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Abstract. We settle a number of questions about the possible behaviour of the
harmonic map heat flow at finite-time singularities. In particular, we show that a
type of nonuniqueness of bubbles can occur at finite time, we show that the weak
limit of the flow at the singular time can be discontinuous, we determine exactly the
(polynomial) rate of blow-up in one particular example, and we show that ‘winding’
behaviour of the flow can lead to an unexpected failure of convergence when the
flow is (locally) lifted to the universal cover of the target manifold.

1. Introduction

Given a compact Riemannian manifold N , we define the energy of a sufficiently
smooth map u : D → N from the 2-disc D to be

E(u) = 1

2

∫
D

|du|2.

(The integral over an alternative region � ⊂ R
2 will be denoted by E(u, �).) The

tension field τ = τ(u) ∈ �(u∗(T N )) is the vector field along u representing minus
the L2-gradient of E. If we write this as τ i ∂

∂yi (u) in terms of local coordinates {yi}
on N then we have the expression

τ i = �ui + �i
kl(u)∇uk.∇ul,

where �i
kl are the Christoffel symbols for the target.

Although this intrinsic viewpoint will be optimal when we are dealing with
smooth maps into N (including most of Sections 3 and 4) for much of this paper
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we will consider maps into N to have been composed with a fixed isometric embed-
ding N ↪→ R

N . (This simplifies some calculations, and the discussion of Sobolev
spaces and weak solutions.) We then see the tension as a vector field in the ambient
R

N , giving it the simple expression

τ = (�u)T (1.1)

where the superscript T means the projection onto Tu(x)N .
In this paper we will consider the harmonic map flow from D to N . This is a

time-dependent solution u : D × [0, T ] → N of the harmonic map heat equation
of Eells-Sampson [6]

∂u

∂t
= τ(u(t)) (1.2)

where u(t) := u(·, t) is the restriction (or more generally the trace) of u to the time
slice D × {t}. At times t at which the flow is smooth, the energy of the flow decays
according to

d

dt
E(u(t)) = −

∫
D

|τ(u(t))|2. (1.3)

Since we are working with a two dimensional domain, the energy is conformal-
ly invariant (in particular the energy of a map is preserved under precomposition
with a dilation) and we have a theory of Struwe at our disposal which includes the
following existence theorem. (See also Chang [2] where the situation in which the
domain has boundary is explicitly considered.)

Theorem 1.1 (Struwe [15]) Given u0 ∈ C∞(D, N ), there exists a weak solution
u ∈ W

1,2
loc (D × [0, ∞), N ) to (1.2) which is smooth in D × [0, ∞) except possibly

at finitely many singular points in D × (0, ∞), and has the following properties:

(a) u(0) ≡ u0;
(b) u(·, t)|∂D ≡ u0|∂D for all t ≥ 0;
(c) E(u(t)) is a (weakly) decreasing function of t on [0, ∞);
(d) If the flow is smooth for t ∈ [0, T ), then it is the unique smooth solution over

this time interval with the given boundary and initial data;
(e) If (x, T ) ∈ D × (0, ∞) is a singular point, then energy concentrates in the

sense that
lim
ν↓0

lim sup
t↑T

E(u(t), Dν(x) ∩ D) 
= 0.

We call this flow the ‘Struwe solution’ or ‘Struwe flow.’

Here we have denoted by Dν(x) the open disc in R
2 centred at x ∈ R

2 and of
radius ν > 0. We will also be using the abbreviation Dν := Dν(0) and of course
D = D1.

