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We are going to construct some 𝜇-stable bundles!

Serre’s Construction
Slogan. On a surface 𝑆 , points (0-dimensional subschemes) on 𝑆 −→ rank 2 vector bundles.

We start with a variety 𝑋 and a torsion-free sheaf 𝐹 of rank 1. Then the reflexive hull 𝐿 := 𝐹 ˇ̌ is a line bundle,
and ℐ𝑍 := 𝐹 ⊗ 𝐿ˇ is an ideal sheaf of a subscheme 𝑍 ⊆ 𝑋 of codimension ⩾ 2. That is, 𝐹 = 𝐿 ⊗ ℐ𝑍 .

Note that every torsion-free sheaf has a filtration by torsion-free sheaves of rank 1. In particular, every rank 2
torsion-free sheaf 𝐸 admits an extension:

0 𝐿1 ⊗ ℐ𝑍1 𝐸 𝐿2 ⊗ ℐ𝑍2 0

Question. When is 𝐸 a vector bundle?

It is clear that 𝐸 cannot be locally free unless 𝐿1⊗ℐ𝑍1 is a line bundle, i.e.𝑍1 is empty. Therefore we are interested
in the pair (𝐿, 𝑍 ), where 𝐿 ∈ Pic𝑋 and 𝑍 ⊆ 𝑋 is a subscheme of codimension ⩾ 2, such that the extension

0 𝒪𝑋 𝐸 𝐿 ⊗ ℐ𝑍 0 (∗)

produces a vector bundle 𝐸 or rank 2. We will have a satisfactory result for the case of surface 𝑆 .

Definition 0.1. Let 𝐾 ∈ Pic 𝑆 and 𝑍 ⊆ 𝑆 a 0-dimensional local complete intersection subscheme. We say that
the pair (𝐾,𝑍 ) satisfies the Cayley–Bacharach property, if, for any subscheme 𝑍 ′ ⊆ 𝑍 with ℓ(𝑍 ′) = ℓ(𝑍 ) − 1,
and a section 𝑠 ∈ H0 (𝑆, 𝐾), 𝑠 |𝑍 ′ = 0 implies that 𝑠 |𝑍 = 0.

Remark. 1. If H0 (𝑆, 𝐾) = 0, then (CB) is satisfied for any 𝑍 ;

2. If H0 (𝑆, 𝐾) = ℓ, for a generic 𝑍 with ℓ(𝑍 ) > ℓ, the sheaf 𝐾 ⊗ ℐ𝑍 has no non-trivial sections, and hence
(𝐾,𝑍 ) satisfies (CB).

Proposition 0.2

Let 𝑆 be a surface and 𝑍 ⊆ 𝑆 a 0-dimensional local complete intersection subscheme. The sheaf 𝐸 in (∗) is
locally free if and only if (𝐿 ⊗ 𝜔𝑆 , 𝑍 ) satisfies the Cayley–Bacharach property.

Proof. “ ⇐= ”: Assume the Cayley–Bacharach property does not hold, i.e. there exist a subscheme 𝑍 ′ ⊆ 𝑍 and
a section 𝑠 ∈ 𝐻 0 (𝑆, 𝐿 ⊗ 𝜔𝑆 ) such that ℓ (𝑍 ′) = ℓ(𝑍 ) − 1 and 𝑠 |𝑍 ′ = 0 but 𝑠 |𝑍 ≠ 0. We have to show that
given any extension 𝜉 : 0 → 𝐿 → 𝐸 → 𝑀 ⊗ ℐ𝑍 → 0 the sheaf 𝐸 is not locally free.

