S is locally free, it is saturated in E' as well. Thus we get a commutative diagram of the above form. Hence, the extension class ξ is contained in the image of the homomorphism $\operatorname{Ext}^1(L \otimes \mathcal{I}_{Z'}, \mathcal{O}_S) \to \operatorname{Ext}^1(L \otimes \mathcal{I}_Z, \mathcal{O}_S)$.

Since the Cayley–Bacharach property ensures that the map Ext^1 $(L \otimes \mathscr{F}_{Z'}, \mathscr{O}_S) \to \text{Ext}^1$ $(L \otimes \mathscr{F}_Z, \mathscr{O}_S)$ is not surjective, we can choose ξ such that it is not contained in the image of this map for any of the finitely many Z' that could occur. The corresponding E will be locally free.

Example 0.3. Every point on \mathbb{P}^2 gives rise to a μ -semi-stable vector bundle E_x of rank 2.

Proof. Let $S = \mathbb{P}^2$ and $x \in \mathbb{P}^2$. Claim: $\operatorname{Ext}^1(\mathscr{F}_x, \mathscr{O}_S) \cong k$.

Short exact sequence: $0 \to \mathscr{I}_x(-3) \to \mathscr{O}_S(-3) \to \mathscr{O}_x \to 0$. Long exact sequence:

$$0 = \mathrm{H}^{0}(\mathcal{O}_{S}(-3)) \longrightarrow \mathrm{H}^{0}(\mathcal{O}_{x}) \xrightarrow{\sim} \mathrm{H}^{1}(\mathcal{I}_{x}(-3)) \longrightarrow \mathrm{H}^{1}(\mathcal{O}_{S}(-3)) = 0$$

Hence $k \cong H^0(\mathcal{O}_x) \cong H^1(\mathcal{I}_x(-3)) \cong \operatorname{Ext}^1(\mathcal{I}_x, \mathcal{O}_S)$ by Serre duality.

Therefore there exists a unique non-split extension up to scalars:

$$0 \longrightarrow \mathscr{O}_S \longrightarrow E_x \longrightarrow \mathscr{I}_x \longrightarrow 0$$

Note that $H^0(\omega_S) = H^0(\mathcal{O}_S(-3)) = 0$, so E_x is a vector bundle. E_x is μ -semi-stable because $\mu(E_x) = 0$. \Box

Serre's construction can produce μ -stable rank 2 vector bundles with prescribed c_1 and large c_2 .

Consider the extension (*). The Chern class of *E* can be computed by the product formula:

$$c_1(E) = c_1(L);$$
 $c_2(E) = \ell(Z).$

Proposition 0.4

Let (S, H) be a smooth polarised surface. For $L \in \text{Pic } S$, there exists an integer ℓ_0 such that, for Z a generic ℓ -tuple of points with $\ell > \ell_0$, the extension (*) produces a μ -stable rank 2 vector bundle E with $c_1(E) = c_1(L)$ and $c_2(E) = \ell$.

Proof. We will take $\ell_0 := \max{\{\ell_1, \ell_2\}}$ where ℓ_1, ℓ_2 will be defined below.

- 1. Twisting *L* by $\mathcal{O}_S(nH)$ we may assume that *L* is sufficiently positive. Let $\ell_1 := h^0(L \otimes \omega_S)$. If $\ell(Z) > \ell_1$ then a generic *Z* satisfies (CB) by the remark above. Hence *E* is a vector bundle.
- 2. Suppose $M \subseteq E$ were a destabilizing line bundle. It follows from the inequality

$$\mu(M) \ge \mu(E) = \frac{1}{2}c_1(L) \cdot H > 0 = \mu(\mathcal{O}_S)$$

that $M \not\subseteq \mathcal{O}_S$. Thus the composite homomorphism $M \to E \to L \otimes \mathcal{I}_Z$ is non-zero. It vanishes along a divisor D with $Z \subseteq D$ and

$$\deg D = \mu(L) - \mu(M) \leqslant \frac{1}{2}c_1(L) \cdot H =: d.$$

Let $\ell_2 := \dim Y$, where *Y* is the Hilbert scheme that parametrizes effective divisors on *S* of degree $\leq d$. An argument of Hilbert schemes shows that if $\ell(Z) > \ell_2$ then for a generic *Z*, a divisor *D* containing *Z* and having degree $\leq d$ does not exist. This leads to a contradiction and hence *E* is μ -stable.

Now we look at a 3-fold example.

Example 0.5. Fano 3-fold X_{14} of index 1 and genus 8.

