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Mean curvature flow and geometric inequalities

By Peter Topping at Berkeley

Abstract. We explore the link between the mean curvature flow and inequalities
relating geometric quantities such as area, volume, diameter and Willmore energy. On one
hand we observe how isoperimetric inequalities can be extracted from the theory of curve
shortening on surfaces; in particular we give a new inequality which simultaneously gene-
ralises the inequalities of Alexandrov, Huber, Bol and others. On the other hand, we find
geometric inequalities which must be satisfied for the mean curvature flow in higher di-
mensions to evolve smoothly before disappearing at a point; in particular we give a lower
bound for the area of a dumbbell in terms of its length which must be satisfied for its
neck not to pinch off.

1. A new isoperimetric inequality

In this article, we will both develop and apply the theory of mean curvature flow.
The main application will be a new isoperimetric inequality on surfaces, and we begin by
stating the inequality and discussing its consequences independently of curvature flow
theory.

Let (D, g) be the closed 2-disc equipped with some metric g. Given a domain Q < D,
we denote the area of Q with respect to g by A4(€2). Similarly, the length of a curve y, with
respect to g will be written L(y). We use the shorthand 4 = A (D) and L = L(0D). The
Gauss curvature with respect to g, denoted K, induces the rearrangement K*:(0,4) » R
defined to be the unique decreasing function with the property that

Area({xeD|K(x) 2 s}) = [{ye(0,4) | K*(y) 2 5}|,
for all s e R. We also write K, (x) = max {K(x),0}.
Theorem 1. Suppose the surface (D, g) satisfies

(1) (K, <2m,
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and that the boundary 0D is convex in the sense that the curvature vector of 0D is inward
pointing. Then there holds the isoperimetric inequality

(2) 4nA§L2+2]1(A—x)K*(x)dx.

A proof of this theorem will be offered in the next section, once we have introduced
the notion of curve shortening on surfaces.

Equality is achieved in (2) for any rotationally symmetric g which satisfies K (x) = K(y)
whenever | x| < |y|, and of course for any other metric having this property after being
pulled back by a diffeomorphism of D.

The theorem as stated is no longer true if we remove the hypothesis that the surface
is simply connected (i.e. a disc). As counterexamples we propose a long but thin cylinder,
and a flat torus with a small disc removed. Both of these have K= 0 and small boundary
length but with potentially large area. Of course we may derive an inequality for multiply
connected subdomains of a simply connected domain by filling in any holes (which increases
A and decreases L) before applying Theorem 1. However, the Gauss curvature term in (2)
will necessarily have to be calculated over the whole outer domain.

The condition (1) and the boundary convexity hypothesis are used to enable a concise
curve shortening proof; in fact, the result remains true without them?).

Our inequality generalises a variety of classical inequalities, as we shall now demon-
strate. A discussion of these, together with comprehensive bibliographic details, may be
found in the book of Bandle [3] and the article of Osserman [12].

Corollary 1. With the hypotheses of Theorem 1 we have the following special cases:

(1) (Alexandrov) Given K,€e R,

4nA S L*+ KyA> +2A [ (K—K,), .
D

(i1) (Fiala-Huber)
4nA<L*+24(K,.
D

(iii) (Bol) If K<K,eR,
AmA<L*+ K, A%,

(iv) (Bernstein-Schmidt) If K is constant,

dnA < L* + KA*.

1) In [18] we adapt the method of polyhedral approximations of Alexandrov, Burago, Zalgaller and others
to give a complete proof without additional hypotheses. This result also provides information for non-simply
connected surfaces. We also have a proof using potential theory, without these conditions but with the assumption
that K> 0.
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Each of the special cases is sharp. In particular, equality is achieved in (iv) for geodesic
discs on a round sphere, and (ii) is seen to be optimal by considering a long cylinder
capped at one end by a hemisphere (and perturbed slightly to satisfy the hypotheses of
Theorem 1). The latter example justifies the ‘loss of a factor of two’ in (ii) compared with (iv).

Proof of Corollary 1. We could simply prove part (i) and then deduce the other
parts as consequences. Instead, we broaden the discussion in order to indicate the behaviour
of the K* term of (2) in different special cases. To prove (iii), we simply observe that if
K < K, then K* < K,,, so that

4 4
2f(A—x)K*(x)dx £2[(A—x)Kydx = K, A” .
0 0

Part (iv) follows as a special case, or directly by observing that K* = K if K is constant.
To prove (i), we define

Q,={xeD|K(x)=K,},

and set m = A(Q,) so that K*(x) = K, for any x < m, but K*(x) < K, for any x > m. We
may then decompose

2?(A —x)K*(x)dx = 2}’(A —x)(K*(x)—KO)dx+2:E(A — x)(K*(x) — K,) dx
+2}1(A—x)K0dx.