Use the exact sequence 0 → ℐ𝑍 → ℐ𝑍 ′ → 𝒪𝑥 → 0 induced by the inclusion 𝑍 ′ ⊆ 𝑍 and the assumption
to show that H1 (𝑆, 𝐿 ⊗ 𝜔𝑆 ⊗ ℐ𝑍 ) → H1 (𝑆, 𝐿 ⊗ 𝜔𝑆 ⊗ ℐ𝑍 ′ ) is injective. The dual of this map is the nat-
ural homomorphism Ext1 (𝐿 ⊗ ℐ𝑍 ′ ,𝒪𝑆 ) → Ext1 (𝐿 ⊗ ℐ𝑍 ,𝒪𝑆 ) which is, therefore, surjective. Hence any
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extension 𝜉 fits into a commutative diagram of the form

0 0

0 𝒪𝑆 𝐸 𝐿 ⊗ ℐ𝑍 0

0 𝒪𝑆 𝐸′ 𝐿 ⊗ ℐ𝑍 ′ 0

𝒪𝑥 𝒪𝑥

0 0

Since 𝒪𝑆 and 𝐿 ⊗ ℐ𝑍 ′ are torsion-free, so is 𝐸′. Hence the sequence 0 → 𝐸 → 𝐸′ → 𝒪𝑥 → 0 is non-split
and 𝐸 cannot be locally free.

“ =⇒ ”: Using that 𝑍 is a local complete intersection, we can show that there are only finitely many
𝑍 ′ ⊆ 𝑍 such that ℓ(𝑍 ′) = ℓ(𝑍 ) − 1. Suppose now that

𝜉 : 0 → 𝒪𝑆 → 𝐸 → 𝐿 ⊗ ℐ𝑍 → 0

is a non-locally free extension. Then there exists a non-split exact sequence 0 → 𝐸 → 𝐸′ → 𝒪𝑥 → 0where
𝑥 ∈ 𝑆 is a singular point of 𝐸. The saturation of 𝒪𝑆 in 𝐸′ can differ from 𝒪𝑆 only in the point 𝑥 . Since 𝒪𝑆 is
locally free, it is saturated in 𝐸′ as well. Thus we get a commutative diagram of the above form. Hence, the
extension class 𝜉 is contained in the image of the homomorphism Ext1 (𝐿 ⊗ ℐ𝑍 ′ ,𝒪𝑆 ) → Ext1 (𝐿 ⊗ ℐ𝑍 ,𝒪𝑆 ).

Since the Cayley–Bacharach property ensures that the map Ext1 (𝐿 ⊗ ℐ𝑍 ′ ,𝒪𝑆 ) → Ext1 (𝐿 ⊗ ℐ𝑍 ,𝒪𝑆 ) is not
surjective, we can choose 𝜉 such that it is not contained in the image of this map for any of the finitely
many 𝑍 ′ that could occur. The corresponding 𝐸 will be locally free. □

Example 0.3. Every point on P2 gives rise to a 𝜇-semi-stable vector bundle 𝐸𝑥 of rank 2.

Proof. Let 𝑆 = P2 and 𝑥 ∈ P2. Claim: Ext1 (ℐ𝑥 ,𝒪𝑆 ) � 𝑘 .

Short exact sequence: 0 → ℐ𝑥 (−3) → 𝒪𝑆 (−3) → 𝒪𝑥 → 0. Long exact sequence:

0 = H0 (𝒪𝑆 (−3)) H0 (𝒪𝑥 ) H1 (ℐ𝑥 (−3)) H1 (𝒪𝑆 (−3)) = 0∼

Hence 𝑘 � H0 (𝒪𝑥 ) � H1 (ℐ𝑥 (−3)) � Ext1 (ℐ𝑥 ,𝒪𝑆 ) by Serre duality.

Therefore there exists a unique non-split extension up to scalars:

0 𝒪𝑆 𝐸𝑥 ℐ𝑥 0

Note that H0 (𝜔𝑆 ) = H0 (𝒪𝑆 (−3)) = 0, so 𝐸𝑥 is a vector bundle. 𝐸𝑥 is 𝜇-semi-stable because 𝜇 (𝐸𝑥 ) = 0. □

Serre’s construction can produce 𝜇-stable rank 2 vector bundles with prescribed 𝑐1 and large 𝑐2.

