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We will roughly cover Section 6.1, Example 5.3.7–5.3.8 of [HL10] and some derived-categorical aspects. The
whole story is essentially developed by Shigeru Mukai in the marvellous paper [Muk87].

K3 Surfaces: Recap

ByK3 surfacewe alwaysmean a smoothprojective complexK3 surface 𝑆 with a fixed polerisation𝐻 ∈ Amp 𝑆 .
the degree of (𝑆, 𝐻 ) is defined by 𝑑 := 𝐻 2 = 2𝑔 − 2, where 𝑔 is called the genus of 𝑆 . Using Serre duality and
Riemann–Roch theorem, it is easy to compute the Chern classes and Hodge numbers of a K3 surface 𝑆 . The
Hodge diamond is given by
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To study vector bundles on the K3 surface, we define the Euler form for coherence sheaves 𝐸, 𝐹 on 𝑆 :

𝜒 (𝐸, 𝐹 ) :=
2∑

𝑖=0

(−1)𝑖 dimExt𝑖 (𝐸, 𝐹 ).

By Serre duality, Ext𝑖 (𝐸, 𝐹 ) � Ext2−𝑖 (𝐹, 𝐸) .̌ So the Euler form 𝜒 (−,−) is symmetric on Coh(𝑆). The Hirzebruch–
Riemann–Roch theorem for Euler form is given by

𝜒 (𝐸, 𝐹 ) =
∫
𝑆
chˇ(𝐸) ch (𝐹 ) td(𝒯𝑆 ),

where ch �̌� := (−1)𝑖 ch. Note that we have for the Euler characteristic,

𝜒 (𝐸) = 𝜒 (𝒪𝑆 , 𝐸) = 2 rk(𝐸) + ch2 (𝐸).

The Mukai vector of 𝐸 ∈ Coh(𝑆) is defined to be:

𝑣 (𝐸) := ch (𝐸)
√
td (𝒯𝑆 ) = (rk (𝐸), c1 (𝐸), ch2 (𝐸) + rk (𝐸)) = (rk (𝐸), c1 (𝐸), 𝜒 (𝐸) − rk (𝐸)),

which is considered as element of Z ⊕ Pic 𝑆 ⊕ Z ⊆ H• (𝑆 ;Z) or the numerical Grothendieck group Knum (𝑆) :=
K0 (𝑆)/ker 𝜒 (−,−).

For 𝑣 = (𝑟, ℓ, 𝑠) and 𝑣 ′ = (𝑟 ′, ℓ′, 𝑠′), we define the Mukai pairing as the symmetric bilinear form:

⟨𝑣, 𝑣 ′⟩ := ℓ · ℓ′ − 𝑟𝑠′ − 𝑠𝑟 ′,

so that 𝜒 (𝐸, 𝐹 ) = − ⟨𝑣 (𝐸), 𝑣 (𝐹 )⟩. Note that the Mukai vector 𝑣 of a coherent sheaf 𝐸 determines the Hilbert
polynomial of 𝐸 as

𝑃 (𝐸,𝑚) = 𝜒 (𝐸 ⊗ 𝒪𝑆 (𝑚𝐻 )) = − ⟨𝑣 (𝐸), 𝑣 (𝒪𝑆 (−𝑚𝐻 ))⟩ .

So we may consider the moduli spaceMs
𝐻 (𝑣) (resp.Mss

𝐻 (𝑣)) of stable (resp. semi-stable) sheaves on 𝑆 with Mukai
vector 𝑣 (𝐸) = 𝑣 .
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Proposition 0.1

Themoduli spaceMs
𝐻 (𝑣) of stable sheaves on a K3 surface is either empty, or a non-singular quasi-projective

variety of dimension (⟨𝑣, 𝑣⟩ + 2).

Proof. We quote Theorem 4.5.4 for a local computation of the dimension of 𝑀 := Ms
ℎ
(𝑣). Let 𝐸 be a stable sheaf

corresponding to a closed point [𝐸] ∈ 𝑀 . Then the tangent space T[𝐸 ]𝑀 � Ext1 (𝐸, 𝐸) naturally. And if
the trace map

tr2 : Ext2 (𝐸, 𝐸) → H2 (𝑆,𝒪𝑆 ) � Ext2 (det𝐸, det𝐸)

is injective, then𝑀 is smooth at [𝐸] ∈ 𝑀 .