Abandoning the negative second term, crudely estimating the first, and calculating the
third, we see that

2}1(/1 —x)K*(x)dx < 2Arf(K*(x)—K0)dx+K0A2 =KyA*+24 | (K—K,)

Q24

= Ko A? +24 [ (K~ Ko), ,
D

at which point Alexandrov’s inequality follows from Theorem 1. Part (ii) is then just the
special case K, =0, or may be proved directly with a simplified calculation. O

2. Curve shortening on surfaces and a proof of Theorem 1
Let 2 be a Riemannian surface. Given a smooth embedded closed curve y, in X, we
call a family y, (0 < ¢ < T') of other such curves the ‘curve shortening flow’ of y, until time

T if there exists a smoothmap F: S* x [0,T) — X suchthat F(-,7): S* —» Y isan embedding
representing y, for each 1€ [0,7), and F satisfies the equation

CFO.0 =k (FO.0) v (FO.0)
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where x, is the curvature of y, corresponding to a choice v, of normal vector, so that —x,v,
gives the curvature vector.

Under the curve shortening flow, the length L, of y, decreases monotonically accord-
ing to

dL
3 = 2.
3) dt yjth

The theory of curve shortening was originally developed for curves in the plane
(2 = R?). In this case, any embedded closed curve has a corresponding flow which evolves
smoothly before shrinking to a point at some time ¢ = T’ this was proved by Grayson [6]
and Gage-Hamilton [5]. During its evolution, the area A, enclosed by the curve decreases
at constant rate

R = —
7 ixt 2m.

A standard tool in the development of curve shortening theory is the isoperimetric in-
equality. However, we observe that we may also often recover inequalities from the basic
flow theory. (This has already been observed by Ben Andrews in the context of affine
curvature flow and affine isoperimetric inequalities [1].) For example, given a closed curve
70 in R? of length L = L, which encloses an area 4 = 4,, let us move the curve via the
curve shortening flow until time ¢ =T when it disappears at a point. We may use the
formulae for the evolution of 4, and L, to calculate

dA 2 dL dL}
—4nd—t':4nv{xt:2<£xt> §2L,£K,2= —2Lt71’: — dtt )

Integrating between times =0 and =T, we recover the isoperimetric inequality for
simply connected domains in the plane

4) 4 A< L*.

This example serves merely to emphasise a link — in fact, in [17] we have given a one line
proof of (4) for any domain in the plane, using only Stokes’ theorem. However, as we
shall shortly see, the same ideas may be used to prove our new isoperimetric inequality (2).

Let us now drop the restriction that ¥ = R?. Instead, we allow X to be any compact
Riemannian surface, though we insist that any boundary is convex. Grayson has developed
a theory of curve shortening for curves on such surfaces [8]. He proves that given an
initial embedded closed curve, the curve shortening flow exists either for a finite time T’
when the curve shrinks to a point, or for infinite time, in which case the curvature «,
converges to zero in C”. In the latter case, there exists a sequence of times ¢, — oo such
that y, converges to a geodesic in C”. It is unknown whether this convergence is uniform
in time, though for curve shortening in manifolds of dimension larger than two, we have
an example of where it is not uniform [16]. We remark that the condition that the boundary
is convex is used to prevent the evolving curve from escaping outside 2.
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In the case that X is simply connected, we again have the notion of the subdomain
Q, enclosed by y,. As before, its area 4,, evolves according to

dA,
_z_jKt’

though it is no longer forced to decrease at constant rate — indeed it may increase in general.
We are now in a position to prove our main result.

Proof of Theorem 1. 1If y is a closed curve in D with interior Q, the Gauss-Bonnet
theorem states that

(5 2n— [K= |k,

where k is the curvature of y. An immediate consequence is that the hypothesis (1) bars
the existence of a closed geodesic in D.

Our strategy will be to let y, = D flow by curvature, just as we did when recovering
the isoperimetric inequality in the plane. Appealing to Grayson’s theory as described above,
either the curve shrinks to a point in a finite time 7, or it subconverges to a closed geodesic
at 1 — 0. Since we have just ruled out the existence of a closed geodesic in D, we are left
only with the former option.