Consider the extension (∗). The Chern class of 𝐸 can be computed by the product formula:

𝑐1 (𝐸) = 𝑐1 (𝐿); 𝑐2 (𝐸) = ℓ(𝑍 ).

Proposition 0.4

Let (𝑆, 𝐻 ) be a smooth polarised surface. For 𝐿 ∈ Pic 𝑆 , there exists an integer ℓ0 such that, for 𝑍 a generic
ℓ-tuple of points with ℓ > ℓ0, the extension (∗) produces a 𝜇-stable rank 2 vector bundle 𝐸 with 𝑐1 (𝐸) = 𝑐1 (𝐿)
and 𝑐2 (𝐸) = ℓ.

Proof. We will take ℓ0 := max{ℓ1, ℓ2} where ℓ1, ℓ2 will be defined below.
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1. Twisting 𝐿 by𝒪𝑆 (𝑛𝐻 ) wemay assume that 𝐿 is sufficiently positive. Let ℓ1 := h0 (𝐿⊗𝜔𝑆 ). If ℓ(𝑍 ) > ℓ1
then a generic 𝑍 satisfies (CB) by the remark above. Hence 𝐸 is a vector bundle.

2. Suppose𝑀 ⊆ 𝐸 were a destabilizing line bundle. It follows from the inequality

𝜇 (𝑀) ⩾ 𝜇 (𝐸) = 1
2
𝑐1 (𝐿) · 𝐻 > 0 = 𝜇 (𝒪𝑆 )

that 𝑀 ⊈ 𝒪𝑆 . Thus the composite homomorphism 𝑀 → 𝐸 → 𝐿 ⊗ ℐ𝑍 is non-zero. It vanishes along
a divisor 𝐷 with 𝑍 ⊆ 𝐷 and

deg𝐷 = 𝜇 (𝐿) − 𝜇 (𝑀) ⩽ 1
2
𝑐1 (𝐿) · 𝐻 =: 𝑑.

Let ℓ2 := dim𝑌 , where𝑌 is the Hilbert scheme that parametrizes effective divisors on 𝑆 of degree ⩽ 𝑑 .
An argument of Hilbert schemes shows that if ℓ(𝑍 ) > ℓ2 then for a generic 𝑍 , a divisor 𝐷 containing
𝑍 and having degree ⩽ 𝑑 does not exist. This leads to a contradiction and hence 𝐸 is 𝜇-stable. □

Now we look at a 3-fold example.

Example 0.5. Fano 3-fold 𝑋14 of index 1 and genus 8.

First there exists a smooth elliptic curve𝐶 ⊆ 𝑋14 of degree 5 (Lemma 4.9.5 of [IP99]). Let 𝐻 = −𝐾𝑋 be the ample
generator of Pic𝑋14. Consider the Serre’s construction:

0 𝒪𝑋 𝐸 𝒪𝑋 (𝐻 ) ⊗ ℐ𝐶 0

𝐸 is a rank 2 vector bundle, globally generated, 𝜇-stable, with h0 (𝐸) = 6, 𝑐1 (𝐸) = 𝐻 and 𝑐2 (𝐸) = 𝐶 . (For the proof
we might need to give a geometric description of 𝐸 more than just Serre’s construction…See [Gus83].) It is called the
Mukai bundle on 𝑋14 (as a vector bundle with these properties is in fact unique).

The Mukai bundle 𝐸 on 𝑋14 determines a morphism Φ𝐸 : 𝑋14 → Gr (2, 6). Here Gr (2, 6) is a 8-dimensional Fano
variety of coindex 3 (i.e. index 6) and degree 14 in the Plücker embedding P14. The diagram

𝑋14 Gr (2, 6)

P9 P14

Φ𝐸

Φ |𝐻 |
P∗𝜆2

Plücker

is Cartesian ([Muk92]). Therefore 𝑋14 is a transversal linear section of Gr (2, 6) in P14.