First there exists a smooth elliptic curve $C \subseteq X_{14}$ of degree 5 (Lemma 4.9.5 of [IP99]). Let $H = -K_X$ be the ample generator of Pic X_{14} . Consider the Serre's construction:

$$0 \longrightarrow \mathcal{O}_X \longrightarrow E \longrightarrow \mathcal{O}_X(H) \otimes \mathcal{F}_C \longrightarrow 0$$

E is a rank 2 vector bundle, globally generated, μ -stable, with $h^0(E) = 6$, $c_1(E) = H$ and $c_2(E) = C$. (For the proof we might need to give a geometric description of *E* more than just Serre's construction...See [Gus83].) It is called the **Mukai bundle** on X_{14} (as a vector bundle with these properties is in fact unique).

The Mukai bundle *E* on X_{14} determines a morphism $\Phi_E : X_{14} \to \text{Gr}(2, 6)$. Here Gr (2, 6) is a 8-dimensional Fano variety of coindex 3 (i.e. index 6) and degree 14 in the Plücker embedding \mathbb{P}^{14} . The diagram

is Cartesian ([Muk92]). Therefore X_{14} is a transversal linear section of Gr (2, 6) in \mathbb{P}^{14} .

Elementary Transformation

Let *S* be a smooth surface and $C \subseteq S$ an effective divisor, with $\iota : C \hookrightarrow S$ the inclusion map. Let $F \in Vect(S)$ and $G \in Vect(C)$. We say that $E \in Vect(S)$ is obtained by an **elementary transformation** of *F* along *G* if there exists an exact sequence

 $0 \longrightarrow E \longrightarrow F \longrightarrow \iota_*G \longrightarrow 0$

The local-freeness of *E* is much easier than that in the Serre's construction:

Lemma 0.6

Suppose that $F \in Vect(S)$ and $G \in Vect(C)$ are locally free. Then $E := ker(F \twoheadrightarrow \iota_*G)$ is also locally free.

Proof. Recall from Section 1.1 that it suffices to prove that the projective dimension of E is

 $pd(E) := \max\{pd(E_x) \mid x \in S\} = 0.$

Since *F* is locally free, $pd(E) = max\{0, pd(\iota_*G) - 1\}$, so it suffices to prove that $pd(\iota_*G) \leq 1$. Indeed, we

have a locally free resolution

$$0 \longrightarrow \mathcal{O}_S(-C) \longrightarrow \mathcal{O}_S \longrightarrow \iota_*\mathcal{O}_C \longrightarrow 0$$

So $pd(\iota_* \mathcal{O}_C) \leq 1$. Locally we have $\iota_* G = \iota_* \mathcal{O}_C^{\oplus(\mathrm{rk}\,G)}$. So $pd(\iota_* G) \leq 1$.

By product formula and Hirzebruch–Riemann–Roch, the Chern class of E is given by

$$c_{1}(E) = c_{1}(F) - (\operatorname{rk} G)C;$$

$$c_{2}(E) = c_{2}(F) - (\operatorname{rk} G)C \cdot c_{1}(F) + \frac{1}{2}(\operatorname{rk} G)C \cdot ((\operatorname{rk} G)C + K_{X}) + \chi(G)$$

$$= c_{2}(F) + \deg G - (\operatorname{rk} G)C \cdot c_{1}(F) + \frac{1}{2}(\operatorname{rk} G)(\operatorname{rk} G - 1)C^{2}.$$

Proposition 0.7

Every vector bundle $E \in \text{Vect}(S)$ of rank *r* it obtained by an elementary transformation of $\mathcal{O}_{S}^{\oplus r}(nH)$ with $n \gg 0$ along a line bundle on a smooth curve $C \subseteq X$.

Proof. For $n \gg 0$, E' := E'(nH) is globally generated of rank r. Let V be a linear subspace of $H^0(E')$ of dimension r. The evaluation morphism $V \otimes \mathcal{O}_S \to E'$ has full rank away from a closed subscheme C of codimension 1, which is a smooth curve. Therefore for generic choice of V, we have a short exact sequence

$$0 \longrightarrow \mathscr{O}_{S}^{\oplus r} \longrightarrow E' \longrightarrow \iota_{*}L \longrightarrow 0$$

where *L* is a line bundle on *C*. Dualising the sequence and twisting by $\mathcal{O}_S(nH)$ yields

$$0 \longrightarrow E \longrightarrow \mathscr{O}_{S}^{\oplus r}(nH) \longrightarrow L' \longrightarrow 0$$

where $L' := \mathscr{E}xt^1(L, \mathscr{O}_S(nH)) \cong \iota_*(L^{\sim} \otimes \mathscr{O}_C(C + nH))$ is a line bundle on *C*. Therefore *E* is obtained by an elementary transformation of $\mathscr{O}_S^{\oplus r}(nH)$ along $L^{\sim} \otimes \mathscr{O}_C(C + nH)$.

