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Overview

In these lectures, I will try to give an introduction to two separate aspects of Ricci
flow, namely Hamilton’s compactness theorem and the very neat theory of Ricci
flow in 2D. The target audience consists of graduate students with some background
in differential geometry and PDE theory.

Hamilton’s compactness theorem is an absolutely fundamental tool in the mod-
ern theory of Ricci flow. I will spend the early part of the course explaining what
this result says – roughly that given an appropriate sequence of Ricci flows, one
can pass to a subsequence and get smooth convergence to a limit Ricci flow. In
order to make sense of that, we will first look at the details of what it means for
a sequence of Ricci flows, or simply of Riemannian manifolds, to converge in the
Cheeger-Gromov sense. We will not assume any prior knowledge of this notion, al-
though it will be almost essential to have some basic prior knowledge of Riemannian
geometry, including the basic idea of the Riemannian curvature tensor.

I will then go on to illustrate the most basic application of the compactness
theorem, as envisaged by Hamilton and realised fully by Perelman, by blowing up
a singularity to obtain a limit ancient Ricci flow modelling the singularity. To do
this we will take a brief detour to mention Perelman’s ‘no local collapsing theorem”.

The rough idea of how this looks in practice in 3D will be explained. But
to fully illustrate this application, and also some other key ideas – particularly
Perelman’s notion of κ-solutions and their most basic theory – we will focus on the
2D situation, and give a Perelman-style proof of the beautiful results of Hamilton
and Chow explaining what Ricci flow does to an arbitrary compact surface.

From there we will consider the problem of starting a Ricci flow with a com-
pletely general metric, typically on a noncompact surface. This raises some inter-
esting well-posedness issues as one struggles to find the right way of posing the
problem to obtain both existence and uniqueness of solutions. We will resolve this
problem with the notion of instantaneously complete Ricci flows.

The lectures will then complete a full circle by applying this 2D theory in order
to understand better Hamilton’s compactness theorem and the various extensions
that one needs (or desires) to take the theory further. More precisely, we will use the
2D theory (including some additional examples of ‘contracting cusp’ Ricci flows) to
construct some visual examples which violate some extended forms of Hamilton’s
result that were previously widely believed and used.
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4 PETER TOPPING, RICCI FLOW

These lecture notes were written for a mini-course at the Park City Mathematics
Institue, Utah (July 2013) based on lectures I gave the year before at ICTP, Trieste
(June 2012) and at the 6th KIAS Winter School in South Korea (Feb. 2012).
I would like to thank Hugh Bray, Greg Galloway, Rafe Mazzeo, Natasa Sesum,
Claudio Arezzo and Jaigyoung Choe for the invitations to these events. Thanks
to Neil Course and Gregor Giesen for preparing some of the pictures, which were
originally used for [28] and [11], and to Michael Coffey for helping with the problem
sheets that accompany the lectures.

Background reading

Hopefully you already know some Riemannian geometry. If not, you will need to
read some of the basics quickly – try Fran Burstall’s three lecture introduction [1]
and the references therein.

You will also need some basic intuition about parabolic equations, or simply
just for the linear heat equation, which you will get from many basic introductions
to PDE theory.

For the fundamentals of Ricci flow, try my earlier lecture notes [28]. In partic-
ular, we will follow Chapter 7 of those, and some other parts here and there.

For the remaining parts of Perelman’s theory that we will require, you will be
fine with Perelman’s first paper [25], although if you end up wanting to see that
material with more detail, then there are some very useful resources such as the
notes of Kleiner and Lott [23].

For the two-dimensional theory of Ricci flow from the viewpoint of these lec-
tures, one can see particularly [13, 31, 15, 33], and we will also draw on elements
of [12] and [14] in order to explain some subtleties of Hamilton’s compactness
theorem [32].



LECTURE 1

Ricci flow basics – existence and singularities

1.1. Initial PDE remarks

A simple but (as it turns out) very natural nonlinear version of the classical linear
heat equation is the logarithmic fast diffusion equation

(1.1)
∂u

∂t
= e−2u∆u,

where u : Ω×[0, T ]→ R, for some domain Ω ⊂ R2. This is different from the normal
heat equation because the speed of diffusion is scaled by e−2u, which depends on u.
Historically this equation has been used extensively for modelling the evolution of
the thickness of a thin colloidal film, but it also turns out to have a very geometric
flavour.

This equation, being parabolic, is well-posed (in particular one has existence
and uniqueness of solutions) if we specify the initial function u(·, 0), and also u
on ∂Ω × [0, T ], just as for the ordinary heat equation. There is also an extensive
literature dealing with the case Ω = R2 (see, for example, [7] as a starting point)
although one has extreme nonuniqueness in this case in general in the absence of
any growth conditions for u as x→∞.

Given a solution u to (1.1), we can define a t-dependent Riemannian metric
g(t) = e2u(dx2 + dy2), and calculate

∂g

∂t
= 2

∂u

∂t
g(t) = 2e−2u∆u g(t) = −2Kg(t),

where K = −e−2u∆u is the Gauss curvature of g(t). In particular, we have

∂g

∂t
= −2Ricg(t),

which is the Ricci flow equation of Hamilton [18].
This simple observation suggests that the right way of posing (1.1) is to take a

Riemannian surface (M2, g0) as initial data, and try to find a t-dependent family
g(t), t ∈ [0, T ], such that g(0) = g0 and

∂g

∂t
= −2Kg(t),

(which forces the flow g(t) to retain the same conformal structure). With respect
to any local isothermal coordinate chart, such a solution induces a solution to (1.1),
but different charts give different solutions and it does not make sense to discuss
regions of slow diffusion (u large) or fast diffusion (u� −1). Taking this geometric
viewpoint puts a collection of powerful techniques at our disposal to study (1.1),
and also leads us to the right well-posedness class in full generality, as we will see
in Lecture 5.
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6 PETER TOPPING, RICCI FLOW

1.2. Basic Ricci flow theory

In general dimension n ∈ N, a Ricci flow is a one-parameter family g(t) of Rie-
mannian metrics on an n-dimensional manifoldM, satisfying the nonlinear PDE

∂g

∂t
= −2Ricg(t).

Aside from trivial examples such as the real line (which has no curvature and cannot
move) the simplest example is possibly the round shrinking sphere (Sn, gn(t)) where
gn(t) = (1 − 2(n − 1)t)gn0 , and gn0 is the metric of the round sphere of constant
sectional curvature 1. Taking products of Ricci flows yields further Ricci flows,
and thus another example is the shrinking cylinder R× (S2, g2(t)), or for a similar,
compact example one could take S1 × (S2, g2(t)). More generally, we have:

Theorem 1.1 (Hamilton [18], Shi [27], Chen-Zhu [3], Kotschwar [24]). Given
a complete, bounded curvature Riemannian manifold (Mn, g0), there exists T ∈
(0,∞] and a unique complete, bounded curvature Ricci flow g(t) for t ∈ [0, T ) on
Mn such that g(0) = g0.