Since 𝑆 is a K3 surface, for a stable sheaf [𝐸] ∈ 𝑀 , the trace map Ext2 (𝐸, 𝐸) → H2 (𝑆,𝒪𝑆 ) is Serre-dual
to the map H0 (𝑆,𝒪𝑆 ) → Hom (𝐸, 𝐸) given by 𝜆 ↦→ 𝜆 id, which is an isomorphism. Therefore 𝑀 is non-
singular and

dim𝑀 = dimExt1 (𝐸, 𝐸) = 2 − 𝜒 (𝐸, 𝐸) = 2 + ⟨𝑣, 𝑣⟩ . �

Remark. There is no stable sheaf 𝐸 with Mukai vector 𝑣 (𝐸) = 𝑣 such that ⟨𝑣, 𝑣⟩ < −2. This translates to an
inequality on the Chern classes of 𝐸:

Δ(𝐸) − 2(rk(𝐸)2 − 1) ¾ 0.

This is much stronger than the Bogomolov’s inequality Δ(𝐸) ¾ 0 for semi-stable sheaves.

Proposition 0.2

Suppose that theMukai vector 𝑣 = (𝑟, ℓ, 𝑠) is primitive, i.e. not an integer multiple of anotherMukai vector.
For a generic polarisation𝐻 ∈ Amp(𝑆), every 𝜇-semi-stable sheaf is 𝜇-stable. In particular,Ms

𝐻 (𝑣) = Mss
𝐻 (𝑣).

Proof. This is essentially Theorem 4.C.3. �

Proposition 0.3

Suppose that the Mukai vector 𝑣 = (𝑟, ℓ, 𝑠) is such that gcd(𝑟, ℓ · 𝐻, 𝑠) = 1, then Ms
𝐻 (𝑣) is a fine moduli

space, and there exists a universal family ℰ on Ms
𝐻 (𝑣) × 𝑆 .

Proof. This is Corollary 4.6.7. �

Existence / Non-Emptiness

• By elementary transformation (Theorem 5.2.5), for 𝑣 = (𝑟, ℓ, 𝑠) with 𝑟 > 0 and 𝑠 ≪ 0, there exists a 𝜇-stable
vector bundle 𝐸 with 𝑣 (𝐸) = 𝑣 . This result holds for general surfaces.

• For ⟨𝑣, 𝑣⟩ = −2, Kuleshov [Kul90] shows that, there exists a 𝜇-semi-stable, simple (Hom(𝐸, 𝐸) � C), rigid
(Ext1 (𝐸, 𝐸) = 0) vector bundle 𝐸 with 𝑣 (𝐸) = 𝑣 . If in addition 𝜌 (𝑆) = 1, then 𝐸 is stable. The vector bundle
is first constructed on an elliptic K3 surface and then deformed to arbitrary K3 surfaces.

• For ⟨𝑣, 𝑣⟩ = 0 with 𝑟 > 0, Mukai [Muk87, §5] shows that, there exists a 𝜇𝐻 -semi-stable vector bundle 𝐸
with 𝑣 (𝐸) = 𝑣 . If in addition ℓ = 𝐻 , then 𝐸 can be chosen to be 𝜇𝐻 -stable.

• A stronger result: For ⟨𝑣, 𝑣⟩ ¾ −2 with either 𝑟 > 0 or ℓ ample, there exists a semi-stable sheaf 𝐸 with
𝑣 (𝐸) = 𝑣 .

This follows from a result of Yoshioka [Yos01] that Ms
𝐻 (𝑣) is deformation equivalent to Hilb 1

2 ⟨𝑣,𝑣⟩+1 (𝑆) for
primitive 𝑣 . It is also first proved for elliptic K3 surfaces and then deformed to arbitrary K3 surfaces. A
thorough exposition is [Vog].
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Uniqueness in Dimension 0
The simplest case is when ⟨𝑣, 𝑣⟩ = −2, where the expected dimension of Mss

𝐻 (𝑣) is 0.