Whilst the Struwe solution is unique amongst weak solutions satisfying condi-
tions (a) to (c) of the theorem – see Freire [7] – there are now known, in certain
cases, to be other weak solutions satisfying (a) and (b) but not (c) with similar
regularity properties to the Struwe solution – see [19] and [1].
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Given a flow u from Theorem 1.1, we may integrate (1.3) and use the fact that
E(u(t)) is weakly decreasing, to get the useful well-known bound on the tension

∫ ∞

0
‖τ(u(t))‖2

L2(D)
dt ≤ E(u0) < ∞. (1.4)

Whilst Struwe’s Theorem 1.1 allows the possibility of some finite-time singular-
ities, it was not clear at the time whether or not such singularities could occur.
Later, Chang-Ding-Ye [3] constructed an example of a flow in which a singularity
is forced to occur at finite time. Their construction relies on a certain corotational
symmetry which is required to invoke maximum principle techniques. However,
work of Qing-Tian [12] (included in Theorem 1.4 below) opens up the possibility
of more robust methods as we now describe. In 1978, Lemaire proved the following
useful theorem.

Theorem 1.2 (Lemaire [8]) Any harmonic map from the 2-disc D to N which is
constant on the boundary, must be constant throughout D.

A corollary of this result is that no nontrivial homotopy class of maps from
D which has fixed, constant boundary values, can contain a harmonic map. In an
appendix to this paper we sketch a proof of the existence of a homotopy class of
maps which not only fails to contain a harmonic map, but does so in a quantified
way below a certain energy level:

Lemma 1.3 There exist a compact target manifold N , a smooth map v0 : D → N
and ε > 0 such that every smooth map v : D → N homotopic to v0 fails to be
harmonic, and if E(v) ≤ E(v0) also, then

∫
D

|τ(v)|2 ≥ ε.

This lemma, coupled with (1.3) and the fact that E ≥ 0 immediately implies that no
heat flow starting with an initial map u0 homotopic to v0 and with E(u0) ≤ E(v0)

can be smooth beyond time t = E(u0)
ε

≤ E(v0)
ε

. This obviously gives a rich source
of robust examples of finite-time singularities. Note that we cannot perturb away
a finite-time singularity here by adjusting the initial map, although dependency of
the singular points on the initial map is not addressed. The general principle behind
the proof of this lemma will be exploited later on, in a concrete situation, to force
certain flows with special properties to blow up in finite time.

The original work of Struwe also gave a basic description of what happens at
a singularity; ‘bubbling’ in a similar form to that discovered by Sacks-Uhlenbeck
[13] occurs. Gradually a better picture has been built up, by better understanding
the properties of maps with small tension in L2. The main tool, combining work
of Struwe [15], Ding-Tian [4] (see also Qing [10] and Wang [21]) and Qing-Tian
[12] (see also Lin-Wang [9]) is:

Theorem 1.4 Suppose that un : D → N ↪→ R
N (n ∈ N) is a sequence of

smooth maps which satisfy E(un) < M for some constant M , and all n ∈ N, and
τ(un) → 0 in L2(D) as n → ∞.
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Then we may pass to a subsequence in n, and find a harmonic map u∞ : D →
N , and a set {x1, . . . , xm} ⊂ D such that

(a) un ⇀ u∞ weakly in W 1,2(D, N ),
(b) un → u∞ strongly in W

2,2
loc (D\{x1, . . . , xm}, N ).

Moreover, for each l ∈ {1, . . . , m}, there exists k = k(l) ∈ N such that for
i ∈ {1, . . . , k} there exist sequences ai

n → xl ∈ D and λi
n ↓ 0 as n → ∞, and

nonconstant harmonic maps ωi : S2 → N (which we precompose with inverse
stereographic projection to view them as maps R

2 ∪ {∞} → N ) such that:

(i)

λi
n

λ
j
n

+ λ
j
n

λi
n

+ |ai
n − a

j
n |2

λi
nλ

j
n

→ ∞,

as n → ∞, for each unequal i, j ∈ {1, . . . , k}.
(ii)

lim
ν↓0

lim
n→∞ E(un, Dν(x

l)) =
k∑

i=1

E(ωi).

(iii)

un(x) −
k∑

i=1

(
ωi

(
x − ai

n

λi
n

)
− ωi(∞)

)
→ u∞(x),

as functions of x from Dν(x
l) to N ↪→ R

N (for sufficiently small ν > 0) both
in W 1,2 and L∞.