To clarify, such a Ricci flow is said to be complete if (Mn, g(t)) is complete for
all t ∈ [0, T ), and here the Ricci flow is said to have bounded curvature if for all
t0 ∈ [0, T ), we have1

sup
Mn×[0,t0]

|Rm| <∞.

In particular we allow the curvature to blow up as t ↑ T , which is possibly a little
unconventional. Indeed, in Theorem 1.1 we may assume that either T = ∞ or
supMn |Rm|(·, t)→∞ as t ↑ T , as was explained by Hamilton (see for example [28,
§5.3]).

Clearly the shrinking sphere flow given above is an example where T < ∞
and the curvature blows up, but this can occur also without the whole manifold
disappearing. For example, ifM = S3, we can have a neck pinch singularity:

S3

t = Tt = 0

neck pinch

S2

We want to analyse such a singularity by blowing up, i.e. rescaling the flow
parabolically (see below) and trying to extract a Ricci flow that models the singu-
larity (i.e. captures some of its information). For the neck pinch example above,
the rescaling procedure should produce a shrinking cylinder Ricci flow in the limit:

1Rm denotes the full Riemannian curvature tensor. This condition is equivalent to upper and
lower bounds (depending on t0) on all sectional curvatures.
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(M, g(t1)) (M, g(t2))

p1 p2

p1 p2

p|Rm| = 1 |Rm| = 1

limitblow-ups

shrinking cylinder flow

The rescaling alluded to above works by scaling space and time appropriately:
If g(t) is a Ricci flow for t ∈ [a, b] and λ > 0, then

gλ(t) := λg(t/λ)

is a new Ricci flow for t ∈ [λa, λb] as described in [28, §1.2.3]. Under this rescaling,
lengths increase by a factor of λ

1
2 , and sectional curvatures are scaled by a factor

λ−1. Therefore, we can scale up Ricci flows with large curvatures to Ricci flows
with curvatures of order 1 by suitably choosing λ.

In order to make this procedure work, we will at least need a notion of con-
vergence of Ricci flows, and before that a notion of convergence of Riemannian
manifolds, and we address these points in the next lecture.





LECTURE 2

Cheeger-Gromov convergence and Hamilton’s
compactness theorem

The basic reference for this lecture is [28, Sections 7.1 and 7.2], although we
need some slight modifications here.

Motivated by the discussion in the previous lecture, we need to find a good
notion of convergence for a sequence of flows so it will make sense to pass to a limit
of a sequence of scaled-up Ricci flows. We will then need Hamilton’s compactness
theorem to tell us that a reasonable sequence of rescaled flows will in fact converge
(after passing to a subsequence). Before that we need to consider the slightly
simpler problem of finding a good notion of convergence of a sequence of Riemannian
manifolds.

2.1. Convergence and compactness of manifolds

It is reasonable to suggest that a sequence {gi} of Riemannian metrics on a manifold
M should converge to a metric h on M when gi → h as tensors. However, we
would like a notion of convergence of Riemannian manifolds that is diffeomorphism
invariant: it should not be affected if we modify each metric gi by an i-dependent
diffeomorphism. Once we have asked for such invariance, it is necessary to discuss
convergence with respect to a point of reference on each manifold, for reasons that
we will see in a moment.

Definition 2.1 (Smooth, pointed “Cheeger-Gromov” convergence of manifolds). A
sequence (Mi, gi, pi) of (smooth) complete, pointed Riemannian manifolds (that is,
Riemannian manifolds (Mi, gi) and points pi ∈Mi) is said to converge (smoothly)
to the smooth pointed Riemannian manifold (N , h, q) as i→∞ if there exist
(i) a sequence of domains Ωi ⊂⊂ N , exhausting N (that is, so that any compact

set K ⊂ N satisfies K ⊂ Ωi for sufficiently large i) with q ∈ Ωi for each i, and
(ii) a sequence of smooth maps φi : Ωi → Mi that are diffeomorphic onto their

image and satisfy φi(q) = pi for all i,
such that

φ∗i gi → h

smoothly locally on N as i→∞.

Remark 2.2. With this notion, limits will be unique in the sense that if (N1, h1, q1)
and (N2, h2, q2) are two such limits and both are complete, then there exists an
isometry I : (N1, h1)→ (N2, h2) that sends q1 to q2.

Remark 2.3. To demonstrate why we need to include the points pi in the above
definition, consider the following example.

9



10 PETER TOPPING, RICCI FLOW

(N , h) =
q

s1 s2 s3

We will take the same sequence of Riemannian manifolds, with different points pi,
and get two different limits. Suppose first that for every i, (Mi, gi) is equal to the
(N , h) as shown above. Then (Mi, gi, q)→ (N , h, q), but (Mi, gi, si) converges to
a cylinder.

p

Remark 2.4. It is possible to have Mi compact for all i, but have the limit N
non-compact. For example:

(M1, g1, p1) (M2, g2, p2) (M, g, p)

However, if N is compact, then in the Definition 2.1 of convergence, we must
have Ωi = N for sufficiently large i, and the maps φi will then serve as diffeomor-
phisms N → Mi (i.e. all the Mi are the same as the limit) for sufficiently large
i.

Two consequences of the convergence (Mi, gi, pi)→ (N , h, q) are that
(i) for all s > 0 and k ∈ {0} ∪ N,

(2.1) sup
i∈N

sup
Bgi

(pi,s)

∣∣∇kRm(gi)
∣∣ <∞,

(ii)

(2.2) inf
i

inj(Mi, gi, pi) > 0,

where inj(Mi, gi, pi) denotes the injectivity radius of (Mi, gi) at pi.
In fact, conditions (i) and (ii) are sufficient for subconvergence. Various in-

carnations of the following result appear in, or can be derived from, papers of (for
example) Greene and Wu [16], Fukaya [10] and Hamilton [20], all of which can be
traced back to original ideas of Gromov [17] and Cheeger.

Theorem 2.5 (Compactness – manifolds). Suppose that (Mi, gi, pi) is a sequence
of (smooth) complete, pointed Riemannian manifolds (all of dimension n) satisfy-
ing (2.1) and (2.2). Then there exists a (smooth) complete, pointed Riemannian
manifold (N , h, q) (of dimension n) such that after passing to some subsequence in
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i, we have
(Mi, gi, pi)→ (N , h, q),

as i→∞.

Remark 2.6. Although we have explained that (i) and (ii) are necessary to have
any hope of convergence, it may be instructive to consider what might go wrong if
either condition were dropped entirely.

We clearly need some curvature control, otherwise we may have:

(M1, g1)

p1

(M2, g2)

p2

cone

singularity

There are other notions of convergence which can handle this type of limit. For
example, Gromov-Hausdorff convergence allows us to take limits of metric spaces.
(See, for example [17].)

The uniform positive lower bound on the injectivity radius is also necessary,
since otherwise we could have, for example, degeneration of two-dimensional cylin-
ders:

(M1, g1) (M2, g2) limit would exist in a weaker sense
(e.g. Gromov-Hausdorff) but
with lower dimension

Remark 2.7. Given curvature bounds as in (2.1), the injectivity radius lower
bound at pi implies a positive lower bound for the injectivity radius at other points
q ∈Mi in terms of the distance from pi to q, and the curvature bounds, as discussed
in [20], say.