Theorem 0.4

Suppose that 𝑟 > 0 and ⟨𝑣, 𝑣⟩ + 2 = 0. If Ms
𝐻 (𝑣) ≠ ∅, then Mss

𝐻 (𝑣) consists of a single reduced point which
represents a stable vector bundle. In particular Ms

𝐻 (𝑣) = Mss
𝐻 (𝑣).

Proof. Suppose that [𝐸] ∈ Ms
ℎ
(𝑣) and [𝐹 ] ∈ Mss

ℎ
(𝑣). Note that

𝜒 (𝐸, 𝐹 ) = dimHom (𝐸, 𝐹 ) + dimHom (𝐹, 𝐸) − Ext1 (𝐸, 𝐹 ) = 2.

Therefore either Hom (𝐸, 𝐹 ) ≠ 0 or Hom (𝐹, 𝐸) ≠ 0. Then 𝐸 � 𝐹 . So Ms
ℎ
(𝑣) = Mss

ℎ
(𝑣) = {[𝐸]}.

It remains to prove that 𝐸 is locally free. It is clear that 𝐸 is torsion-free, so it embeds into its double
dual 𝐸ˇ̌ . Let 𝑍 := 𝐸ˇ̌ /𝐸. Since the singular locus of 𝐸 has codimension ¾ 2, 𝑍 is supported on a 0-
dimensional subscheme of 𝑆 . Denote by ℓ(𝑍 ) the length of Supp (𝑍 ). Some computation of homological
algebra ([Muk87, Proposition 2.14]) shows that, for any torsion-free 𝐸,

dimExt1 (𝐸ˇ̌ , 𝐸ˇ̌ ) + 2ℓ(𝑍 ) ¶ dimExt1 (𝐸, 𝐸).

In particular, for simple 𝐸 with 𝜒 (𝐸, 𝐸) = 2, we have Ext1 (𝐸, 𝐸) = 0 and hence ℓ(𝑍 ) = 0. This proves the
claim. �

Remark. One can also exploit the fact that Quot(𝐸ˇ̌ , ℓ(𝑍 )) is irreducible, which implies that 𝐸ˇ̌ � 𝑍 can
be deformed to 𝐸ˇ̌ � 𝑍𝑡 with Supp𝑍 ≠ Supp𝑍𝑡 . Hence 𝐸 deforms non-trivially to 𝐸𝑡 := ker(𝐸ˇ̌ � 𝑍𝑡 ),
contradicting that Ext1 (𝐸, 𝐸) = 0.

Suppose that 𝐸 ∈ Ms
𝐻 (𝑣) is not only (Gieseker) stable but 𝜇-stable. It is much easier to prove that 𝐸 is locally free.

Indeed, suppose that it is not locally free. Let 𝐸ˇ̌ be its reflexive hull and then 𝑍 := 𝐸ˇ̌ /𝐸 is a 0-dimensional
subscheme of length ℓ > 0. Since 𝐸 is 𝜇-stable, so is 𝐸ˇ̌ . But

⟨𝑣 (𝐸ˇ̌ ), 𝑣 (𝐸ˇ̌ )⟩ = ⟨𝑣 (𝐸), 𝑣 (𝐸)⟩ − 2 rk(𝐸)ℓ = −2 − 2 rk(𝐸)ℓ < 0,

which is impossible by Proposition 0.1. This type of argument is very useful in proving the local-freeness of a
𝜇-stable sheaf in a low-dimensional moduli space. It is used in Example 0.10.

Dimension 2
The next simplest case is when ⟨𝑣, 𝑣⟩ = 0, i.e. 𝑣 is an isotropic vector. The expected dimension ofMss

𝐻 (𝑣) is 2. The
moduli space has a nice geometric description when it is fine.

Theorem 0.5

Suppose that ⟨𝑣, 𝑣⟩ = 0,Mss
𝐻 (𝑣) = Ms

𝐻 (𝑣), and there exists a universal familyℰ overMs
𝐻 (𝑣)×𝑆 . ThenMs

𝐻 (𝑣)
is a K3 surface.