By using (5) and (1), we see that the area A4, of Q, decreases according to

dA,

7 =—£Kt=—<2n—£tK><O.

Since the length L, of y, decreases according to (3), we may calculate

dA, 2 dL, dL}?
—2— — | K)=2 <2L P= 2L —= L.
dt< j > <~[ ’> = ‘{K’ " dt dt

Ve

We now return to the definition of K* to find that

PENR
o
Therefore we have
dA dL? dA A d 4
—4n dtt dtt < = —2— j jK*(x)dxds,

which we may integrate between times t =0 and 1 =T to give

A s A A
dnAd—L* <2 [K¥(x)dxds =2 | | g«  K*(x)dxds,
00 0 0
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where y, _, is defined to be 1 if x <s, but 0 otherwise. Evaluating the integral with respect
to s yields the conclusion

A
4nASL*+2[(A—x)K*(x)dx. O
0

3. The mean curvature flow in higher dimensions

In the remaining part of this paper, the main theme will be singularity formation in
the mean curvature flow — the higher dimensional analogue of the curve shortening flow.
The central idea of comparing the evolution of different geometric quantities during the
flow will persist. However our motivation will not be to obtain geometrically significant
facts by using the flow; instead we will be deriving geometric conditions on a surface which
must be satisfied in order for its flow to evolve smoothly before disappearing at a point.
When we then produce surfaces which violate these conditions, we may deduce the existence
of singularities in their flows. The advantages of our methods are that they are suitable
for generalisation to, for example, the flow of hypersurfaces in curved ambient manifolds,
and that we may easily get estimates on the time taken for singularities to develop.

Let us begin by introducing the mean curvature flow with traditional notation and
appropriate normalisations. Further details may be found in [14].

Let .# be a complete oriented m-dimensional manifold without boundary. Given a
smooth embedding .#, of .4 in R™*!, a family .#, (0 <t <T) of other embeddings of
M is said to be the ‘mean curvature flow’ of .#,, if each .#, is represented by an embedding
F(,t): M — R™ ! such that

0
EF(.X,I)ZH(X,I),

on ./, *[0,T), where H(x, t) is the mean curvature vector of .#, at the point F(x, t). We
adopt the normalisation for the mean curvature vector which makes it the unit normal
vector for the unit sphere (pointing inwards) so | H| is the magnitude of the mean of the
principal curvatures {x;}.

The mean curvature flow decreases the area .o/ (#,) of .4, according to

d
(6) 5 M) = —mW (M),

where
W(M):= | |H|?
M

is the ‘Willmore energy.” We will need the fact that for any surface .# in R?, there holds
the estimate

() W(M) z 4w,
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with equality if and only if .# is a round sphere. This follows from the pointwise identity
1
|H|? — K= 2 (, — x,)? (where K is the Gauss curvature) which we may integrate over

the set .4/, = {xe ./ |K(x) =0} to obtain

Wa)z [ HPZ | K2 4n.

M+ M+

An alternative proof is a bi-product of Section 6.

A crucial property enjoyed by the mean curvature flow is the so-called ‘comparison
principle.” Loosely speaking this says that two nonintersecting hypersurfaces will remain
nonintersecting when each is evolved simultaneously.

As we shall see, the comparison principle may be used to restrict the movement of
an evolving hypersurface, by comparing it to a ‘barrier’ — a known solution of the mean
curvature flow which is initially disjoint. Typically these known solutions are ‘self-shrink-

ing’ solutions which evolve simply under homothety .#, = |/(1 —¢/T).#, for an appro-
priate origin. The simplest examples are the round spheres whose radii evolve according to
2

(®) r(t)=1/rs —2t,
To

where r, is the initial radius. Note that the sphere exists precisely up to time ¢ = 5

However, there is another extremely useful example, of a 2-torus .7 =— R? discovered by
Angenent [2] which evolves in the same self-shrinking manner.