Proposition 0.8

Let (S, H) be a smooth polarised surface. For $L \in \text{Pic } S$, $r \ge 2$, and $c_0 \in \mathbb{Z}$, there exists a μ -stable vector bundle E with rk(E) = r, $c_1(E) = c_1(L)$, and $c_2(E) > c_0$.

Proof. Let *C* be a smooth curve. According to the Grothendieck Lemma 1.7.9, the torsion free quotients *F* of $\mathcal{O}_{S}^{\oplus r}$ with $\mu(F) \leq \frac{r-1}{r}C \cdot H$ and $\operatorname{rk}(F) < r$ form a bounded family \mathcal{C} .

Now dim Hom $(\mathcal{O}_{S}^{\oplus r}, \mathcal{O}_{C}(nH))$ grows much faster than dim Hom $(F, \mathcal{O}_{C}(nH))$ for any F in the family C. Thus, if n is sufficiently large, a general homomorphism $\varphi : \mathcal{O}_{S}^{\oplus r} \to \mathcal{O}_{C}(nH)$ is surjective and does not factor through any $F \in C$. Let E be the kernel of φ . Then E is locally free with det $(E) = \mathcal{O}_{X}(-C)$ and $c_{2}(E) = nH \cdot C \gg 0$.

In order to see that *E* is μ -stable, let $E' \subseteq E$ be a saturated proper subsheaf, let F' be the saturation of E' in $\mathcal{O}_{S}^{\oplus r}$ and consider the subsheaf $F'/E' \subseteq \mathcal{O}_{C}(nH)$. If F'/E' is nonzero, then det $(E') = \det(F') \otimes \mathcal{O}_{S}(-C)$, hence

$$\mu(E') = \mu(F') - \frac{C \cdot H}{\operatorname{rk}(E')} < 0 - \frac{C \cdot H}{\operatorname{rk}(E)} = \mu(E),$$

and we are done. If on the other hand F'/E' = 0 then $F := \mathcal{O}_S^{\oplus r}/E'$ is torsion free and φ factors through F.

By construction *F* cannot be contained in C, hence $\mu(F) > \frac{r-1}{r}C \cdot H$. It follows that

$$\mu(E') = -\frac{r - \operatorname{rk}(E')}{\operatorname{rk}(E')}\mu(F) < -\frac{r - \operatorname{rk}(E')}{\operatorname{rk}(E')} \cdot \frac{r - 1}{r}C \cdot H < -\frac{C \cdot H}{r} = \mu(E).$$

So *E* is indeed μ -stable.

For arbitrary $L \in \text{Pic } S$, pick $m \gg 0$ such that $L^{\circ}(rmH)$ is very ample and let $C \in |L^{\circ}(rmH)|$. If E is a μ -stable bundle constructed as above then $c_1(E) = -C = c_1(L) - rmH$. Then E(mH) is μ -stable with $c_1(E) = c_1(L)$ and large c_2 .

Lazarsfeld-Mukai Bundles

We shall use elementary transformations to produce a special type of vector bundle on a K3 surface, following the beautiful paper [Laz86].

Theorem 0.9. Lazarsfeld-Mukai Bundles

Suppose that (S, H) is a K3 surface of genus g = rs, where $r, s \in \mathbb{Z}_+$, and Pic $S = \mathbb{Z}H$. There exists a unique stable vector bundle *E* on *S* with

rk(E) = r, $c_1(E) = H$, $ch_2(E) = s - r$.

Moreover, *E* is globally generated, μ -stable, $h^0(S, E) = r + s$, and $h^1(S, E) = h^2(S, E) = 0$.

Spoiler: the uniqueness will be treated in Section 6.1! We only show existence this time.

Remark. The Lazarsfeld–Mukai bundle *E* on the K3 surface S_{2g-2} of genus *g* therefore determines a morphism $\Phi_E: S_{2g-2} \rightarrow \text{Gr}(r, r + s)$. This plays an important rôle in the classification of Fano 3-folds.