(iv) For each i ∈ {1, . . . , k} there exists a finite set of points S ⊂ R
2 (which may

be empty, but could contain up to k − 1 points) with the property that

un(a
i
n + λi

nx) → ωi(x),

in W
2,2
loc (R2\S, N ) as n → ∞.

We refer to the map u∞ : D → N as a ‘body’ map, and the (smooth) maps
ωi : S2 → N as ‘bubbles’ or ‘bubble’ maps. The points {x1, . . . , xm} will be
called ‘bubble points,’ and the λi

n ‘bubble scales.’

Remark 1.5 Encoded in the L∞ convergence of part (iii) of Theorem 1.4 is the fact
that at each bubble point, the union of the images of the body map u∞ and the
bubbles ωi is a connected set. (See Qing-Tian [12].)

Using Theorem 1.4, and its earlier versions, the authors mentioned above
(Struwe, Ding, Tian, Qing, Wang, Lin) have described partly the bubbling which
occurs at finite time in the harmonic map flow. We need a slight improvement of
those results incorporating better control on the relationship between the bubble
scales, the tension and the time left until the singularity. The following will be
proved in Section 2 based on Theorem 1.4 above.
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Theorem 1.6 Suppose u ∈ W
1,2
loc (D × [0, ∞), N ) is a Struwe flow from Theorem

1.1, and T ∈ (0, ∞) is a singular time. Then there exist times tn ↑ T with the
property that

‖τ(u(tn))‖2
L2(D)

(T − tn) → 0 (1.5)

as n → ∞. Moreover, for every singular point (x, T ) ∈ D × (0, ∞) at time T ,
there exist k ∈ N and, for each i ∈ {1, . . . , k}, sequences ai

n → x ∈ D and λi
n ↓ 0

as n → ∞, and nonconstant harmonic maps ωi : S2 → N (which we view as
maps R

2 ∪ {∞} → N ) such that:

(i)

λi
n

λ
j
n

+ λ
j
n

λi
n

+ |ai
n − a

j
n |2

λi
nλ

j
n

→ ∞,

as n → ∞, for each unequal i, j ∈ {1, . . . , k}.
(ii)

lim
η↓0

lim
t↑T

E(u(t), Dη(x)) = lim
t↑T

E(u(t), D
(T −t)

1
2
(x)) =

k∑
i=1

E(ωi).

(iii)

u(tn) −
k∑

i=1

(
ωi

( · − ai
n

λi
n

)
− ωi(∞)

)
→ u(T ),

in W 1,2(Dν(x), N ) (for sufficiently small ν > 0).
(iv) For each i ∈ {1, . . . , k} there exists a finite set of points S ⊂ R

2 (which may
be empty, but could contain up to k − 1 points) with the property that

u(ai
n + λi

ny, tn) → ωi(y),

as functions of y, in W
2,2
loc (R2\S, N ) as n → ∞.

(v) For each i ∈ {1, . . . , k}, we have

λi
n(T − tn)

− 1
2 → 0.

Remark 1.7 Part (ii), in addition to being a so-called “no loss of energy” statement,
now includes important information about the rate of blow-up of any singularity in
the uniform limit t ↑ T . Restricting to the bubbling at times {tn} then gives part (v).
(This rate of blow-up is well-known and may be established by various methods.)
It is possible to improve this rate slightly to, say,

λi
n

[
(T − tn)

−1(− log(T − tn))
] 1

2 → 0,

for a possibly more carefully chosen sequence tn ↑ T . However, we will see in this

paper that λi
n(T − tn)

− 1
2 −ε will not converge to zero in general, however small we

take ε > 0.



284 P. Topping

Remark 1.8 Although we do not require it in this paper, it is not hard to improve
(1.5) to, say,

‖τ(u(tn))‖2
L2(D)

(T − tn)(− log(T − tn)) → 0. (1.6)

Remark 1.9 In contrast to Theorem 1.4, we do not claim L∞ convergence in part
(iii) of Theorem 1.6. Indeed, we will see in this paper that such convergence is
simply false in general.