Elementary Transformation
Let 𝑆 be a smooth surface and 𝐶 ⊆ 𝑆 an effective divisor, with 𝜄 : 𝐶 ↩→ 𝑆 the inclusion map. Let 𝐹 ∈ Vect(𝑆)
and𝐺 ∈ Vect(𝐶). We say that 𝐸 ∈ Vect(𝑆) is obtained by an elementary transformation of 𝐹 along𝐺 if there
exists an exact sequence

0 𝐸 𝐹 𝜄∗𝐺 0

The local-freeness of 𝐸 is much easier than that in the Serre’s construction:

Lemma 0.6

Suppose that 𝐹 ∈ Vect(𝑆) and 𝐺 ∈ Vect(𝐶) are locally free. Then 𝐸 := ker(𝐹 ↠ 𝜄∗𝐺) is also locally free.

Proof. Recall from Section 1.1 that it suffices to prove that the projective dimension of 𝐸 is

pd(𝐸) := max{pd(𝐸𝑥 ) | 𝑥 ∈ 𝑆} = 0.

Since 𝐹 is locally free, pd(𝐸) = max{0, pd(𝜄∗𝐺) − 1}, so it suffices to prove that pd(𝜄∗𝐺) ⩽ 1. Indeed, we
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have a locally free resolution

0 𝒪𝑆 (−𝐶) 𝒪𝑆 𝜄∗𝒪𝐶 0

So pd(𝜄∗𝒪𝐶 ) ⩽ 1. Locally we have 𝜄∗𝐺 = 𝜄∗𝒪
⊕(rk𝐺 )
𝐶 . So pd(𝜄∗𝐺) ⩽ 1. □

By product formula and Hirzebruch–Riemann–Roch, the Chern class of 𝐸 is given by

𝑐1 (𝐸) = 𝑐1 (𝐹 ) − (rk𝐺)𝐶;

𝑐2 (𝐸) = 𝑐2 (𝐹 ) − (rk𝐺)𝐶 · 𝑐1 (𝐹 ) +
1
2
(rk𝐺)𝐶 · ((rk𝐺)𝐶 + 𝐾𝑋 ) + 𝜒 (𝐺)

= 𝑐2 (𝐹 ) + deg𝐺 − (rk𝐺)𝐶 · 𝑐1 (𝐹 ) +
1
2
(rk𝐺)(rk𝐺 − 1)𝐶2.

Proposition 0.7

Every vector bundle 𝐸 ∈ Vect(𝑆) of rank 𝑟 it obtained by an elementary transformation of 𝒪⊕𝑟
𝑆 (𝑛𝐻 ) with

𝑛 ≫ 0 along a line bundle on a smooth curve 𝐶 ⊆ 𝑋 .

Proof. For 𝑛 ≫ 0, 𝐸′ := 𝐸ˇ(𝑛𝐻 ) is globally generated of rank 𝑟 . Let𝑉 be a linear subspace of H0 (𝐸′) of dimension
𝑟 . The evaluation morphism 𝑉 ⊗ 𝒪𝑆 → 𝐸′ has full rank away from a closed subscheme 𝐶 of codimension
1, which is a smooth curve. Therefore for generic choice of 𝑉 , we have a short exact sequence

0 𝒪⊕𝑟
𝑆 𝐸′ 𝜄∗𝐿 0

where 𝐿 is a line bundle on 𝐶 . Dualising the sequence and twisting by 𝒪𝑆 (𝑛𝐻 ) yields