Let *C* be a non-singular curve on the K3 surface *S*. Suppose that *L* is a globally generated line bundle on *C* with deg L = d and $h^0(C, L) = t + 1$. The surjection $H^0(C, L) \otimes_{\mathbb{C}} \mathcal{O}_C \twoheadrightarrow L$ lifts to *S*:

$$0 \longrightarrow F \longrightarrow \mathrm{H}^{0}(C, L) \otimes_{\mathbb{C}} \mathcal{O}_{S} \longrightarrow \iota_{*}L \longrightarrow 0$$

$$(0.1)$$

where $\iota : C \hookrightarrow S$ is the inclusion and $F := \ker (H^0(C, L) \otimes_{\mathbb{C}} \mathcal{O}_S \twoheadrightarrow \iota_*L)$. Note that F is obtained by the elementary transformation of $\mathcal{O}_S^{\oplus(t+1)}$ along L, and hence is locally free. We call the dual bundle E := F the **Lazarsfeld**-**Mukai bundle** associated to (C, L).

Lemma 0.10

The Lazarsfeld–Mukai bundle *E* is locally free, with

 $\operatorname{rk}(E) = \operatorname{h}^{0}(L), \quad \operatorname{c}_{1}(E) = C, \quad \operatorname{c}_{2}(E) = \operatorname{deg} L, \quad \operatorname{h}^{0}(E) = \operatorname{h}^{0}(L) + \operatorname{h}^{1}(L), \quad \operatorname{h}^{1}(E) = \operatorname{h}^{2}(E) = 0.$

If moreover $L^{*} \otimes \omega_{C}$ is globally generated, then *E* is also globally generated.

Proof. E is locally free because *F* is. Note that *E* fits into the dual sequence of (0.1):

$$0 \longrightarrow \mathrm{H}^{0}(C, L)^{\vee} \otimes_{\mathbb{C}} \mathscr{O}_{S} \longrightarrow E \longrightarrow \iota_{*}(L^{\vee} \otimes \omega_{C}) \longrightarrow 0$$

$$(0.2)$$

The Chern class and cohomology groups of *E* can be computed by that.

The Lazarsfeld–Mukai bundles are closely related to Brill–Noether theory on K3 surfaces. We recall Brill–Noether theory on curves.

Definition 0.11. Suppose that *C* is a non-singular projective curve of genus *g*, and *L* is a line bundle on a with deg L = d and $h^0(C, L) = t + 1$. We define the **Brill–Noether number** to be

$$\rho(g, t, d) := g - (t+1)(g - d + t) = g - h^0(C, L) h^1(C, L) = h^0(C, \omega_C) - h^0(C, L) h^0(C, \omega_C \otimes L^{\star}).$$

It is the expected dimension of the Brill-Noether loci

$$W_d^t(C) := \{ L \in \operatorname{Pic} C \mid h^0(C, L) \ge t + 1, \deg L = d \},\$$

which is a subvariety of Pic^{*d*} *C*. It is proven by Kempf and Kleiman–Laksov that $W_d^t(C) \neq \emptyset$ for $\rho(g, t, d) \ge 0$. If $W_d^t(C) = \emptyset$ whenever $\rho(g, t, d) < 0$, then *C* is said to be **Brill–Noether general**.

Proposition 0.12. [Laz86]

Suppose that *C* is a non-singular curve on a K3 surface *S* such that all curves in |C| are integral. Then *C* is Brill–Noether general.

Proof. It suffices to prove that for all line bundle *L* on *C*, we have $\rho(L) := g - h^0(C, L) h^1(C, L) \ge 0$. First we assume that both *L* and $L^{\vee} \otimes \omega_C$ are globally generated. Let *E* be the Lazarsfeld–Mukai bundle associated to (C, L). We claim that *E* is simple, i.e. Hom $(E, E) \cong \mathbb{C}$.

Suppose that *E* is not simple. Then we pick any $v_0 : E \to E$ which is not a scalar multiple of id. Let λ be the eigenvalue of $v_0(x)$ for some $x \in E$ and consider $v := v_0 - \lambda$ id. Then

$$\det v \in \mathrm{H}^0 \left(\det E^{\vee} \otimes \det E \right) \cong \mathrm{H}^0 \left(\mathcal{O}_X \right)$$

vanishes at *x*, and hence is identically zero. It follows that rk (ker v) ≥ 1 . Let $N := \operatorname{im} v$ and $M_0 := \operatorname{coker} v$. Put $M := M_0/T_1(M_0)$, where $T_1(M_0)$ is the maximal torsion subsheaf of M_0 . We have

$$C = c_1(E) = c_1(N) + c_1(M) + c_1(T_1(M_0))$$

in the Picard group of *S*. Since *E* is globally generated by Lemma 0.10, *N* and *M* are also globally generated being quotients of *E*. Then det $N = \mathcal{O}_S(C_1)$ and det $M = \mathcal{O}_S(C_2)$ for some effective curves C_1 , C_2 . The torsion-free sheaves *N*, *M* are trivial if and only if they have vanishing first Chern class, and they cannot be trivial, as $H^0(S, E^{\vee}) = 0$. Hence $C_1, C_2 \neq 0$. Then $C = C_1 + C_2 + c_1(T(M_0))$ is not integral, which is a contradiction.