Remark. Suppose that ⟨𝑣, 𝑣⟩ = 0 and there exists 𝑣 ′ ∈ H̃
1,1 (𝑆,Z) such that ⟨𝑣, 𝑣 ′⟩ = 1. Then one can find

𝐻 ∈ Amp(𝑆) such that gcd(𝑟, ℓ · 𝐻, 𝑠) = 1, so that Ms
𝐻 (𝑣) is a fine moduli space. For a generic choice of such 𝐻

we further haveMs
𝐻 (𝑣) = Mss

𝐻 (𝑣). So the conditions are satisfied and Ms
𝐻 (𝑣) is a K3 surface.

The proof of this theorem is much clearer from the derived-categorical perspective. We are following [Huy16]
instead of [HL10]. The strategy is the following:

1. Construct a non-degenerate 2-form 𝜔 ∈ H0 (𝑀,Ω2
𝑀 ), i.e. 𝑀 := Ms

𝐻 (𝑣) is an algebraic symplectic variety.
This shows 𝜔𝑀 � 𝒪𝑀 .
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2. Using the fact that both 𝑆 and 𝑀 has trivial canonical bundle, the Fourier–Mukai transform Φℰ with the
kernel of the universal family ℰ induces a derived equivalence between Db (𝑆) and Db (𝑀).

3. Any smooth projective variety derived-equivalent to a K3 surface is also a K3 surface.

Remark. In fact the assumption on the existence of universal family is redundant. One can use the so-called
twisted universal sheaf, which is obtained by gluing the universal sheaves ℰ𝒾 over 𝑈𝑖 × 𝑆 on an étale covering⋃

𝑖 𝑈𝑖 ⊆ 𝑅s of𝑀 by Luna’s étale slice theorem. See [Huy16, Section 10.2.2] for details.

Step 1

The symplectic structure on𝑀 is the content of Chapter 10. We may sketch the idea of construction:

Let ℰ be the universal family over 𝑀 × 𝑆 . Denote the projections by 𝑝 : 𝑀 × 𝑆 → 𝑀 and 𝑞 : 𝑀 × 𝑆 → 𝑆 . The
Kodaira–Spencer map KS : 𝒯𝑀 → ℰxt1𝑝 (ℰ,ℰ) is an isomorphism, where ℰxt1𝑝 (ℰ,−) is the derived functor
R1 (𝑝∗ ◦ℋom(ℰ,−)).

Remark. Note that ℰxt1𝑝 (ℰ,ℰ) and the isomorphism still makes sense even if the universal family does not
exist (cf. Section 10.2).

Intuitively, the Kodaira–Spencer map can be thought of the globalisation of the local identification T[𝐸 ]𝑀 �
Ext1 (𝐸, 𝐸) of the tangent spaces. The globalisation of the local isomorphism gives the globalised Serre dual-
ity:

𝒯𝑀 ×𝒯𝑀 ℰxt1𝑝 (ℰ,ℰ) ×ℰxt1𝑝 (ℰ,ℰ) 𝒪𝑀
KS×KS

which is non-degenerate. In particular it defines a nowhere vanishing 2-form 𝜔 ∈ H0 (𝑀,Ω2
𝑀 ). On the other

hand, this also means an isomorphism 𝒯𝑀 � Ω𝑀 , i.e. 𝜔⊗2
𝑀 � 𝒪𝑀 . Using the Pfaffian one can in fact show that

𝜔𝑀 � 𝒪𝑀 . So𝑀 is either a K3 surface or an Abelian surface by the Enriques’ classification.

Step 2

The universal family ℰ over𝑀 × 𝑆 defines a Fourier–Mukai transform

Φℰ : Db (𝑀) → Db (𝑆), 𝐹 ↦→ R𝑞∗
(
𝑝∗𝐹

L
⊗ℰ

)
.

Lemma 0.6

A Fourier–Mukai transform Φ : Db (𝑋 ) → Db (𝑌 ) is fully faithful if and only if for any closed points 𝑥,𝑦 ∈ 𝑋 ,

Hom(Φ(𝒪𝑥 ),Φ(𝒪𝑦) [𝑖]) =
{
C, if 𝑥 = 𝑦 and 𝑖 = 0;

0, if 𝑥 ≠ 𝑦 or 𝑖 < 0 or 𝑖 > dim𝑋 .

