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Abstract

We present the first example of the formation of a nontrivial bubble tree in the harmonic
map heat flow. In other words, we give a flow in which more than one bubble develops at the
same point. The bubbles occur at infinite time and develop at different scales.

Let (M, γ) be a compact Riemannian surface, and (N , g) a compact Riemannian manifold
without boundary. The harmonic map heat flow is L2-gradient descent for the harmonic map
energy

E(v) =

∫
M

1

2
|dv|2,

and was introduced in 1964 by Eells and Sampson [4]. Explicitly, the flow is a solution u : M×
[0,∞)→ N to the parabolic equation

∂ul

∂t
= ∆ul + γαβΓlij(u)

∂ui

∂xα
∂uj

∂xβ
;

u(·, 0) = u0;
u(·, t)|∂M = u0|∂M,

(1)

where ∆ is the Laplace-Beltrami operator on M and Γlij denote the Christoffel symbols of the
target N . We refer to this equation as the ‘heat equation,’ to the map u0 as the ‘initial map,’ and
to the map u0|∂M as the boundary values. Maps u0 whose flows u do not vary in time are known
as harmonic maps.

For an introduction to the harmonic map flow, the reader should refer to [10, Chapter 1].
However, we briefly survey the main results required for this work.

The basic existence result we will use is due to Struwe [8].

Theorem 1 Given a regular initial map and boundary values, there exists a solution u ∈W 1,2
loc (M×

[0,∞),N ) of the heat equation (1) which is smooth inM×(0,∞) away from at most a finite number
of singular points.

The work of Struwe also gave us the first information on the asymptotics of the flow at infinite
time.

Theorem 2 Let u be the solution of the heat equation (1) introduced in Theorem 1. Then there
exist a sequence of times ti → ∞, a harmonic map u∞ : M → N and a finite set of points
{x1, . . . xm} ⊂ M such that

∗To appear in the proceedings of the conference on “Harmonic Morphisms, Harmonic Maps and Related Topics”
held in Brest, France, in July 1997. This work constituted part of the author’s PhD thesis [10].
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(i) u(·, ti) ⇀ u∞, weakly in W 1,2(M) (and hence strongly in Lp for any 1 ≤ p <∞) as
i→∞,

(ii) u(·, ti)→ u∞, strongly in W 2,2
loc (M\{x1, . . . xm}) as i→∞.

The asymptotic behaviour of the flow at the points {xi} and the behaviour near the finite
number of singularities mentioned in Theorem 1 is similar. In both cases the flow ‘blows up’,
and ‘bubbling’ occurs; for this reason we also refer to the singular points as ‘blow-up’ points. To
describe the bubbling, let us assume that M is the standard 2-disc D.

Theorem 3 Let u be a solution of (1) from Theorem 1. Let (x0, T ) ∈ M× (0,∞] be a singular
point of the flow - in other words either one of the singular points with T < ∞ mentioned in
Theorem 1 or a point (x0,∞) with x0 ∈ {x1, . . . xm}. Then there exist sequences ai → x0, ti ↑ T ,
Ri ↓ 0 and a nonconstant harmonic map u0 : R2 → N such that as i→∞,

u(ai +Rix, ti)→ u0 in W 2,2
loc (R2,N ).

Moreover, u0 extends via stereographic projection to a smooth harmonic map S2 → N which we
refer to as a ‘bubble’.

An immediate question that this result of Struwe poses is whether the bubble extracted ac-
counts entirely for the singularity. In other words, writing EU (v) for the energy of v over a small
neighbourhood U of x0, do we have equality in the inequality

lim
i→∞

EU (u(·, ti)) ≥ EU (u(·, T )) + E(u0), (2)

and does the bubble account for the change in homotopy class of the flow? If this were not the
case, then more than one bubble would have to develop at the same point - possibly at different
scales - and the sum of the energies of the bubbles would account for the total loss in energy. This
is expressed in the following result of Ding-Tian [3], Qing [7] and Wang [11].