Remark 1.10 Theorem 1.6 holds for an arbitrary compact domain surface once the
necessary notational changes have been made.

Remark 1.11 We must also record that bubbling is liable to occur at infinite time in
addition to any bubbling at finite time. Indeed, it is easy to see from (1.4) and (1.3)
that we may extract a sequence of times tn → ∞ so that u(tn) : D → N satisfy
the hypotheses of Theorem 1.4. An ‘infinite-time singularity’ is said to occur at any
bubble point of this analysis.

The bubbling at infinite time raises the question of whether the convergence at
times tn is in fact uniform as t → ∞, and whether the energy concentrating at the
bubble points can dissipate or move around the domain between consecutive times
tn and tn+1. For results and counterexamples along these lines see [14], [20], [16],
and [18].

In contrast, because finite-time singular points are isolated in space-time, we
are guaranteed reasonable uniform convergence of u(t) away from bubble points,
as t tends to a singular time T , and concentrated energy cannot move dramatically
around the domain between times tn and tn+1 of Theorem 1.6. However, many other
uniformity questions remain, many of which we settle here. Roughly speaking, it
has been asked whether the images of the bubbles can move around in the target
between times tn and tn+1. This is popularly known as the question of ‘uniqueness
of bubbles.’ For this to happen, the bubbles would have to move with unbounded
speed as the singular time was approached.

We will see that such bubbles, moving in the image with unbounded speed can
indeed occur.

In order to continue a solution after a singularity, Struwe defines u(T ) to be the
weak limit of u(tn) in W 1,2 as n → ∞ and solves the harmonic map heat equation
with u(T ) as initial data. Although u(T ) ∈ W 1,2, a natural question which has
been raised by Qing-Tian [12] and Lin-Wang [9] is whether u(T ) is continuous1.
Indeed, this question is particularly relevant in the light of the results proved about
infinite-time bubbling in [12] and [9].

We will see that u(T ) can in fact be discontinuous.

One explicit way of asking whether the flow converges well at the finite-time
singularity is to lift the flow to the universal cover N̂ of the target and see if the
lifted bubbles still converge. More precisely, we make the following definition
during which part (iv) of Theorem 1.6 should be kept in mind:

1 See also the very recent paper of Qing [11] for a discussion about this question.
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Definition 1.12 Given the regularity described in Theorem 1.1, we may lift a Struwe
solution u to a flow û : D × [0, ∞) → N̂ into the universal cover N̂ of the target
manifold. We say that a singularity at a point (x, T ) ∈ D × (0, ∞) of the flow u

is winding if there exist λn ↓ 0, an → x, tn ↑ T , points {x1, . . . , xk} ⊂ R
2 and

a nonconstant harmonic map ω : R
2 → N such that u(an + λnx, tn) → ω(x) in

W
2,2
loc (R2\{x1, . . . , xk}, N ) - and hence in C0

loc – but so that û(an + λnx, tn) does
not converge in C0

loc(R
2\{x1, . . . , xk}, N̂ ) even after selecting a subsequence.

Remark 1.13 This definition makes sense for any compact target manifold N ,
although if the target is simply connected then no singularity can be winding.
The definition also makes sense for alternative domain surfaces, although if the
domain is not simply connected then we only lift the flow in a neighbourhood of
(x, T ) in space-time.

Roughly speaking then, a singularity is winding if at least one of the bubbles
which develop must, once the flow has been lifted to N̂ , converge to infinity and
escape every compact subdomain of N̂ .

We will see that winding singularities do indeed exist.

Next, we are interested in the rate of blow-up of finite-time singularities. With
the selection of tn that we make in Theorem 1.6, we find in part (v) of that theorem
that for any bubble,

λn = o
(
(T − tn)

1
2

)
,

and this may even be improved (see Remark 1.7) to

λn = o

([
(T − tn)

− log(T − tn)

] 1
2
)

.