Proof. [Huy06, Proposition 7.1]. �

For 𝑠, 𝑡 ∈ 𝑀 with 𝑠 ≠ 𝑡 , Φℰ (𝒪𝑠 ) = 𝐸𝑠 and Φℰ (𝒪𝑡 ) = 𝐸𝑡 are non-isomorphic stable sheaves on 𝑆 . Hence
Hom(𝐸𝑠 , 𝐸𝑡 ) = Hom(𝐸𝑡 , 𝐸𝑠 ) = 0. By Serre duality Ext2 (𝐸𝑠 , 𝐸𝑡 ) = Ext2 (𝐸𝑡 , 𝐸𝑠 ) = 0. Since ⟨𝑣, 𝑣⟩ = 0, we have
Ext1 (𝐸𝑠 , 𝐸𝑡 ) = Ext1 (𝐸𝑡 , 𝐸𝑠 ) = 0. For 𝑠 = 𝑡 ∈ 𝑀 , Φℰ (𝒪𝑠 ) corresponds to a stable sheaf 𝐸 on 𝑆 and we know that
Hom(𝐸, 𝐸) = C. Hence by the lemma Φℰ is fully faithful.

Lemma 0.7

Let Φ : Db (𝑋 ) → Db (𝑌 ) be a fully faithful Fourier–Mukai transform. Suppose that Φ commutes with the
Serre functors, i.e. Φ ◦ 𝑆𝑋 ≃ 𝑆𝑌 ◦ Φ. Then Φ is an equivalence.
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Proof. [Huy06, Corollary 1.56]. �

Since both 𝑆 and 𝑀 have trivial canonical bundles, their Serre functors are shift by [2]. In conclusion we have
the remarkable result:

Theorem 0.8

The universal family ℰ overMs
𝐻 (𝑣) × 𝑆 induces an exact equivalence Φℰ : Db (Ms

𝐻 (𝑣)) → Db (𝑆).

Step 3

We will use the derived equivalence Db (𝑀) ≃ Db (𝑆) to prove that H1 (𝑀,𝒪𝑀 ) = 0 and hence 𝑀 is a K3 surface.
Consider the Leray spectral sequences:

𝐸𝑖 𝑗2 := H𝑖 (𝑆,ℰxt 𝑗𝑞 (ℰ,ℰ)) Ext𝑖+𝑗𝑀×𝑆 (ℰ,ℰ)

𝐸′𝑖 𝑗
2 := H𝑖 (𝑀,ℰxt 𝑗𝑝 (ℰ,ℰ)) Ext𝑖+𝑗𝑀×𝑆 (ℰ,ℰ)

They provide the long exact sequences

0 H1 (𝑆,ℰxt0𝑞 (ℰ,ℰ)) Ext1𝑀×𝑆 (ℰ,ℰ) H0 (𝑆,ℰxt1𝑞 (ℰ,ℰ)) · · ·

0 H1 (𝑀,ℰxt0𝑝 (ℰ,ℰ)) Ext1𝑀×𝑆 (ℰ,ℰ) H0 (𝑀,ℰxt1𝑝 (ℰ,ℰ)) · · ·

Note that H1 (𝑆,ℰxt0𝑞 (ℰ,ℰ)) � H1 (𝑆,𝒪𝑆 ) = 0 and H0 (𝑆,ℰxt1𝑞 (ℰ,ℰ)) � H0 (𝑆,𝒯𝑆 ) = 0. From the first sequence
we have Ext1𝑀×𝑆 (ℰ,ℰ) = 0. The second sequence then implies thatH1 (𝑀,𝒪𝑀 ) � H1 (𝑀,ℰxt0𝑝 (ℰ,ℰ)) = 0.