Theorem 4 Let (x0, T ) be a singular point of the flow (with T = ∞ permitted) and suppose that
U is a neighbourhood of x0 small enough so that U × {T} contains no other singular points. Then
there exist finitely many nonconstant harmonic maps {ωk}mk=1 from S2 to N which we see as maps
from R2 by stereographic projection, together with sequences

(i) {ti} with ti ↑ T ,

(ii) {{aki }}mk=1 in R2 with limi→∞ aki = x0 for 1 ≤ k ≤ m, and

(iii) {{λki }}mk=1 with λki > 0 for 1 ≤ k ≤ m and any i, and limi→∞ λki = 0 for 1 ≤ k ≤ m,

such that
λki

λji
+
λji
λki

+
|aki − a

j
i |2

λki λ
j
i

→∞ as i→∞, (3)

and

lim
i→∞

EU (u(·, ti)) = EU (u(·, T )) +
m∑
k=1

E(ωk), (4)

and moreover,

u(x, ti)−
m∑
k=1

(
ωk

(
x− aki
λki

)
− ωk(∞)

)
→ u(x, T )

strongly in W 1,2(U,N ) as i→∞, where in the case that T =∞, we read u∞ for u(·, T ).
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The main result of this article is that there do exist flows in which more than one bubble
develops at the same point, and at different scales. In other words, nested bubble trees exist.

Theorem 5 There exist a target manifold N , and an initial map u0 : D → N where D is a 2-disc,
such that the subsequent flow u blows up at infinite time at precisely one point, but so that upon
analysing the blow-up with Theorem 4, we must have two bubbles developing at that point (in other
words m = 2). In fact we have a1i = a2i = 0 for all i ∈ N and consequently the bubbles develop at

different scales in that (by swapping the bubbles if necessary) we have
λ1i
λ2i
→∞ as i→∞.

The example relies on the construction of a target with a warped metric. Targets of this type
have been used by the author to settle a variety of questions concerning the blow-up and stability
of harmonic map flows [10], and may be used to identify huge classes of flows which blow up in
finite time.

The remainder of this chapter is devoted to the proof of Theorem 5.
Let the domain M be the flat 2-disc of radius π with polar coordinates (r, φ), and the target

N be S2 × S2 with a metric to be described shortly.
We parameterise each S2 considered in this proof with spherical polar coordinates; the coordi-

nates (θ, φ) then correspond to the point (sin θ cosφ, sin θ sinφ, cos θ) in cartesian coordinates on
S2 ↪→ R3. Let h(θ, φ) be the standard metric on S2 at the point (θ, φ).

In N we parameterise the first S2 by (α,A) and the second by (β,B). At the point (α,A, β,B)
in N , we set the metric to be h(α,A) + f(α)h(β,B), where f(α) ≡ 1 would give the standard
metric on S2 × S2. We choose f : [0, π]→ R to be any smooth function satisfying

(i) f(α) = 1 for 0 ≤ α ≤ π
2 ,

(ii) f ′(α) > 0 for π
2 < α < π,

(iii) v : S2 → R, defined by v(θ, φ) = f(θ), is smooth

So with v as above, we have N = S2 ×v S2. We refer to f as well as v as a warping function.
Let us consider symmetric maps of the form

(r, φ)→ (α(r), φ, β(r), φ).