2.2. Convergence and compactness of flows

One can derive Hamilton’s compactness theorem for Ricci flow from the compact-
ness theorem for manifolds (Theorem 2.5). In order to do this, we need to make
sense of what it means for a sequence of flows to converge.

Definition 2.8 (Convergence of flows). Let h(t) be a (smooth) one-parameter
family of Riemannian metrics on a fixed underlying manifold N , for t within some
fixed time interval I ⊂ R. We will call such a (N , h(t)) a flow on I. Let q ∈ N . Let
(Mi, gi(t)) be a sequence of flows on I, and let pi ∈Mi for each i. We say that

(Mi, gi(t), pi)→ (N , h(t), q)
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as i→∞ if there exist
(i) a sequence of domains Ωi ⊂⊂ N exhausting N and satisfying q ∈ Ωi for each

i, and
(ii) a sequence of smooth maps φi : Ωi → Mi, diffeomorphic onto their image,

and with φi(q) = pi,
such that

φ∗i gi(t)→ h(t)

smoothly locally on N × I as i→∞.

Remark 2.9. It also makes sense to talk about convergence on (for example) the
time interval (−∞, 0), even when flows are defined only for (−Ti, 0) with Ti →∞.

We now wish to specialise to the case of Ricci flows – i.e. flows as above
which also satisfy the Ricci flow equation. Hamilton [20] showed how to combine
parabolic regularity theory (via Shi’s local derivative estimates, which we will not be
discussing in detail) and the Cheeger-Gromov compactness of Theorem 2.5 applied
only at one time t = 0, to prove the following result at the heart of these lectures:

Theorem 2.10 (Hamilton’s compactness theorem for Ricci flows). Let Mi be a
sequence of manifolds of dimension n, and let pi ∈ Mi for each i. Suppose that
gi(t) is a sequence of complete Ricci flows on Mi for t ∈ (a, b), where −∞ ≤ a <
0 < b ≤ ∞. Suppose that

(i) sup
i

sup
x∈Mi, t∈(a,b)

∣∣Rmgi(t)

∣∣(x) <∞, and

(ii) inf
i

inj(Mi, gi(0), pi) > 0.

Then there exist a manifold N of dimension n, a complete Ricci flow h(t) on
N for t ∈ (a, b), and a point q ∈ N such that, after passing to a subsequence in i,
we have

(Mi, gi(t), pi)→ (N , h(t), q),

as i→∞.

Remark 2.11. In this theorem, we could equally well work on a time interval
(a, 0], with a < 0, but it is not reasonable to work on a time interval [0, b) with
b > 0, because there would be a problem obtaining such strong compactness at
time t = 0, before the parabolic nature of Ricci flow has had a chance to assert
itself by smoothing out the flow.

Remark 2.12. In the presence of condition (i), there is an alternative way of
phrasing condition (ii), namely

(ii)alt inf
i

Volgi(0)[Bgi(0)(pi, 1)] > 0.

The intuition here is that once the curvature is controlled, the volume of a unit ball
should be roughly comparable to what it is in Euclidean space, unless the injectivity
radius is small. For example, in a very thin (flat) torus S1

ε × S1, where 0 < ε� 1,
the volume of a unit ball is of order ε, not of order 1, because the injectivity radius
is of order ε. (See [2, Theorem 4.7].)



LECTURE 3

Applications to Singularity Analysis

3.1. The rescaled flows

Now that we have discussed the convergence and compactness of Ricci flows, we are
in a better position to do the rescaling near a singularity leading to a limit Ricci
flow modelling the singularity, as discussed earlier. If this material is very new to
you, it would be an option to fast-forward to Theorem 3.2 on the first reading.

Let (M, g(t)) be a Ricci flow withM closed, on a maximal time interval [0, T )
– as in Section 1.2 – and assume that T <∞, so that

sup
M
|Rmg(t)| → ∞

as t ↑ T . Choose points pi ∈M and times ti ↑ T such that

Qi := |Rmg(ti)|(pi) = sup
x∈M, t∈[0,ti]

|Rmg(t)|(x),

by, for example, picking (pi, ti) to maximise |Rmg(t)| overM× [0, T − 1
i ]. Notice in

particular that Qi →∞ as i→∞. Define rescaled (and translated) flows gi(t) by

gi(t) = Qi g

(
ti +

t

Qi

)
,

which as discussed in Section 1.2, will be Ricci flows on the time intervals [−tiQi, (T−
ti)Qi).

Moreover, for each i, we have |Rmgi(0)|(pi) = 1 and for t ∈ (−tiQi, 0], we have

sup
M
|Rmgi(t)| ≤ 1.

Therefore, for all a < 0, gi(t) is defined for t ∈ (a, 0], for sufficiently large i, and

sup
i

sup
M×(a,0]

|Rmgi(t)| <∞.

By Hamilton’s compactness theorem 2.10 (and Remarks 2.11 and 2.9), we can
pass to a subsequence in i, and get convergence (M, gi(t), pi) → (N , h(t), q) to a
“singularity model” Ricci flow (N , h(t)), defined for t ≤ 0, provided that we can
establish the injectivity radius estimate

(3.1) inf
i

inj(M, gi(0), pi) > 0,

or (as discussed in Remark 2.12) equivalently that

(3.2) inf
i

Volgi(0)[Bgi(0)(pi, 1)] > 0.

This missing step was historically a major difficulty, except in some special cases.
However, as we will now see, this issue was resolved by Perelman.

13
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3.2. Perelman’s no local collapsing theorem

The core result which solves the issue we have just discussed is:

Theorem 3.1 (Perelman [25]). Suppose that M is a closed manifold and g(t) is
a Ricci flow on M for t ∈ [0, T ) with T > 0. Then for all p ∈ M and t ∈ [0, T ),
if r ∈ (0, 1] is sufficiently small so that |Rmg(t)| ≤ r−2 on Bg(t)(p, r) (we call the
largest such r the curvature scale) then

Volg(t)[Bg(t)(p, r)]

rn
≥ κ(n, g(0), T ) > 0.

The proof of this theorem is an appealing argument using a monotonic entropy
that was discovered by Perelman, which allows one to deduce the existence of a
certain log-Sobolev inequality. The details may be found in [28, §8.3].

It may be worth pausing to visualise what Theorem 3.1 is ruling out. It says
that in finite time, the flow cannot collapse by shrinking a circle (which might
happen without making the curvature scale shrink to nothing) although this can
happen if we drop the hypothesis that M is closed, or if we consider the flow as
t → ∞. The flow can collapse by shrinking a 2-sphere, as we saw in the shrinking
cylinder example in Section 1.2.

Let us try to apply Theorem 3.1 to the Ricci flow g(t) from Section 3.1.
Rephrased in terms of the rescaled Ricci flows gi(t), that result tells us that for
all p ∈ M, t ∈ [−tiQi, (T − ti)Qi) and r ∈ (0, Q

1
2
i ] such that |Rmgi(t)| ≤ r−2 on

Bgi(t)(p, r), we have

(3.3)
Volgi(t)[Bgi(t)(p, r)]

rn
≥ κ > 0.