In fact, the Fourier–Mukai transform tells much more than that:

Theorem 0.9. Derived Torelli’s Theorem

If Φℰ : Db (𝑋 ) → Db (𝑌 ) is an equivalence between the derived categories of K3 surfaces 𝑋 and 𝑌 , then the
induced map on the cohomology defines a Hodge isometry:

ΦH
ℰ : H̃(𝑋 ;Z) → H̃(𝑌 ;Z), 𝛼 ↦→ 𝑞∗ (𝑝∗𝛼 · 𝑣 (ℰ)) .

In fact, Db (𝑋 ) ≃ Db (𝑌 ) if and only if there exists a Hodge isometry H̃(𝑋 ;Z) � H̃(𝑌 ;Z).

Remark. H̃(𝑋 ;Z) is the wedge-two Hodge structure with grading given by

H̃
2,0 (𝑋 ;C) = H2,0 (𝑋 ;C); H̃

1,1 (𝑋 ;C) = H0 (𝑋 ;C) ⊕ H1,1 (𝑋 ;C) ⊕ H4 (𝑋 ;C); H̃
0,2 (𝑋 ;C) = H0,2 (𝑋 ;C).

This can be compared with the classical Torelli’s theorem: two K3 surfaces 𝑋 � 𝑌 if and only if there exists a
Hodge isometry H2 (𝑋 ;Z) � H2 (𝑌 ;Z).

Isomorphism as K3 Surfaces

In some special cases the moduli space of sheaves of a K3 surface is isomorphic to the original surface.

Example 0.10

Let 𝑆 ⊆ P3 be a general quartic surface. The Picard group of 𝑆 is generated by the hyperplane divisor 𝐻 .
We have that𝑀 := Ms

𝐻 (2,−𝐻, 1) is a K3 surface isomorphic to 𝑆 .
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Remark. Beware of the notation here — Ms
𝐻 (2,−𝐻, 1) means the Mukai vector 𝑣 = (2,−𝐻, 1). In other words,

the Chern class (𝑟, c1, c2) = (2,−𝐻, 3).

Proof. The idea is that the points 𝑥 ∈ 𝑆 has a bijective correspondence with stable sheaves 𝐹 ∈ 𝑀 via

𝐹 := ker
(
H0 (𝑆,ℐ𝑥 (𝐻 )) ⊗ 𝒪𝑆 � ℐ𝑥 (𝐻 )

)
.

We start with the opposite direction: take 𝐹 ∈ 𝑀 to be a 𝜇-stable sheaf. If 𝐹 is not locally free then 𝐹ˇ̌ is
𝜇-stable with 𝑐2 (𝐹ˇ̌ ) < 3. But the Ms

𝐻 (𝑣 (𝐹ˇ̌ )) has expected dimension

2 + ⟨𝑣 (𝐹ˇ̌ ), 𝑣 (𝐹ˇ̌ )⟩ = 4 c2 (𝐹ˇ̌ ) − 10 ¾ 0.

Hence 𝑐2 (𝐹ˇ̌ ) ¾ 3, contradiction. By Hirzebruch–Riemann-Roch, we have 𝜒 (𝐹 ) = 3. Since 𝐹 is a stable
sheaf of negative slope, we have that h0 (𝐹 ) = 0. Hence by Serre duality dimHom(𝐹,𝒪𝑆 ) = h2 (𝐹 ) ¾ 3. A
choice of three linearly independent homomorphisms 𝐹 → 𝒪𝑆 combines to give 𝜑 : 𝐹 → 𝒪⊕3

𝑆 .

We claim that 𝜑 is injective. If not, then then im(𝜑) would be of the formℐ𝑍 (𝑎𝐻 ) for some codimension
two subscheme 𝑍 . Sinceℐ𝑉 (𝑎𝐻 ) ⊆ 𝒪3

𝑆 , one has 𝑎 ¶ 0. On the other hand, as a quotient of the stable sheaf
𝐹 the rank one sheaf ℐ𝑍 (𝑎𝐻 ) has non-negative degree. Therefore, 𝑎 = 0. But then

𝜑 : 𝐹 → ℐ𝑍 ⊆ 𝒪𝑆 ⊆ 𝒪⊕3
𝑆

and hence the 𝜑𝑖 would only span a one-dimensional subspace of Hom (𝐹,𝒪𝑆 ), which contradicts our
choice. Therefore 𝜑 is injective.