In [10], Gerhard Huisken proved that convex hypersurfaces flow smoothly until
shrinking to a point at a time ¢ =T. In particular, the area of the hypersurface and the
volume it encloses in the ambient R™*! both converge to zero as ¢1 7. In contrast, non-
convex hypersurfaces may develop singularities before shrinking to a point. Intuitively,
two round spheres connected by a thin neck (a ‘dumbbell’) should develop a singularity
rapidly because the thin neck has a tendency to collapse much faster than the two spheres.
A rigorous proof of this idea was first given by Grayson [7]. However, a more elegant
proof resulted from Angenent’s discovery of a self-shrinking torus, used in conjuction with
the comparison principle. As described with pictures in [2], the self-shrinking torus may
be used to collapse around the neck, whilst the bells of the dumbbell are prevented from
collapsing by two self-shrinking spheres in the interior. We call this the ‘noose’ method.

Klaus Ecker has shown that a neck may be forced to collapse by comparison with
a family of hyperboloids which acts as a subsolution for the mean curvature flow. The
argument may be found in [4] together with a survey of Brakke’s ‘clearing out lemma’
which will also prevent a thin neck from persisting and force a singularity when applied
appropriately.

In the sequel, we will give three new methods to prove the existence of singularities
in the flow of dumbbells. The first two, below, will use geometric inequalities and be
particularly suitable for generalisations to situations where self-shrinking solutions are no
longer known, or make no sense — for example to the situation of curved ambient manifolds.
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The third method, which we call the ‘guillotine’ method, will use only the comparison
principle, and only with explicitly defined barriers. This final method is detailed in Section 5.

4. The formation of singularities

The use of the mean curvature flow to prove isoperimetric inequalities in higher
dimensions is severely limited by the possibility of singularity formation in flows. However,
for any compact surface .#, in R*® with mean curvature flow .#, for t€ [0, T) such that
the volume 7"(.#,) enclosed by .#, converges to zero as ¢ 17, we may use (6) and (7) to
calculate

O) — Sy =~ [ Hys | H S 200 )}
P G AT I 114
(10) < atatncapt( T - A )

3
2

1 d
11 =——= —AM)?,
(11 o i

where v is the outward pointing unit normal. Integrating over the range r=0 to t =T,
and squaring, we recover the isoperimetric inequality

1
V(M) S ——— oA (M) .
(M) £ 5o A ()

In particular, this argument works for any convex .#,, by the result of Huisken mentioned
in Section 3.

We may use the above argument to prove the existence of singularities in the flow
of certain 2-tori, before the volume they enclose can shrink to zero. Let us define

O:= inf W(T?)

T2 R3

to be the greatest lower bound for the Willmore energy of each torus embedded in R3.
By (7) we know that ® = 4%. However, by appealing to the existence of a torus minimising
the Willmore energy over all tori — a fact proved by Leon Simon in [13] — we may deduce
that @ > 4. (The Willmore conjecture states that @ =2n2) Now let us carry out the
above argument for a torus .#, which evolves under mean curvature flow such that
vV (M,) — 0 as tTT. Using the definition of @ in place of (7), we see that

) 1
(12) V(M) S 5o A (M)
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However, as @ > 47, we can find a torus .#,, which violates (12) — by taking the boundary
of a ball with a thin hole drilled through it, for example. Such a torus must then develop
a singularity under the mean curvature flow before the volume it encloses can shrink to zero.

If we assume that such a ‘fat’ torus develops its singularity by the small hole closing
up, then we have an alternative barrier for the ‘noose’ method of Angenent mentioned in
Section 3. By passing a thin neck of a sphere through the small hole in the torus, the neck
would be strangled before the sphere could shrink to nothing, just as described in Section
3. In fact, we have a better theoretical reason for why a singularity must develop, based
on the violation of a geometric inequality, as we now describe.

Theorem 2. Suppose M, is a 2-sphere embedded in R* which encloses two round
2-spheres, both of radius r, with centres separated by a distance d > 0.

Then a necessary condition for o/ (M,) to decrease to zero under the mean curvature
fow of M, is that

2.2 4 3
(13) ﬂ(ﬂ@%[‘l! + ‘;r +r4}n2

and in particular that

d
(14) A (M) > %
If (14) fails to hold, then a singularity must develop in the flow before time

_ A (My)?

Corollary 2. There exists an embedded two sphere M, in R> enclosing two unit spheres
with centres separated by a distance 10, such that 4, must develop a singularity under the
mean curvature flow before of (M,) can decrease to zero.

The corollary follows by observing that if » = 1 then we can choose .#,, to have area
arbitrarily close to 8%, at which point the condition (13) is violated for d = 10.

Remark 1. We conjecture that we may strengthen the condition (13) by a factor of
two. This will be discussed in Remark 2 below.