0 𝐸 𝒪⊕𝑟
𝑆 (𝑛𝐻 ) 𝐿′ 0

where 𝐿′ := ℰxt1 (𝐿,𝒪𝑆 (𝑛𝐻 )) � 𝜄∗ (𝐿ˇ ⊗ 𝒪𝐶 (𝐶 + 𝑛𝐻 )) is a line bundle on 𝐶 . Therefore 𝐸 is obtained by an
elementary transformation of 𝒪⊕𝑟

𝑆 (𝑛𝐻 ) along 𝐿ˇ ⊗ 𝒪𝐶 (𝐶 + 𝑛𝐻 ). □

Proposition 0.8

Let (𝑆, 𝐻 ) be a smooth polarised surface. For 𝐿 ∈ Pic 𝑆 , 𝑟 ⩾ 2, and 𝑐0 ∈ Z, there exists a 𝜇-stable vector
bundle 𝐸 with rk(𝐸) = 𝑟 , 𝑐1 (𝐸) = 𝑐1 (𝐿), and 𝑐2 (𝐸) > 𝑐0.

Proof. Let𝐶 be a smooth curve. According to the Grothendieck Lemma 1.7.9, the torsion free quotients 𝐹 ofO⊕𝑟
𝑆

with 𝜇 (𝐹 ) ⩽ 𝑟−1
𝑟 𝐶 · 𝐻 and rk(𝐹 ) < 𝑟 form a bounded family C.

Now dimHom
(
O⊕𝑟

𝑆 ,O𝐶 (𝑛𝐻 )
)
grows much faster than dimHom (𝐹,O𝐶 (𝑛𝐻 )) for any 𝐹 in the family C.

Thus, if 𝑛 is sufficiently large, a general homomorphism 𝜑 : O⊕𝑟
𝑆 → O𝐶 (𝑛𝐻 ) is surjective and does not

factor through any 𝐹 ∈ C. Let 𝐸 be the kernel of 𝜑 . Then 𝐸 is locally free with det(𝐸) = O𝑋 (−𝐶) and
𝑐2 (𝐸) = 𝑛𝐻 ·𝐶 ≫ 0.

In order to see that 𝐸 is 𝜇-stable, let 𝐸′ ⊆ 𝐸 be a saturated proper subsheaf, let 𝐹 ′ be the saturation of 𝐸′ in
O⊕𝑟

𝑆 and consider the subsheaf 𝐹 ′/𝐸′ ⊆ O𝐶 (𝑛𝐻 ). If 𝐹 ′/𝐸′ is nonzero, then det (𝐸′) = det (𝐹 ′) ⊗ O𝑆 (−𝐶),
hence

𝜇 (𝐸′) = 𝜇 (𝐹 ′) − 𝐶 · 𝐻
rk (𝐸′) < 0 − 𝐶 · 𝐻

rk(𝐸) = 𝜇 (𝐸),

and we are done. If on the other hand 𝐹 ′/𝐸′ = 0 then 𝐹 := O⊕𝑟
𝑆 /𝐸′ is torsion free and 𝜑 factors through 𝐹 .
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By construction 𝐹 cannot be contained in C, hence 𝜇 (𝐹 ) > 𝑟−1
𝑟 𝐶 · 𝐻 . It follows that

𝜇 (𝐸′) = −𝑟 − rk (𝐸′)
rk (𝐸′) 𝜇 (𝐹 ) < −𝑟 − rk (𝐸′)

rk (𝐸′) · 𝑟 − 1
𝑟

𝐶 · 𝐻 < −𝐶 · 𝐻
𝑟

= 𝜇 (𝐸).

So 𝐸 is indeed 𝜇-stable.

For arbitrary 𝐿 ∈ Pic 𝑆 , pick 𝑚 ≫ 0 such that 𝐿ˇ(𝑟𝑚𝐻 ) is very ample and let 𝐶 ∈ |𝐿ˇ(𝑟𝑚𝐻 ) |. If 𝐸 is
a 𝜇-stable bundle constructed as above then 𝑐1 (𝐸) = −𝐶 = 𝑐1 (𝐿) − 𝑟𝑚𝐻 . Then 𝐸 (𝑚𝐻 ) is 𝜇-stable with
𝑐1 (𝐸) = 𝑐1 (𝐿) and large 𝑐2. □

Lazarsfeld–Mukai Bundles
We shall use elementary transformations to produce a special type of vector bundle on a K3 surface, following
the beautiful paper [Laz86].