A Chern class calculation shows that its cokernel has (𝑟, c1, c2) = (1, 𝐻, 1). We claim that it is torsion-free
and hence of the formℐ𝑥 (𝐻 ) for some 𝑥 ∈ 𝑆 . If not, let 𝐹 ′ be the saturation of 𝐹 in 𝒪⊕3

𝑆 . Then 𝐹 ′ is a rank
two vector bundle as well and

det(𝐹 ) ⊆ det (𝐹 ′) � 𝒪𝑆 (𝑏𝐻 ) ⊆ ∧2 𝒪⊕3
𝑆 .

for some −1 ¶ 𝑏 ¶ 0. Since both 𝐹 and 𝐹 ′ are locally free, det (𝐹 ′) � det(𝐹 ); hence 𝑏 = 0. The quotient
𝒪⊕3
𝑆 /𝐹 ′ then is necessarily of the form ℐ𝑍 for a codimension two subscheme 𝑍 . But Hom (𝒪𝑆 ,ℐ𝑍 ) = 0

unless 𝑍 = ∅, which then implies that 𝐹 ′ � 𝒪⊕2
𝑆 , contradicting again the linear independence of the 𝜑𝑖 .

Eventually, we see that indeed any 𝐹 ∈ 𝑀 is part of a short exact sequence of the form

0 → 𝐹 → 𝒪⊕3
𝑆 → ℐ𝑥 (𝐻 ) → 0

Since H0 (𝑆, 𝐹 ) = 0, H0 (𝑆,𝒪⊕3
𝑆 ) → H0 (𝑆,ℐ𝑥 (𝐻 )) � C3 is bijective.1 Hence Ext1 (𝐹,𝒪𝑆 ) � H1 (𝑆, 𝐹 ) = 0.

By Hirzebruch–Riemann–Roch we conclude that dimHom(𝐹,𝒪𝑆 ) = 3. That is, the short exact sequence
is uniquely determined by 𝐹 up to the action of GL(3).

On the other hand, we start with a point 𝑥 ∈ 𝑆 and let 𝐹 (𝑥 ) be the sheaf in the exact sequence

0 → 𝐹 (𝑥 ) → H0 (𝑆,ℐ𝑥 (𝐻 )) ⊗ 𝒪𝑆 → ℐ𝑥 (𝐻 ) → 0 (★)

It is clear that 𝐹 (𝑥 ) is locally free and has no global section. Suppose that 𝐹 (𝑥 ) has a destabilising line
bundle 𝐹 ′ then 𝜇 (𝐹 ′) > 𝜇 (𝐹 (𝑥 ) ) = −2. So 𝐹 ′ � 𝒪𝑆 . But it contradicts that h0 (𝐹 ′) ¶ h0 (𝐹 (𝑥 ) ) = 0. Hence
𝐹 (𝑥 ) is stable.

In order to globalize this construction let Δ ⊆ 𝑆 × 𝑆 denote the diagonal, ℐΔ its ideal sheaf, and let 𝑝 and
𝑞 be the two projections to 𝑆 . Define a sheaf ℱ by means of the exact sequence

0 ℱ 𝑝∗𝑝∗ (ℐΔ ⊗ 𝑞∗𝒪𝑆 (𝐻 )) ℐΔ ⊗ 𝑞∗𝒪𝑆 (𝐻 ) 0 (∗)

ℱ is 𝑝-flat and ℱ𝑥 := ℱ |𝑝−1 (𝑥 ) � 𝐹 (𝑥 ) . Thus ℱ defines a morphism 𝑆 → 𝑀 , 𝑥 ↦−→ [𝐹 (𝑥 ) ]. The con-
siderations above show that this map is surjective, because any 𝐹 is part of an exact sequence of this

1To compute h0 (𝑆,ℐ𝑥 (𝐻 ) ) , use the long exact sequence of 0 → 𝒪P3 (−3) → 𝒪P3 (1) → 𝒪𝑆 (𝐻 ) → 0 and 0 → ℐ𝑥 (𝐻 ) → 𝒪𝑆 (𝐻 ) →
𝒪𝑥 → 0.
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form, and injective, because 𝜑 is uniquely determined by 𝐹 . Since both spaces are smooth, 𝑆 → 𝑀 is an
isomorphism. �

Note that we have the following commutative diagram where each row and column are exact.