This symmetry is preserved under the heat flow. We will be using the fixed, constant boundary
conditions

u(π, φ, t) = (π, φ, π, φ),

and will start with the initial map

u0(r, φ) = (r, φ, r, φ). (5)

Writing the heat flow as
u(r, φ, t) = (α(r, t), φ, β(r, t), φ),

the evolution equations for α and β according to (1) are

∂α

∂t
=

∂2α

∂r2
+

1

r

∂α

∂r
− sinα cosα

r2
− f ′(α)

2

(
∂β

∂r

)2

− f ′(α)

2

sin2 β

r2
, (6)

∂β

∂t
=

∂2β

∂r2
+

1

r

∂β

∂r
− sinβ cosβ

r2
+
f ′(α)

f(α)

∂α

∂r

∂β

∂r
. (7)
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By the symmetry imposed, and the finiteness of any blow-up points, blow-up may only occur at
r = 0. We will argue that both α and β blow up at infinite time, and that rescaling to capture a
bubble will not account for the blow-up of both α and β - they must blow up at different rates.
The first step is to argue that both α and β blow up at some stage. This is evidently true since
any harmonic map from a contractible surface with constant boundary values is constant according
to a theorem of Lemaire [5, Theorem 3.2] and the initial map (5) is homotopically nontrivial after
projections onto either S2 of the target N . (Therefore the projection of the flow onto either S2 of
the target N must change homotopy class at some point - possibly at ‘infinite time’.)

The next step is to argue that α and β do not blow up at finite time. For this, we will employ
the following result from [2] which Chang and Ding used to establish a global existence result for
certain symmetric harmonic map flows from the disc to the 2-sphere.

Lemma 1 Suppose that d > 0 and we have a smooth function h0 : [0, d] → [0, π] with h0(0) = 0
and h0(d) = π. Then we may find a (unique) smooth solution h : [0, d]× [0,∞)→ [0, π] of

∂h

∂t
=
∂2h

∂r2
+

1

r

∂h

∂r
− sinh cosh

r2
,

h(·, 0) = h0,
h(0, t) = 0, h(d, t) = π.

(8)

We will use Lemma 1 to generate supersolutions to the solutions of (6) and (7). Finite-time
singularities in the heat flow will then be ruled out by what we learnt about blow-up in Theorem
3. To begin with, we set d = π, and choose h0 to be any function as in Lemma 1 with h0(r) > r =
α(r, 0) when r ∈ (0, π). Applying Lemma 1 to get a function h, and comparing this function to the
solution α of (6) using the parabolic maximum principle (as in [2] and [6]) we see that

h(r, t) > α(r, t) for all (r, t) ∈ (0, π)× [0,∞).

(Note that we are using the fact that the final two terms in (6) are negative.) Consequently, we
see that α does not blow up in finite time.

Next we turn to β, the solution of (7). Suppose that β blows up in finite time - at time
t = T say. As α exists for all time, we know that ∂α

∂r is bounded for t ∈ [0, T ]. In particular,
as α(0, t) = 0 for all t, there exists d ∈ (0, π) such that if (r, t) ∈ [0, d] × [0, T ] then α(r, t) < π

2 ,
and hence f ′(α(r, t)) = 0 from condition (i) that we imposed on f . Consequently, β evolves for
(r, t) ∈ [0, d] × [0, T ] under the same equation as h in Lemma 1. Set h0 : [0, d] → [0, π] to be
h0(r) = π

d r, so that h0(r) > r = β(r, 0), and apply Lemma 1 to get the corresponding function h.
Comparing h with β using the maximum principle as before, we see that

h(r, t) > β(r, t) for all (r, t) ∈ (0, d)× [0, T ],

contradicting the fact that β blows up at time t = T . Hence β does not blow up in finite time.
So we have established that α and β blow up at infinite time, and not at finite time. It remains

to prove that there does not exist one bubble which can account for the blow-up of both α and β.
We will use several times the following consequence of Lemaire’s theorem [5, Theorem 3.2] that

a harmonic map with constant boundary values from a contractible surface is constant.

Lemma 2 For any 0 < d < π, there does not exist a smooth solution g : [0, d]→ [0, π] to 0 =
d2g

dθ2
+

1

tan θ

dg

dθ
− sin g cos g

sin2 θ
,

g(0) = 0, g(d) = π.