This statement will have two applications – first it will shortly allow us to establish
(3.2) in order to be able to apply Hamilton’s compactness theorem to give a limit
Ricci flow h(t), but it will also allow us to deduce a ‘non-collapsing’ property of
this limit.

For the first application, note that by construction, the curvature is controlled
for t ≤ 0 by |Rmgi(t)| ≤ 1 and so we are free to take r = 1 and t = 0 in (3.3) to give

Volgi(0)[Bgi(0)(p, 1)] ≥ κ
for all p ∈ M, which is stronger than (3.2). By the discussion in Section 3.1
this allows us to extract a limit “singularity model” Ricci flow (N , h(t)) for t ≤ 0.
Moreover, as the second application of (3.3), after a little thought we see that we
can pass to the limit i→∞ (which ultimately amounts to replacing Qi by ∞ and
gi(t) by the limit h(t)) to see that for all p ∈ N , t ≤ 0 and r > 0, if |Rmh(t)| ≤ r−2
on Bh(t)(p, r), then we have

(3.4)
Volh(t)[Bh(t)(p, r)]

rn
≥ κ > 0.

To summarise, we have shown the following:

Theorem 3.2. Suppose that Mn is a closed n-dimensional manifold, and g(t) is
a Ricci flow on M for t ∈ [0, T ), where T ∈ (0,∞) is maximal. Then there exist
sequences pi ∈M and ti ↑ T such that

Qi := |Rmg(ti)|(pi) = sup
t∈[0,ti]

sup
M
|Rmg(t)|,
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and so that if we define rescaled Ricci flows

gi(t) := Qi g

(
ti +

t

Qi

)
,

then there exists a complete bounded curvature Ricci flow (Nn, h(t)) defined for
t ≤ 0, and q ∈ N such that

(M, gi(t), pi)→ (N , h(t), q)

as i→∞. Moreover, we have

sup
t≤0

sup
N
|Rmh(t)| ≤ 1 = |Rmh(0)|(q),

and h(t) is κ-noncollapsed at all scales in the sense that for all p ∈ N , t ≤ 0 and
r > 0, if |Rmh(t)| ≤ r−2 on Bh(t)(p, r), then we have

(3.5)
Volh(t)[Bh(t)(p, r)]

rn
≥ κ > 0.





LECTURE 4

The case of compact surfaces – an alternative
approach to the results of Hamilton and Chow

In this lecture we will apply the theory we have developed so far in the case
that the underlying manifold is two-dimensional (and compact). In this dimension,
and with a little more effort in three dimensions, the rescaled Ricci flows h(t) we
saw in the previous lecture will be so-called κ-solutions, which are special ancient
solutions, that can be well understood. This dramatically restricts the types of
singularity that can occur for compactM, particularly in two dimensions when all
singularities will be seen to behave asymptotically like a shrinking sphere. (This
special structure does not follow in the noncompact case, as we shall see.)

The first simple ingredient in the 2D case that we will exploit is a lower bound
for the Gauss curvature:

Lemma 4.1. Given a Ricci flow (M2, g(t)) for t ∈ (0, T ] on a closed surfaceM2,
the Gauss curvature Kg(t) satisfies

Kg(t) ≥ −
1

2t
.

Proof. A computation reveals that under Ricci flow on a surface, the Gauss
curvature evolves according to the PDE

∂K

∂t
= ∆K + 2K2.

(Although we don’t need it here, a similar equation holds for the scalar curvature
in higher dimensions [28, Proposition 2.5.4].) The lemma is then easy to see by
the maximum principle: Note that − 1

2t is a solution to the ODE dK
dt = 2K2. (See

[28, Section 3.2] for more details.) In fact, although we have assumed that M
is compact, the result turns out to be true in much more general situations, even
where the normal maximum principle fails [4], as we will see in Lemma 5.4. �

Because the curvature decreases when we scale up a metric (see the end of
Section 1.2) an immediate consequence of the lemma is that the limit Ricci flows
h(t) arising in the previous lecture must all have weakly positive (i.e. nonnegative)
curvature in this case. Combining this fact with what we already know, these limit
Ricci flows h(t) will then be so-called κ-solutions in the sense made precise in the
following theorem.

Theorem 4.2. When the underlying manifold M is a compact surface, any limit
Ricci flow h(t) as constructed in the previous lecture must satisfy the following
properties, which define what it means to be a κ-solution:

(1) It is Ancient, i.e. it is defined for −∞ < t ≤ T , for some T ∈ R. (In
this particular, case, we can set T = 0.)

17



18 PETER TOPPING, RICCI FLOW

(2) It has Bounded curvature, but is not everywhere flat. (In this particular
case we have |Rm| ≤ 1 everywhere, and |Rm| = 1 at at least one point, by
construction.)

(3) It is Complete. (In this case, that was a consequence of Hamilton’s
compactness theorem.)

(4) It is κ-noncollapsed at all scales, i.e. there exists κ > 0 such that for each
time t at which h(t) is defined, and each point p ∈ N and radius r > 0
for which |Rm| ≤ r−2 on Bh(t)(p, r), we have

Volh(t)Bh(t)(p, r)

rn
≥ κ.

(In this case, that was a consequence of Perelman’s theory.)
(5) It has weakly positive (i.e. nonnegative) curvature operator. (In this case,

that simply means that the Gauss curvature is weakly positive, which was
the most recent thing we established.)

The notion of κ-solutions was introduced by Perelman [25, §11] principally
to study Ricci flow of three-dimensional manifolds. By virtue of the so-called
Hamilton-Ivey pinching result [21] (which we will not discuss here) it is also possi-
ble to establish that limit Ricci flows h(t) have (weakly) positive curvature in that
case too. The true significance of κ-solutions is that in low dimensions, they are
restrictive enough that we can understand what they look like. In two-dimensions,
this is particularly clean:

Theorem 4.3 (Perelman [25, §11.3]). The only oriented 2D κ-solution is the round
shrinking sphere (S2, g2(t)), as found in Section 1.2.

We may therefore deduce that for a Ricci flow on an oriented, compact surface,
whenever a finite-time singularity occurs, it can be rescaled to give the Ricci flow
that is a round shrinking sphere. But we already saw in Remark 2.4 that the only
way a Cheeger-Gromov limit can be a compact manifold is if the original sequence
of manifolds is (eventually) diffeomorphic to this limit. That means that we can
only have a finite-time singularity in a Ricci flow on an oriented, compact surface
if that surface is S2. Note that we then have Volg(ti)M → 0 as i → ∞. On the
other hand, if the underlying manifold is S2, then we can make a short calculation
(see [28, (2.5.7) and (2.5.8)]) to see that the volume measure evolves according to

∂

∂t
dµg(t) = −2Kdµg(t),

and hence by the Gauss-Bonnet theorem we have
d

dt
Volg(t)M = −2

∫
M
Kdµg(t) = −8π,

and the Ricci flow must shrink to nothing in a specific finite time T =
Volg0M

8π .
Note that at the times ti as which we are blowing up, the flow must look more and
more like a round sphere of volume 8π(T − ti), i.e. of curvature 1/2(T − ti). We
have proved the following result, with very different techniques to those originally
used.