Theorem 0.9. Lazarsfeld–Mukai Bundles

Suppose that (𝑆, 𝐻 ) is a K3 surface of genus 𝑔 = 𝑟𝑠 , where 𝑟, 𝑠 ∈ Z+, and Pic 𝑆 = Z𝐻 . There exists a unique
stable vector bundle 𝐸 on 𝑆 with

rk (𝐸) = 𝑟, c1 (𝐸) = 𝐻, ch2 (𝐸) = 𝑠 − 𝑟 .

Moreover, 𝐸 is globally generated, 𝜇-stable, h0 (𝑆, 𝐸) = 𝑟 + 𝑠 , and h1 (𝑆, 𝐸) = h2 (𝑆, 𝐸) = 0.

Spoiler: the uniqueness will be treated in Section 6.1! We only show existence this time.

Remark. The Lazarsfeld–Mukai bundle 𝐸 on the K3 surface 𝑆2𝑔−2 of genus 𝑔 therefore determines a morphism
Φ𝐸 : 𝑆2𝑔−2 → Gr (𝑟, 𝑟 + 𝑠). This plays an important rôle in the classification of Fano 3-folds.

Let 𝐶 be a non-singular curve on the K3 surface 𝑆 . Suppose that 𝐿 is a globally generated line bundle on 𝐶 with
deg𝐿 = 𝑑 and h0 (𝐶, 𝐿) = 𝑡 + 1. The surjection H0 (𝐶, 𝐿) ⊗C 𝒪𝐶 ↠ 𝐿 lifts to 𝑆 :

0 𝐹 H0 (𝐶, 𝐿) ⊗C 𝒪𝑆 𝜄∗𝐿 0 (0.1)

where 𝜄 : 𝐶 ↩→ 𝑆 is the inclusion and 𝐹 := ker
(
H0 (𝐶, 𝐿) ⊗C 𝒪𝑆 ↠ 𝜄∗𝐿

)
. Note that 𝐹 is obtained by the elementary

transformation of 𝒪⊕(𝑡+1)
𝑆 along 𝐿, and hence is locally free. We call the dual bundle 𝐸 := 𝐹ˇ the Lazarsfeld–

Mukai bundle associated to (𝐶, 𝐿).

Lemma 0.10

The Lazarsfeld–Mukai bundle 𝐸 is locally free, with

rk (𝐸) = h0 (𝐿), c1 (𝐸) = 𝐶, c2 (𝐸) = deg𝐿, h0 (𝐸) = h0 (𝐿) + h1 (𝐿), h1 (𝐸) = h2 (𝐸) = 0.

If moreover 𝐿ˇ ⊗ 𝜔𝐶 is globally generated, then 𝐸 is also globally generated.

Proof. 𝐸 is locally free because 𝐹 is. Note that 𝐸 fits into the dual sequence of (0.1):

0 H0 (𝐶, 𝐿)∨ ⊗C 𝒪𝑆 𝐸 𝜄∗ (𝐿∨ ⊗ 𝜔𝐶 ) 0 (0.2)

The Chern class and cohomology groups of 𝐸 can be computed by that. □

TheLazarsfeld–Mukai bundles are closely related to Brill–Noether theory on K3 surfaces. We recall Brill–Noether
theory on curves.
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Definition 0.11. Suppose that 𝐶 is a non-singular projective curve of genus 𝑔, and 𝐿 is a line bundle on a with
deg𝐿 = 𝑑 and h0 (𝐶, 𝐿) = 𝑡 + 1. We define the Brill–Noether number to be

𝜌 (𝑔, 𝑡, 𝑑) := 𝑔 − (𝑡 + 1) (𝑔 − 𝑑 + 𝑡) = 𝑔 − h0 (𝐶, 𝐿) h1 (𝐶, 𝐿) = h0 (𝐶,𝜔𝐶 ) − h0 (𝐶, 𝐿) h0 (𝐶,𝜔𝐶 ⊗ 𝐿ˇ).