It is interesting to observe to what extent the necessary conditions of Theorem 2
sharpen the sufficient condition of Huisken [10] that .#, is convex. In particular, whilst

d
oA (My) > r_;z is necessary (and we expect .7 (.#,) > ﬂrdn to be necessary — see Remark

1) any convex sphere satisfying the hypotheses of Theorem 2 must clearly satisfy

A (My)>2nrd+4nr* ~2rdn  for large d.
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To prove Theorem 2 we will need an estimate of the external diameter

diam(#) = max |x — y|

x,yeM
of a surface in R? in terms of its area and Willmore energy.

Lemma 1. For any compact connected orientable surface M immersed in R>, we have
the estimate

(16) diam (/) < %(ﬂ(%)%(%))%.

The estimate was obtained by Leon Simon in [13] with some universal constant in

2
place of the constant —. We will give a proof (following Simon’s strategy) in Section 6.
i

2
Remark 2. It seems likely that the constant — in (16) could be halved. Certainly no
T

further improvement is possible in general, as we may see by considering a long cylinder
with the ends capped by hemispheres. This improvement would translate directly into an
improvement of Theorem 2 as mentioned in Remark 1.

In fact, for any immersed surface .#, we conjecture that

(17) diam(%)<% [ IH]I,

M

to which we could apply the Cauchy-Schwartz inequality.

In the case that .# is a surface of constant mean curvature immersed in R3, we
established in [17] that

o (M) H
diam(,/%)§7(2)| |,
Y

which is twice as strong as (17) and four times as strong as (16). Equality is then achieved
when ./ is a sphere.

Proof of Theorem 2. We will use (16) as a lower bound on the Willmore energy
rather than an upper bound on the diameter. Let /] and %, be the spheres of radius r
with centres separated by a distance d. Under the mean curvature flow, both spheres shrink
in a self-similar manner, possessing radii |/ r? — 2t at time ¢. Therefore, by comparing the
flow of .#, with the flow of ] and .%,, we see that

diam (#,) 2 d+2]/r* — 21
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2
for times z € [0, %) Applying Lemma 1 and (6) we then find that

d+2)/rF =21 <= (%(ﬂ)%(%})% 2( AM,) ~ dd(ﬂ))

1

d AV
=;<_E(&{(ﬂt)) > :

2
. . . . r .
Taking the square, and integrating between times =0 and ¢ = 5 we arrive at the

estimate

5
2 2 2 2 ) 2 >
oA (My) >Jz/(%7) g (d+2)/r*=20*di zn [

d*r* 4dr’*
+ 3 +r7 .

The time limit (15) is obtained by integrating as before and observing that in this time,
the area must have decreased by more than its original value. This estimate may clearly
be improved, but at the expense of simplicity. O
5. The guillotine
We now describe our final method to prove that a sphere evolving under mean
curvature flow may develop a singularity as a neck pinches off. The idea is less simple

than that of Angenent as described in Section 3, but more elementary in the sense that
we do not have to appeal to an existence theorem for a self-shrinking torus.

Defining f: <— g, g) — R by
/()= —In(cos (x).

we recall that the graph of f — the so-called ‘grim reaper’ — evolves under curvature flow
in the plane by vertical translation at unit speed.

Let us consider the graph surfaces .#, and ./, in R® defined by

Mo = {(xyf(X))|x€< 5 2>,yeR},

Ny = {(x,y,2f<%}> +£>|xeR,ye(—n,n)},

1
where ¢ € (O, E) is some small constant. These are troughs, of different sizes, which lie

and

perpendicular to each other. Under mean curvature flow, .#, and ./} evolve ‘upwards’

1
(i.e. in the direction of the third axis) at speeds 1 and 7 respectively. Note that for times
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t < 2¢, we may join the points p; = (0,10,10) and p, = (0, — 10, 10) by a path lying entirely
above .#, and only below ./}, but for times immediately after ¢ = 2¢, this is impossible.

.1 . .
Note also that the spheres %] and .%, of radius 2 centred at p, and p, respectively, intersect
neither .#, nor .

It is now not hard to see that any embedded sphere in R® which lies entirely above
My, only below A5, and which encloses both % and %, must have a neck pinched off
within time = 2¢ when evolved under the mean curvature flow. (Such a sphere must
already have a thin neck to slip between .#,, and .4;,.) Indeed, by comparing the evolving

surface with the self-shrinking spheres starting at %] and %, (which survive until time ¢ = g)
. . , 1

we see that it continues to enclose p, and p,, at least up to time ¢ = g However, by com-

paring the evolving surface with .#, and ./#; between which it is sandwiched, we see that

it must be guillotined before the time 1 =2¢ < 3

We remark that many sandwiching techniques using the maximum principle were
developed in [15] to provide new examples of singularity formation in the harmonic
map flow.