Theorem 4.4 (Hamilton [19], Chow [5]). Let M2 be a closed, oriented surface
and g0 any smooth metric. Then there exists a unique Ricci flow g(t) on M, for
t ∈ [0, T ) so that g(0) = g0. We may assume that T = ∞ unless M = S2, in
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which case we have T =
Volg0M

8π , and there exist sequences of times ti ↑ T and
diffeomorphisms ϕi :M→M such that

ϕ∗i (g(ti))

2(T − ti)
→ g+1

as i→∞, where g+1 is a round metric of constant curvature +1.

Remark 4.5. With a little more work [19, 5, 11], one can show in fact that
g(t)

2(T − t)
→ g+1

uniformly as t ↑ T in Theorem 4.4.

The convergence in the higher genus case is possibly a little easier to deal with,
and one can prove:

Theorem 4.6 (Hamilton [19]). Suppose the surface in Theorem 4.4 is a torus T 2.
Then the Ricci flow g(t) satisfies g(t)→ gf smoothly as t→∞, where gf is a flat
metric.

If instead the surface in Theorem 4.4 is orientable, of genus γ > 1, then g(t)
2t →

g−1 smoothly, where g−1 is the unique hyperbolic metric that shares a conformal
class with g(t).

The easiest way of deriving the 2D compact Ricci flow theory appeals to the
Uniformisation theorem, which tells us that any Riemann surface admits a com-
patible Riemannian metric (i.e. inducing the same conformal structure) which has
constant curvature +1, 0 to −1, depending on its genus. More recently, Chen, Lu
and Tian [6] have shown that in this case of compact underlying manifold, one
can develop the Ricci flow theory independently of the Uniformisation theorem,
thus yielding a new proof of that fundamental result in the special case of compact
underlying manifold.

To motivate the material of the next lecture, one might ask the question of
whether Ricci flow will try to perform the same task of finding a constant curvature
metric in the case that the underlying manifold is noncompact. Now, even posing
the Ricci flow is an issue, as we shall see.





LECTURE 5

The 2D case in general – Instantaneously Complete
Ricci flows

5.1. How to pose the Ricci flow in general

We have just seen the complete theory, including asymptotics, in the compact 2D
case. We also have short-time well-posedness for Ricci flows starting with complete,
bounded-curvature metrics by virtue of Theorem 1.1. In this lecture we wish to un-
derstand the case that the underlying manifoldM is noncompact, but the starting
metric g0 could have unbounded curvature or even be incomplete.

To illustrate the difficulties involved here, we consider the following simple
example:

How should we Ricci flow the flat disc (D2, g0), where g0 = dx2+
dy2 is the Euclidean metric?

To get a feel for this, let’s return to the discussion of the logarithmic fast diffusion
equation at the beginning of these lectures, and write the Ricci flow as g(t) =
e2u(dx2 + dy2) where u must solve

(5.1)


∂u

∂t
= e−2u∆u

u(·, 0) ≡ 0.

Of course, there is an obvious solution, given that the initial metric is flat,
which is the flow that does not move, and is the flat disc for all time. That is,
the solution u ≡ 0 throughout D and for all times. However, this sort of trivial
solution would not exist even for a small perturbation of the initial data above, and
now that we have written out the PDE (5.1) we see that even amongst solutions u
that are continuous up to the boundary of D, we are free to prescribe u(·, t) on ∂D
for each positive t. We thus need an extra ‘boundary’-type condition to kill this
extreme nonuniqueness. The central idea of the theory we are about to see [29] is
that in full generality for Ricci flow on surfaces, a geometric condition which leads
to uniqueness (whilst preserving existence of solutions!) is that of instantaneous
completeness, that is:

We consider Ricci flows g(t) for t ∈ [0, T ) that are complete for
all t ∈ (0, T ).

In particular, in the case of Ricci flow starting with a disc, we have the following
result which is a variant of a very special case of [29].

Theorem 5.1. There exists a Ricci flow g(t) on the disc D2 for t ∈ [0,∞) such
that

(1) g(0) = g0, the standard flat metric,
(2) g(t) is complete for all t > 0.

21
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Any other Ricci flow g̃(t) on D2 over any time interval [0, T ) (with T ∈ (0,∞])
that satisfies both (1) and (2) above must agree with g(t) on [0, T ) where they are
both defined.

Given that the unit disc is not complete, something unusual must be happening!
This is easiest to see by considering the conformal factor u: For arbitrarily small
t > 0, the conformal factor u must blow up near the boundary at a fast enough
rate to be sure that the metric is complete. That means that the integral of eu
along any curve escaping to ‘infinity’ in the disc must be infinite. The graph of the
conformal factor looks something like:1

u(t, ·)

y

x

hyperbolic
metric

Initially the flow will look more or less like the flat disc on the interior, but in an
expanding layer around the boundary, the flow will have curvature approximately
its minimum possible value − 1

2t (recall Lemma 4.1). Indeed, if we write g−1 :=
4g0

(1−x2−y2)2 for the (unique) complete hyperbolic metric on the disc D that is a
conformal deformation of g0, then the Ricci flow g(t) will resemble 2t g−1 on the
expanding layer around the boundary, and eventually on the whole disc.

In fact, there is a much more general existence and uniqueness theory, which
we outline in the following section.

5.2. The existence and uniqueness theory

The original existence theory for instantaneously complete Ricci flows [29] was the
first to allow the initial curvature to be unbounded (below) and also allowed the
initial metric to be incomplete. However, more recently, the full existence and
uniqueness theory has been completed, which handles a completely general surface,
and gives the optimal existence time. Moreover, the flow g(t) we find has the

1Thanks to Gregor Giesen for this figure.
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additional property of being ‘maximally stretched,’ by which we mean that any
other (conformal) Ricci flow g̃(t) with g̃(0) ≤ g(0) must satisfy g̃(t) ≤ g(t) for all
t in any time interval [0, a) during which both flows are defined (irrespective of
whether or not g̃(t) is complete or has bounded curvature).

Theorem 5.2 (Existence: joint with Giesen [13]; uniqueness from [33]). Let
(M, g0) be a smooth Riemannian surface which need not be complete, and could
have curvature unbounded below and/or above. Depending on the conformal type,
we define T ∈ (0,∞] by

T :=

{
1

4πχ(M) Volg0M if (M, g0) ∼= S2,C or RP 2,

∞ otherwise.2

Then there exists a unique smooth Ricci flow (M, g(t)) for t ∈ [0, T ) such that
(1) g(0) = g0;
(2) g(t) is instantaneously complete;
(3) g(t) is maximally stretched.

This flow is unique in the sense that if g̃(t) is any Ricci flow onM, for t ∈ [0, T̃ ),
satisfying (1) and (2), then T̃ ≤ T and g̃(t) = g(t) for all t ∈ [0, T̃ ).