Since *E* is simple, we have $\chi(E, E) = 2 - \dim \operatorname{Ext}^1(E, E) \leq 2$. On the other hand, by Lemma 0.10 we have

$$\chi(E,E) = 2 \operatorname{rk}(E) \left(\frac{1}{2} \operatorname{c}_1(E)^2 - \operatorname{c}_2(E) + \operatorname{rk}(E)\right) - \operatorname{c}_1(E)^2 = 2(t+1)(g-1-d+t) - (2g-2) = 2 - 2\rho(L).$$

Therefore $\rho(L) \ge 0$ as desired.

Return to the general case. Let D_1 be the base locus of L and D_2 the base locus of $(L(-D_1))^{\vee} \otimes \omega_C$ respectively. Then $L' := L(D_2 - D_1)$ and $L'^{\vee} \otimes \omega_C$ are globally generated. And we have

$$\rho(L) \ge \rho(L(-D_1)) = \rho((L(-D_1))^{\vee} \otimes \omega_C) \ge \rho((L(-D_1))^{\vee} \otimes \omega_C \otimes \mathcal{O}_C(-D_2)) = \rho(L(D_2 - D_1)) \ge 0. \square$$

The proposition particularly applies to the case when *h* generates the Picard group of *S*:

Corollary 0.13

Suppose that (S, H) is a polarised K3 surface with Pic $S = \mathbb{Z}H$. Then every curve in |H| is Brill–Noether general.

Proof of Theorem 0.9. Let *L* be a line bundle on $C \in |H|$ with $h^0(L) = r$ and $h^1(L) = s$. Such line bundle exists

because

$$\rho(L) = g - h^0(C, L) h^1(C, L) = 0.$$

By Corollary 0.13, *C* is Brill–Noether general, which implies that both *L* and $L^{*} \otimes \omega_{C}$ are globally generated. Indeed, if *D* is the base locus of *L*, then $h^{0}(L) = h^{0}(L(-D))$ and deg $L(-D) < \deg L$, which implies that $\rho(L(-D)) < 0$. This is a contradiction. Similar for $L^{*} \otimes \omega_{C}$.

By Lemma 0.10, the Lazarsfeld–Mukai bundle E associated to (C, L) is globally generated, with numerical invariants

$$\operatorname{rk}(E) = r$$
, $\operatorname{c}_{1}(E) = h$, $\operatorname{ch}_{2}(E) = \frac{1}{2}h^{2} - \operatorname{deg} L = s - r$, $\operatorname{h}^{0}(S, E) = r + s$, $\operatorname{H}^{1}(S, E) = \operatorname{H}^{2}(S, E) = 0$.

It remains to prove that E is μ -stable. We will prove the μ -stability of $F := E^{\check{}}$. Suppose that $F' \subseteq F$ is a locally free subsheaf of F of rank r' < r. As in the proof of Proposition 0.12, we can show that $F'^{\check{}}$ is globally generated and $(\det F')^{\check{}} \cong \mathcal{O}_S(C_1)$ for some non-trivial curve $C_1 \subseteq X$. Since Pic $S = \mathbb{Z}h$, $C_1 = kh$ for some $k \in \mathbb{Z}_+$. We have

$$\mu(F') = \frac{\deg F'}{\operatorname{rk}(F')} = -\frac{kh^2}{r'} < -\frac{h^2}{r} = \frac{\deg F}{\operatorname{rk}(F)} = \mu(F).$$

References

- [Gus83] N.P. Gushel. "Fano varieties of genus 8". In: Uspekhi Matematicheskikh Nauk 38.1 (1983), pp. 163–164.
- [HL10] Daniel Huybrechts and Manfred Lehn. *The Geometry of Moduli Spaces of Sheaves*. Cambridge University Press, 2010.
- [IP99] Vasily Iskovskikh and Yuri Prokhorov. Algebraic Geometry V. Fano Varieties. Ed. by A.N. Parshin and I.R. Shafarevich. Vol. 47. Encyclopaedia of Mathematical Sciences. Springer, 1999.
- [Laz86] Robert Lazarsfeld. "Brill–Noether–Petri without degenerations". In: *Journal of Differential Geometry* 23.3 (1986), pp. 299–307.
- [Muk92] Shigeru Mukai. "Curves and Grassmannians". In: *Algebraic geometry and related topics* (1992), pp. 19–40.