6. Diameter, area and Willmore energy

In this section we give a proof of Lemma 1. We follow the strategy of Leon Simon
given in [13], with modifications reflecting our desire for an explicit constant.

Proof. Let us fix, for the moment, y € #<>R3>and 0 < ¢ < g. Writing X (x) = x — y
and | X |, = max (| X|,0) we define a Lipschitz vector field on R*® by

P(x)=(1X1,2 -0 ?), X.
To & we will apply the first variation identity

[div,0=-2[®.H,
M

M

where for any orthonormal basis {e,e,} of T,.# we define

2

div, ®(x) = ) ¢.V(P(x).¢;).

i=1

A short calculation reveals that

2(67%2—907?) if | X|<o,
. | X+ -
(18) div,®= (2 X —0 %) ifo<|X|<g,

0 if o <|X|,
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where X+ = (X.v)v, and v is a choice of normal vector. Hence we find the identity

| X

(19) o A (M) =0 A (M) — | - [ (XI;2—e " HXH,

4
tig o | X M

where M, =M NB,(y) and M, ,= M (Bg(y)\Ba(y)). We now claim the pointwise
estimate

| X

20 —
20 X

- _ 1
—(X|;?—¢ HXH< Z|H|2

for xe ., ,. If X.H = 0 then the left-hand side of (20) is nonpositive, so the claim is trivial.
If, on the other hand, X. H <0, then we may estimate

XJ_Z

X H, X
2 T XP

X

- _ 1 _ 1
— (X2 —¢ Z)X-HZ—‘ +Z|H|2+Q 2X.H§Z|H|2'

Adding the integral of (20) over .#, , to (19) we find that

1) o P (M) S P A (M) + %|H|2— [ (67— )X.H.

o,0 Mo

Since we chose y € ., the left-hand side of (21) has a nonzero limit as ¢ — 0. In fact, the
limit is equal to kn, where k£ =1 is the number of times y is covered by the immersion.
Moreover, |X.H|=0(| X|?) as | X| — 0, so by taking the limit ¢ — 0 we find the key
fact that

(22) km < 972 (M) + %W(/%@) :

We observe that (22) is sharp in the sense that we may not improve either coefficient on
the right-hand side. Indeed, in the limit ¢ — 0 we have equality, which pins the first
coefficient, whilst the limit ¢ — oo implies

(23) kn < %W(,/%)

in which we have equality when .# is a round sphere. The inequality (23) was first obtained
by Li and Yau in their work on conformal volume [11]. In particular it implies that the
Willmore energy of any immersed surface with a self-intersection must be at least 8.

We now proceed to use (22) to estimate the diameter of .# (cf. [13]). Let us fix
) ( oA (M)
Q =

1
m>2 , and choose N = 0 to be the integer such that

diam (A#) {<N< diam (.4 )

24
(24) % %
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Then let us fix y, € .# at an extremity of .# — in other words so that
diam(#) = max |x — y,|
xeM
— and choose, for each j satisfying 1<j<N (if N=1) a point y;e.# such that
|yj_y0| =2jo.

Now we apply (22) for each y € { y,, ..., yy} and take the sum. By virtue of the facts
that the subsets B, (y;) are disjoint, and that k = 1, we obtain

1 1
(N+D)rn <o 2ol (M) + ZW(%) = 5%(,/%).
Combining with the first inequality of (24) we conclude

. A (M)\5 1 2 1
d MY<29(N+V)ZS4— | — W (M)=—(A(AMYW (M))2.
fam () <20(N+1) = (W(//)>2n (M) =~ (A (M)W (M)
We remark that although we do not insist that N > 0, we may in fact assume that
diam (.#) = 49 and hence that N = 2. This is because otherwise the lemma follows auto-

matically from the observation

(LYW (M2 . D

AMYN2 _ o (A ONSH(A) 2
WM = \W (M) 4n m

diam(#) <49 = 8(
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8. Addendum

Since the completion and acceptance of this work, Frank Morgan has informed us
that a similar result to our Theorem 1 has been obtained independently by Morgan-
Hutchings-Howards and is to be found in [9].
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