If T <∞, then we have

Volg(t)M = 4πχ(M)(T − t)→ 0 as t↗ T,

and in particular, T is the maximal existence time.

Several aspects of this theorem resemble the results we have seen of Hamilton
and Chow in the compact case (which have been absorbed into this result). How-
ever, there are some significant departures from that theory, and some shocking
examples of flows fitting into this theorem, as we survey in a moment.

Our Ricci flow can start with a completely general initial surface, but in the
special case that this initial surface is both complete and of curvature bounded
above and below, there is a competing flow, namely that of Shi from Theorem 1.1,
existing on some time interval [0, T̃ ), and by the uniqueness assertion of Theorem
5.2, these flows agree while Shi’s exists.

As we discussed in Section 1.2, if T̃ <∞, then we can assume that the curvature
of g̃(t) blows up as t ↑ T̃ . It may be then hard to imagine how one could have T > T̃
since this would imply that the curvature could blow up in our flow, but that we
could then keep on flowing. However, this is exactly what can happen, for example:

Theorem 5.3 (Proved with Giesen [15]). There exist a complete immortal Ricci
flow

(
g(t)

)
t∈[0,∞)

on C arising from Theorem 5.2, and a time t1 ∈ [1, 3) such that

sup
M

∣∣Kg(t)

∣∣

<∞ for all t ∈ [0, 1)

=∞ for all t ∈
(
t1, t1 + 1

100

)
<∞ for all t ∈ [4,∞).

In fact, using the techniques we develop to prove this theorem, we can prescribe
with great generality the set of times at which the curvature is unbounded. Note
that this feature now means that the term ‘maximal existence time’ needs to be
defined carefully in each noncompact situation. Our maximal existence time is

2Note that also T = ∞ if Volg0 C = ∞.



24 PETER TOPPING, RICCI FLOW

greater than, and in general strictly greater than the traditional maximal existence
time.

When we have unbounded curvature in these examples, it is unbounded above.
It can never be unbounded below for positive times, and indeed we have the follow-
ing curvature estimates. Formally they follow via the maximum principle, although
that does not apply directly in this general situation. In practice, they follow from
the actual construction made in the proof of Theorem 5.2, or via the theory in
[29, 4].

Lemma 5.4. In Theorem 5.2, the flow satisfies the lower curvature bound

Kg(t) ≥ −
1

2t

for all t ∈ (0, T ). If in addition we have an initial upper curvature bound Kg0 ≤
K0 ≥ 0 for the initial metric, then the flow g(t) has the upper curvature bound

Kg(t) ≤
K0

1− 2K0t

for all t ≥ 0 if K0 = 0, and for all t ∈ [0, 1
2K0

) otherwise. (Lower bounds for
the existence time T are implicit here.) Irrespective of any initial upper curvature
bound, if we have a lower curvature bound Kg0 ≥ k0 ≤ 0 for the initial metric, and
the initial metric is complete, then the flow g(t) has the lower curvature bound

Kg(t) ≥
k0

1− 2k0t

for all t ∈ [0, T ).

It may be clear from the discussion above that while our flow from Theorem
5.2 takes a general metric and makes it immediately complete and of curvature
bounded below, it need not immediately transform the metric to one of curvature
bounded above. That is, we do not immediately find ourselves in the classical
situation. This is illustrated in generality by:

Theorem 5.5 (Proved with Giesen [14]). For all noncompact Riemann surfaces
M2, there exists a Ricci flow g(t) on M2 for t ∈ [0,∞) (respecting the complex
structure of the surface) such that

sup
M

Kg(t) =∞

for all t ∈ [0,∞).

5.3. Asymptotics

One of the features of the Ricci flow theory on compact surfaces that we saw in
Lecture 4, was that it ‘geometrised’ a surface – i.e. up to scaling, it converged to a
constant curvature metric. In the noncompact case, so far we only fully understand
the asymptotics in the hyperbolic case:

Theorem 5.6 (Proved with Giesen [13]). Suppose we have a Ricci flow in The-
orem 5.2 on a surface which supports a complete hyperbolic metric H conformally
equivalent to the Ricci flow (in which case T = ∞ automatically). Then we have
convergence of the rescaled solution

1

2t
g(t) −→ H smoothly locally as t→∞.
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If additionally there exists a constant M > 0 such that g0 ≤MH then the conver-
gence is global: For any k ∈ N0 := N ∪ {0} and η ∈ (0, 1) there exists a constant
C = C(k, η,M) > 0 such that for all t ≥ 1 we have

∥∥∥∥ 1

2t
g(t)−H

∥∥∥∥
Ck(M,H)

≤ C

t1−η
t→∞−→ 0.

In fact, in this latter case, for all t > 0 we have
∥∥ 1
2tg(t)−H

∥∥
C0(M,H)

≤ C
t , and

even

0 ≤ 1

2t
g(t)−H ≤ M

2t
H.

Related results were proved by Ji-Mazzeo-Sesum [22] under the additional hy-
potheses that the initial data was complete, and of bounded curvature, and confor-
mally equivalent to a compact surface with finitely many punctures, and with all
ends asymptotic to hyperbolic cusps.

This theorem has to be reconciled with Theorem 5.5, which told us that there
exists a Ricci flow with unbounded curvature for all time on any noncompact Rie-
mann surface. In particular on any noncompact Riemann surface that supports a
hyperbolic metric, for example the disc D, there exists such an unbounded curva-
ture Ricci flow. On the other hand, in such a case Theorem 5.6 tells us that the
curvature is converging to −1, which is bounded! Ricci flow resolves this paradox
by sending the bad regions of high curvature out to spatial infinity, the convergence
of Theorem 5.6 being only smooth local convergence in general.

5.4. Singularities not modelled on shrinking spheres

We take the opportunity to give an additional example of Theorem 5.2 in action that
not only illustrates a distinction compared with Lecture 4 where all singularities
were modelled on shrinking spheres, but will also be useful in Lecture 7.

The starting metric will be conformally the complex plane, and look geomet-
rically like a spherical bulb with a hyperbolic cusp attached. Such a metric could
be constructed by bare hands, or would naturally arise by taking initial data in
Theorem 5.2 consisting of a punctured sphere, and flowing for a moment.

By scaling up or down, we assume our bulb metric gbulb has area exactly equal
to 8π, and that way Theorem 5.2 will make it flow for exactly time 2.

According to the theory developed in [8], [9], and the references therein, the
end of this flow will always look like a hyperbolic cusp. On the other hand, the bulb
part will gradually shrink under the flow, and just before the surface disappears
(along with all its area) it will look like a ‘cigar’ (see [28, §1.2.2]) tapering into a
hyperbolic cusp.
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gbulb:

t = 0

Even though one can blow up this finite-time singularity similarly to as in
Lecture 3, this situation does not fit into the discussion of Lecture 4 because we are
not on a compact manifold, and Perelman’s no local collapsing theorem 3.1 fails,
and we cannot deduce that the blow-up is a κ-solution and thus a shrinking sphere
as in Theorem 4.3. Indeed, as indicated above, the blow-ups in this case would
converge to a cigar metric [28, §1.2.2].