(9)
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Proof. The reason for this is simply because if g were a solution to (9) then we would have a
nonconstant harmonic map with constant boundary values

(θ, φ)→ (g(θ), φ)

from the part of S2 with 0 ≤ θ ≤ d to S2, which would contradict Lemaire’s result.
Suppose one bubble accounts for the blow-up of both α and β. Then the bubble would be a

harmonic map from S2 to N which we could write as

(θ, φ)→ (α(θ), φ, β(θ), φ), (10)

where α and β are smooth functions with

α(0) = β(0) = 0, α(π) = β(π) = π 0 ≤ α, β ≤ π, (11)

satisfying the system

0 =
d2α

dθ2
+

1

tan θ

dα

dθ
− sinα cosα

sin2 θ
− f ′(α)

2

(
dβ

dθ

)2

− f ′(α)

2

sin2 β

sin2 θ
, (12)

0 =
d2β

dθ2
+

1

tan θ

dβ

dθ
− sinβ cosβ

sin2 θ
+
f ′(α)

f(α)

dα

dθ

dβ

dθ
. (13)

However, such a bubble cannot exist:

Lemma 3 There do not exist any harmonic maps S2 → N of the form (10) satisfying (11), (12)
and (13).

Proof. Suppose such a map exists; we will find that (12) contains a contradiction. Let us multiply
(12) by 2 sin2 θ dαdθ , and integrate over the region (0, θ). We find that

sin2 θ

(
dα

dθ

)2

= sin2 α+

∫ θ

0
f ′(α(ζ)) sin2 ζ

(
dβ

dθ
(ζ)

)2 dα

dθ
(ζ)dζ

+

∫ θ

0
f ′(α(ζ)) sin2 β(ζ)

dα

dθ
(ζ)dζ.

(14)

Define
θ0 = inf{θ ∈ (0, π) | α(θ) =

π

2
} ∈ (0, π).

So for θ ∈ (0, θ0) we have f ′(θ) = 0 by condition (i) which we imposed on f .
Of course α(θ0) = π

2 , but we also know that β(θ0) < π. This is because otherwise we would
have β(θ0) = π and by setting d = θ0 and g = β|[0,θ0] and applying Lemma 2, we would have a
contradiction.

Next, by setting θ = θ0 in (14) we see that dα
dθ (θ0) 6= 0, and hence that

dα

dθ
(θ0) > 0.

Suppose that dα
dθ (θ) > 0 for all θ ∈ (θ0, π). Then by setting θ = π in (14) we have a contradiction

- for θ ∈ (θ0, π) we would have f ′(θ) > 0, dα
dθ (θ) > 0 and sin2 β not identically equal to zero, so the

final term of (14) and thus the whole right-hand-side, would be strictly positive.
So we must have θ ∈ (θ0, π) with dα

dθ (θ) = 0. Set

θ1 = inf{θ ∈ (θ0, π) | dα
dθ

(θ) = 0} ∈ (θ0, π).
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Putting θ = θ1 into (14), the left hand side is zero, and all the terms on the right are nonnegative, so

they must all be zero. In particular, we must have α(θ1) = π, and
(
dβ
dθ

)2
≡ sin2 β ≡ 0 on θ ∈ (θ0, θ1).

But then setting d = θ1, and g = α|[0,θ1] and applying Lemma 2, we have a contradiction.
So one bubble cannot account for the blow-up of both α and β, and we have finished the proof

of Theorem 5.

Remark 1 It would be interesting to extend the fact that there is no one suitable bubble which can
account for the change in homotopy - as stated in Lemma 3 - to prove that there are no harmonic
spheres homotopic to the diagonal embedding

(θ, φ)→ (θ, φ, θ, φ).

It is not hard to see that there can be no energy minimising harmonic maps in this homotopy class.

Remark 2 The above construction would also work if the domain were the upper hemisphere of S2

rather than the 2-disc. By connecting two such examples together, we could construct an example
in which the domain was S2 itself.

Remark 3 It is an open question as to whether nontrivial bubble trees may occur at finite time
also.
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