It is the expected dimension of the Brill–Noether loci

𝑊 𝑡
𝑑 (𝐶) := {𝐿 ∈ Pic𝐶 | h0 (𝐶, 𝐿) ⩾ 𝑡 + 1, deg𝐿 = 𝑑},

which is a subvariety of Pic𝑑 𝐶 . It is proven by Kempf and Kleiman–Laksov that𝑊 𝑡
𝑑
(𝐶) ≠ ∅ for 𝜌 (𝑔, 𝑡, 𝑑) ⩾ 0. If

𝑊 𝑡
𝑑
(𝐶) = ∅ whenever 𝜌 (𝑔, 𝑡, 𝑑) < 0, then 𝐶 is said to be Brill–Noether general.

Proposition 0.12. [Laz86]

Suppose that 𝐶 is a non-singular curve on a K3 surface 𝑆 such that all curves in |𝐶 | are integral. Then 𝐶 is
Brill–Noether general.

Proof. It suffices to prove that for all line bundle 𝐿 on 𝐶 , we have 𝜌 (𝐿) := 𝑔 − h0 (𝐶, 𝐿) h1 (𝐶, 𝐿) ⩾ 0. First we
assume that both 𝐿 and 𝐿∨ ⊗ 𝜔𝐶 are globally generated. Let 𝐸 be the Lazarsfeld–Mukai bundle associated
to (𝐶, 𝐿). We claim that 𝐸 is simple, i.e. Hom (𝐸, 𝐸) � C.

Suppose that 𝐸 is not simple. Then we pick any 𝑣0 : 𝐸 → 𝐸 which is not a scalar multiple of id. Let 𝜆 be
the eigenvalue of 𝑣0 (𝑥) for some 𝑥 ∈ 𝐸 and consider 𝑣 := 𝑣0 − 𝜆 id. Then

det 𝑣 ∈ H0 (det𝐸∨ ⊗ det𝐸
)
� H0 (𝒪𝑋 )

vanishes at 𝑥 , and hence is identically zero. It follows that rk (ker 𝑣) ⩾ 1. Let 𝑁 := im 𝑣 and𝑀0 := coker 𝑣 .
Put𝑀 := 𝑀0/T1 (𝑀0), where T1 (𝑀0) is the maximal torsion subsheaf of𝑀0. We have

𝐶 = c1 (𝐸) = c1 (𝑁 ) + c1 (𝑀) + c1 (T1 (𝑀0))

in the Picard group of 𝑆 . Since 𝐸 is globally generated by Lemma 0.10, 𝑁 and𝑀 are also globally generated
being quotients of 𝐸. Then det𝑁 = 𝒪𝑆 (𝐶1) and det𝑀 = 𝒪𝑆 (𝐶2) for some effective curves 𝐶1, 𝐶2. The
torsion-free sheaves 𝑁,𝑀 are trivial if and only if they have vanishing first Chern class, and they cannot
be trivial, as H0 (𝑆, 𝐸∨) = 0. Hence 𝐶1,𝐶2 ≠ 0. Then 𝐶 = 𝐶1 + 𝐶2 + c1 (𝑇 (𝑀0)) is not integral, which is a
contradiction.