LECTURE 6

Contracting Cusp Ricci flows

There is one further type of well-posedness issue to discuss, and a new type of
Ricci flow in 2D fitting into this framework that will be needed in the next lecture.
Up until now, we have posed a Ricci flow by fixing an underlying manifold and
specifying an initial metric. Thus the initial metric is achieved as a limit of the
tensors g(t) as t ↓ 0. However, given the discussion of Cheeger-Gromov convergence
that we saw in Lecture 2, it could be considered more natural to ask for the initial
manifold to be achieved as a Cheeger-Gromov-type limit of (M, g(t)) as t ↓ 0.

Definition 6.1. ([31].) We say that a complete Ricci flow (Mn, g(t)) for t ∈ (0, T ]
has a complete Riemannian manifold (Nn, g0) as initial condition if there exists a
smooth map ϕ : N →M, diffeomorphic onto its image, such that

ϕ∗(g(t))→ g0

smoothly locally on N as t ↓ 0.

The usual way of posing Ricci flow fits into this framework by setting N =M
and taking ϕ to be the identity.

In practice, we will be interested in the case that (N , g0) has bounded curvature
but g(t) is allowed to have curvature with no uniform upper bound. In this way,
M and N may not be diffeomorphic since parts ofM may be shot out to infinity
as t ↓ 0 resulting in a change of topology in the limit.

This generalised notion of initial condition permits some new types of solution
which do not fit into the classical framework. In particular, we show that a bounded-
curvature Riemannian surface with a hyperbolic cusp need not be obliged to flow
forwards in time retaining the cusp (as it would in the solution of Shi or of Theorem
5.2) but can add in a point at infinity, removing the puncture in the surface, and
let the cusp contract in a controlled way. More generally we have:

Theorem 6.2 ([31]). SupposeM is a compact Riemann surface and {p1, . . . , pn} ⊂
M is a finite set of distinct points. If g0 is a complete, bounded-curvature, smooth,
conformal metric on N :=M\{p1, . . . , pn} with uniformly strictly negative curva-
ture in a neighbourhood of each point pi, then there exists a Ricci flow g(t) on M
for t ∈ (0, T ] (for some T > 0) having (N , g0) as initial condition in the sense of
Definition 6.1. We can take the map ϕ there to be the natural inclusion of N in
M.

Moreover, the cusps contract logarithmically in the sense that for some C <∞
and all t ∈ (0, T ] sufficiently small, we have

(6.1)
1

C
(− ln t) ≤ diam (M, g(t)) ≤ C(− ln t).

Furthermore, the curvature of g(t) is bounded below uniformly as t ↓ 0.

27



28 PETER TOPPING, RICCI FLOW

Let us consider one specific example where this theorem applies, that will be
required in the next lecture. Consider a punctured torus N := T 2\{p} (the torus
having any complex structure) and let g0 be ghyp, the unique complete conformal
hyperbolic metric on N . The metric will have a cusp at the puncture. One Ricci
flow continuation would be the homothetically expanding flow (which coincides with
the solution constructed by Shi and that of Theorem 5.2) but another continuation
would see the cusp contract with the subsequent Ricci flow living on the whole
torusM.

One characteristic of these nonuniqueness examples is that the initial condition
(N , g0) does not have a lower bound for its injectivity radius, or equivalently that
one can find unit balls of arbitrarily small area. In fact, this is a necessary condition
for nonuniqueness.

Theorem 6.3 ([31]). Suppose that (N , g0) is a complete Riemannian surface with
bounded curvature which is noncollapsed in the sense that for some r0 > 0 we have

(6.2) Volg0(Bg0(x, r0)) ≥ ε > 0

for all x ∈ N . If for i = 1, 2 we have complete Ricci flows (Mi, gi(t)) for t ∈ (0, Ti]
(some Ti > 0) with (N , g0) as initial condition in the sense of Definition 6.1, then
these two Ricci flows must agree over some nonempty time interval t ∈ (0, δ] in the
sense that there exists a diffeomorphism ψ :M1 →M2 with ψ∗(g2(t)) = g1(t) for
all t ∈ (0, δ].

Despite the nonuniqueness implied by Theorem 6.2, that construction throws
up a quite different uniqueness issue: Does there exist more than one flow that does
the same job of contracting the cusps? The next result shows that there does not.

Theorem 6.4 ([31]). In the situation of Theorem 6.2 (in which ϕ is the natural
inclusion of N intoM) if g̃(t) is a smooth Ricci flow onM for some time interval
t ∈ (0, δ) (δ ∈ (0, T ]) such that g̃(t) → g0 smoothly locally on N as t ↓ 0 and the
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Gauss curvature of g̃(t) is uniformly bounded below, then g̃(t) agrees with the flow
g(t) constructed in Theorem 6.2 for t ∈ (0, δ).





LECTURE 7

Subtleties of Hamilton’s compactness theorem

Having started with Hamilton’s compactness theorem 2.10 and applied it to 2D
Ricci flow theory, we now complete the circle by applying our 2D Ricci flow theory to
understand the subtleties concerning extensions of Hamilton’s compactness theorem
that are required in applications.

Up until now, the compactness theorem was used to blow up a Ricci flow that
is becoming singular, at points of maximum curvature (see Lecture 3). However,
in practice, it is essential to be able to analyse other parts of the Ricci flow where
the curvature may be blowing up, even though the curvature might be much larger
elsewhere. Moreover, there is an entirely different situation where one needs to
apply the compactness theorem, namely when making contradiction arguments.
Loosely speaking, in order to prove that a certain fact about Ricci flow is true to
some degree, one assumes otherwise – i.e. that there exists a sequence of Ricci
flows which violates the assertion to a greater and greater degree. One then tries
to appeal to compactness to get a limit Ricci flow with contradictory features.

For all these applications, Hamilton’s compactness theorem 2.10 is not quite
enough, because the curvature hypothesis

(i) sup
i

sup
x∈Mi, t∈(a,b)

∣∣Rmgi(t)

∣∣(x) <∞

is too restrictive. A modification of the proof yields the following modified result
where only local curvature bounds are assumed:

Theorem 7.1 (Extended Hamilton compactness theorem). Suppose that (Mi, gi(t))
is a sequence of complete Ricci flows on n-dimensional manifoldsMi for t ∈ (a, b),
where −∞ ≤ a < 0 < b ≤ ∞. Suppose that pi ∈Mi for each i, and that
(i) for all r > 0, there exists M = M(r) <∞ such that for all t ∈ (a, b) and for

all i, there holds

sup
Bgi(0)

(pi,r)

∣∣Rmgi(t)

∣∣ ≤M, and

(ii)
inf
i

inj(Mi, gi(0), pi) > 0.

Then there exist a manifold N of dimension n, a Ricci flow h(t) on N for t ∈
(a, b) and a point q ∈ N , such that (N , h(0)) is complete, and after passing to a
subsequence in i, we have

(7.1) (Mi, gi(t), pi)→ (N , h(t), q),

as i→∞.