0 0 0

0 𝐹 (𝑥 ) H0 (𝑆,ℐ𝑥 (𝐻 )) ⊗ 𝒪𝑆 ℐ𝑥 (𝐻 ) 0

0 ΩP3 (1)
��
𝑆

H0 (P3,𝒪P3 (1)) ⊗ 𝒪𝑆 𝒪𝑆 (𝐻 ) 0

0 ℐ𝑥 𝒪𝑆 𝒪𝑥 0

0 0 0

Restricting (∗) to {𝑥}×𝑆 yields 0 → 𝐹 (𝑥 ) → H0 (𝑆,ℐ𝑥 (𝐻 )) ⊗𝒪𝑆 → ℐ𝑥 (𝐻 ) → 0, whereas restricting (∗) to 𝑆 ×{𝑥}
yields 0 → 𝐹 (𝑥 ) → ΩP3 (1) |𝑆 → ℐ𝑥 → 0.2 Thus the vector bundleℱ on 𝑆 ×𝑆 identifies each factor as the moduli
space of the other.

The isomorphism 𝑆 � 𝑀 can be interpreted as a shift of a spherical twist.

Definition 0.11. Let 𝑆 be a K3 surface. A spherical object in Db (𝑆) is an object 𝐸 ∈ ObjDb (𝑆) such that

Hom(𝐸, 𝐸 [𝑖]) =
{
C, 𝑖 = 0, 2

0, otherwise.

A spherical twist 𝑇𝐸 : Db (𝑆) → Db (𝑆) by a spherical object 𝐸 ∈ ObjDb (𝑆) is a Fourier–Mukai transform with
kernel

𝒫𝐸 := Cone
(
𝐸ˇ� 𝐸 (𝐸ˇ� 𝐸)

��
Δ

𝒪Δ
tr

)
∈ ObjDb (𝑆 × 𝑆).

The spherical twist can be computed as follows:

𝑇𝐸 (𝐺) � Cone
(⊕

𝑖 Hom(𝐸,𝐺 [𝑖]) ⊗ 𝐸 [−𝑖] 𝐺ev
)
.

In other words, the spherical twist induces the exact triangle⊕
𝑖 Hom(𝐸,𝐺 [𝑖]) ⊗ 𝐸 [−𝑖] 𝐺 𝑇𝐸 (𝐺)ev +1

Lemma 0.12. Seidel–Thomas

Let 𝐸 ∈ ObjDb (𝑆) be a spherical object. The spherical twist 𝑇𝐸 : Db (𝑆) → Db (𝑆) is an auto-equivalence.

For K3 surface 𝑆 , 𝒪𝑆 is a spherical object. Back to the example, the short exact sequence (★) implies that 𝐹 (𝑥 ) �
𝑇𝒪𝑆 (ℐ𝑥 (𝐻 )) [−1].

Definition 0.13. If 𝑋,𝑌 are K3 surfaces such that there exists a C-linear exact equivalence Db (𝑋 ) ≃ Db (𝑌 ),
then 𝑌 is called a Fourier–Mukai partner of 𝑋 . The set of Fourier–Mukai partners of 𝑋 up to isomorphism is
denoted by FM(𝑋 ). In fact, every Fourier–Mukai partner of 𝑋 can be realised as a 2-dimensional Moduli space
of stable sheaves on 𝑋 .

An example of K3 surface without non-trivial Fourier–Mukai partners is an elliptic K3 surface 𝑆 → P1 that admits
a section. So any 2-dimension (fine) moduli space of 𝑆 is isomorphic to 𝑆 itself.

2Use the short exact sequence 0 → ℐΔ ⊗ 𝑞∗𝒪(1) → 𝑞∗𝒪(1) → 𝒪(1) |Δ → 0 to see that 𝑝∗ (ℐΔ ⊗ 𝑞∗𝒪𝑆 (𝐻 ) ) � ΩP3 (1) |𝑆 .
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