Since 𝐸 is simple, we have 𝜒 (𝐸, 𝐸) = 2 − dimExt1 (𝐸, 𝐸) ⩽ 2. On the other hand, by Lemma 0.10 we have

𝜒 (𝐸, 𝐸) = 2 rk (𝐸)
(
1
2
c1 (𝐸)2 − c2 (𝐸) + rk (𝐸)

)
− c1 (𝐸)2 = 2(𝑡 + 1) (𝑔 − 1 − 𝑑 + 𝑡) − (2𝑔 − 2) = 2 − 2𝜌 (𝐿).

Therefore 𝜌 (𝐿) ⩾ 0 as desired.

Return to the general case. Let 𝐷1 be the base locus of 𝐿 and 𝐷2 the base locus of (𝐿(−𝐷1))∨ ⊗ 𝜔𝐶

respectively. Then 𝐿′ := 𝐿(𝐷2 − 𝐷1) and 𝐿′∨ ⊗ 𝜔𝐶 are globally generated. And we have

𝜌 (𝐿) ⩾ 𝜌 (𝐿(−𝐷1)) = 𝜌
(
(𝐿(−𝐷1))∨ ⊗ 𝜔𝐶

)
⩾ 𝜌

(
(𝐿(−𝐷1))∨ ⊗ 𝜔𝐶 ⊗ 𝒪𝐶 (−𝐷2)

)
= 𝜌 (𝐿(𝐷2 − 𝐷1)) ⩾ 0. □

The proposition particularly applies to the case when ℎ generates the Picard group of 𝑆 :

Corollary 0.13

Suppose that (𝑆, 𝐻 ) is a polarised K3 surface with Pic 𝑆 = Z𝐻 . Then every curve in |𝐻 | is Brill–Noether
general.

Proof of Theorem 0.9. Let 𝐿 be a line bundle on 𝐶 ∈ |𝐻 | with h0 (𝐿) = 𝑟 and h1 (𝐿) = 𝑠 . Such line bundle exists
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because
𝜌 (𝐿) = 𝑔 − h0 (𝐶, 𝐿) h1 (𝐶, 𝐿) = 0.

By Corollary 0.13,𝐶 is Brill–Noether general, which implies that both 𝐿 and 𝐿ˇ⊗𝜔𝐶 are globally generated.
Indeed, if 𝐷 is the base locus of 𝐿, then h0 (𝐿) = h0 (𝐿(−𝐷)) and deg𝐿(−𝐷) < deg𝐿, which implies that
𝜌 (𝐿(−𝐷)) < 0. This is a contradiction. Similar for 𝐿ˇ ⊗ 𝜔𝐶 .

By Lemma 0.10, the Lazarsfeld–Mukai bundle 𝐸 associated to (𝐶, 𝐿) is globally generated, with numerical
invariants

rk (𝐸) = 𝑟, c1 (𝐸) = ℎ, ch2 (𝐸) =
1
2
ℎ2 − deg𝐿 = 𝑠 − 𝑟, h0 (𝑆, 𝐸) = 𝑟 + 𝑠, H1 (𝑆, 𝐸) = H2 (𝑆, 𝐸) = 0.

It remains to prove that 𝐸 is 𝜇-stable. We will prove the 𝜇-stability of 𝐹 := 𝐸 .̌ Suppose that 𝐹 ′ ⊆ 𝐹 is
a locally free subsheaf of 𝐹 of rank 𝑟 ′ < 𝑟 . As in the proof of Proposition 0.12, we can show that 𝐹 ′ˇ is
globally generated and (det 𝐹 ′)ˇ � 𝒪𝑆 (𝐶1) for some non-trivial curve 𝐶1 ⊆ 𝑋 . Since Pic 𝑆 = Zℎ, 𝐶1 = 𝑘ℎ
for some 𝑘 ∈ Z+. We have

𝜇 (𝐹 ′) = deg 𝐹 ′

rk (𝐹 ′) = −𝑘ℎ
2

𝑟 ′
< −ℎ

2

𝑟
=

deg 𝐹

rk (𝐹 ) = 𝜇 (𝐹 ). □
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