In the literature this result is often stated (and used!) with the additional
conclusion that the limit Ricci flow h(t) is complete – that is, h(t) is complete
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for every t ∈ (a, b). It was noted recently [23, Appendix E] following questions
raised by Cabezas-Rivas and Wilking that this completeness ‘does not immediately
follow’. Our objective in this lecture is to demonstrate that in fact the completeness
fails in general, and some modification of earlier applications is required.

7.1. Intuition behind the construction

In this section we sketch an intuitive construction that indicates that a limiting Ricci
flow arising in Theorem 7.1 can be complete over an open time interval containing
t = 0, but incomplete beyond a certain time. The precise construction we make
in [32] is a little different to reduce the amount of technology required to make it
rigorous. (That technology was later developed in [15].)

At the core of the construction are the ‘contracting cusp’ examples of Ricci flows
we constructed in Lecture 6, and in particular, the alternative way of flowing the
torus T 2\{p} with its complete hyperbolic manifold ghyp (which has a hyperbolic
cusp as its end). Recall that one way of flowing this initial manifold is simply to
dilate (analogously to the shrinking sphere example from Section 1.2) giving

G1(t) := (1 + 2t)ghyp,

for all t ∈ [0,∞). In addition, we have the alternative flow from Lecture 6 where one
imagines capping off the hyperbolic cusp infinitely far out, and letting it contract
down. Let us write G2(t) for this alternative flow, which we view either as a
complete Ricci flow on T 2 for t > 0, or as a Ricci flow on T 2\{p} for t ≥ 0 which
is incomplete for t > 0 but equal to ghyp for t = 0.

From this discussion, we see that a perfectly valid smooth Ricci flow h(t) on
T 2\{p} would consist of G1(t+1) for t ∈ [−1, 1], followed by an appropriate scaling
of G2(t), restricted to T 2\{p}. Precisely, that scaled flow would be the restriction
to T 2\{p} of 5G2 ((t− 1)/5) for t ∈ (1,∞). Beyond t = 1, the flow would be
incomplete because we have removed the point p.

The core principle of this lecture is:
Such flows h(t) can arise as Hamilton-Cheeger-Gromov limits of
complete Ricci flows within the extension of Hamilton’s compact-
ness theorem given in Theorem 7.1.

A precise statement can be found in [32]; here we sketch how one could hope
to construct a sequence of complete, bounded-curvature Ricci flows satisfying the
hypotheses of Theorem 7.1, with a limit flow as given above.

The basic building blocks are the complete hyperbolic metric ghyp on T 2\{p}
and a complete metric gbulb on the punctured 2-sphere (equivalently on the plane)
whose end is asymptotic to a hyperbolic cusp, and whose area is exactly 8π, as
considered in Section 5.4. In particular, the Ricci flow of Theorem 5.2 would flow
gbulb for exactly time 2 before all area was sucked out of the bulb part of the
manifold, and at each time the flow would have a cusp-like end.

The Ricci flows gi(t) we wish to imagine putting into Theorem 7.1 will exist
on the whole of T 2. They will be the Ricci flows whose initial data at t = −1
arises by chopping off the ends of the cusps of both the metrics ghyp and gbulb,
and gluing them together. The larger i becomes, the further out we wish to make
our truncations. If we fix a base-point q ∈ T 2\{p}, and consider p to correspond
to some fixed point in the bulb surface for each i, then the distance dgi(−1)(p, q)
converges to infinity as i→∞.
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The idea then is that the two distinct parts of gi(−1) will evolve largely inde-
pendently of each other within the time interval [−1, 1), but then at time t = 1,
the area within the bulb part of the flow will have been exhausted, and the cusp
end of the torus part of the flow should start contracting. The effect of this is that
during the initial time interval [−1, 1), the Ricci flows (T 2, gi(t), q) will converge
to a homothetically expanding hyperbolic metric on T 2\{p} in the large i limit
(with the bulb part too far away to see) but for t > 1, the manifolds (T 2, gi(t), q)
should have uniformly controlled diameter (independent of i) and will converge to
a smooth metric on the whole torus in the Cheeger-Gromov sense. Conversely, an
observer at p will (in the limit i → ∞) be living in a separate ‘bulb’ universe to
q until time t ∼ 1 when a big crunch occurs and the point q flies into view as
p appears in the ‘torus’ universe. The construction is illustrated in the following
figure.

gbulb:

ghyp:

t = −1 t ∼ 1 t > 1

q q q

p

It is not too difficult to argue precisely, using pseudolocality technology (see
[25]) that one obtains the expanding hyperbolic metric flow as the limit on an initial
time interval. In order to show that the cusp will start collapsing at a uniformly
controlled rate before some uniformly bounded time we require some more involved
a priori estimates. In [32], we prove these estimates in a slightly different situation
to the one outlined above, notably replacing the bulb metric by long thin cigars
with k-dependent geometry, but with area uniformly bounded above and below.

7.2. Fixing proofs requiring completeness in the extended form of Hamil-
ton’s compactness theorem

We have seen in this lecture that under the traditional hypotheses of the extended
Hamilton compactness theorem 7.1, we cannot rely on the limit being complete for
all times. However, in applications, this completeness is typically essential. We
would therefore like to end by commenting on some additional hypotheses that
will deliver this completeness. In the major applications of this theory, such as in
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Perelman’s work on Ricci flow [25], one or other of these hypotheses can typically
be seen to be available. More details can be found in [32].

The first fix will work in many applications where the dependency of the upper
bound for the curvature on the radius is really hiding a dependence on i. One
important example of this is in the proof of Perelman’s pseudolocality theorem
[25]. More precisely, the limit h(t) will be complete for all t ∈ (a, b) in Theorem
7.1 if we replace hypothesis (i) with

(i)′ For all r > 0, there exist K ∈ N dependent on r, andM <∞
independent of r, such that for all t ∈ (a, b) and for all i ≥ K,
there holds

sup
Bgi(0)

(pi,r)

∣∣Rmgi(t)

∣∣ ≤M.

Perhaps the greatest use of Ricci flow compactness in the work of Perelman is
in his development of the theory of κ-solutions in [25, §11], as defined in Lecture 4,
which is critical in applications. In this situation, one has nonnegative curvature,
which prevents distances from increasing as time advances. This implies that the
flow cannot turn an incomplete manifold into a complete one as t increases, and
therefore that the limit flow must be complete for all negative times. The following
result illustrates the idea, and can be generalised in many different directions (cf.
[23]).

Theorem 7.2 (Compactness of Ricci flows with a lower Ricci bound). In the
situation of Theorem 7.1, if each flow gi(t) has Ricci curvature uniformly bounded
below (also uniformly in i) then the limit Ricci flow (N , h(t)) is complete for all
t ∈ (a, 0].

Note that the example whose construction we have sketched in Section 7.1
has a loss of completeness beyond some positive time. In the special case of two-
dimensional Ricci flows, one can never have a loss of completeness for negative
times in Theorem 7.1, because we know ([4], cf. (4.1) and (5.4)) that the Gauss
curvature of each flow is bounded below by − 1

2(t−a) , and one can apply Theorem
7.2 over arbitrarily smaller time intervals (a+ ε, b), for ε ∈ (0, |a|).
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