Lower bounds for λn in terms of T − tn are much harder to obtain. Indeed, we do
not know of any prior example of a finite-time singularity in the harmonic map heat
flow for which any such lower bound has been obtained.

In this paper we have an example of a singularity for which for all δ > 0,

λn ≥ (T − tn)
1
2 +δ

for sufficiently large n.

The polynomial rate of blow-up is therefore precisely determined. We will,
in fact, prove a marginally better bound (essentially writing δ above as a decaying
function of T − tn) and further marginal improvements to the rate could be achieved
by altering the target metric carefully.

Finally, we return to the control on the tension provided by (1.4), and ask
whether this can be improved.

We will see that although ‖τ(u(t))‖L2(D) is in L2([0, T ]), it is not, in general, in
L2+δ([0, T ]) for any δ > 0.
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We compile these results in the following main theorem, which is proved in
Sections 3 and 4.

Theorem 1.14 There exist a compact target manifold N and an initial map u0 ∈
C∞(D, N ) such that the Struwe flow u from Theorem 1.1 satisfies the following
properties:

(a) There exists a singular point (0, T ) ∈ D × (0, ∞) (with no singularity for
t < T );

(b) Precisely one bubble develops at (0, T ) in the sense that when analysed with
Theorem 1.6, we must have k = 1;

(c) The singularity is winding in the sense of Definition 1.12;
(d) The map u(T ) ∈ W 1,2(D, N ) is discontinuous at the origin;
(e) For all δ > 0, the rate of blow-up of the bubble is constrained by

(T − tn)
1
2 +δ � λn � (T − tn)

1
2 ,

where we write an � bn for positive sequences {an} and {bn} if an

bn
→ 0 as

n → ∞.
(f) For all δ > 0, and s ∈ [0, T ), we have

∫ T

s

‖τ(u(t))‖2+δ

L2(D)
= ∞.

In the light of the work of L. Simon [14] it is tempting to conjecture that the non-
uniformity of the bubbling that we witness in this work cannot occur if we insist
on a real analytic target.

2. The bubbling analysis

In this section we prove Theorem 1.6 based on the work of Struwe [15], Ding-Tian
[4] and Qing-Tian [12] compiled in Theorem 1.4.

Our first task is to select the times tn ↑ T . By combining (1.4) and the fact that

∫ T

s

dt

T − t
= ∞,

for s < T , we see that it is easy to pick times tn ↑ T such that (1.5) is satisfied.
The final sequence will be a subsequence of that picked now.

We now wish to analyse the flow at one of the singularities which occur at time
T . This is a local analysis and we assume that the singularity occurs at the origin in
D to simplify the notation without losing any generality. Let ν > 0 be sufficiently
small so that Dν ×{T } contains no other singular point. By the properties of u from
Theorem 1.1, we know that u(t) → u(T ) in Ck

loc(Dν\{0}, N ), and we will use this
fact implicitly in the following argument.

Let us look at the evolution of energy near 0. (These calculations should be com-
pared to those of Qing [10].)After picking a cut-off functionφ ∈ C∞([0, ∞), [0, 1])
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supported in [0, 4), identically equal to 1 on [0, 1], and with ‖φ′‖L∞ ≤ 1, we may
define, for t ∈ [0, T ] and r ∈ (0, ν

2 ], the cut energy

�r(t) := 1

2

∫
D

φ2
( |y|2

r2

)
|∇u(t)|2(y) dy.

Differentiating with respect to t , using the equation (1.2), integrating by parts and
using (1.1) (c.f. [16]) gives

d�r(t)

dt
=
∫

D

φ2
( |y|2

r2

)
∇u.∇τ

= −
∫

D

φ2
( |y|2

r2

)
|τ |2

−
∫

D

2φ

( |y|2
r2

)
φ′
( |y|2

r2

)
2

r2 [(y.∇)u] .τ, (2.1)

and hence the estimate
∣∣∣∣d�r(t)

dt

∣∣∣∣ ≤
∫

D

|τ |2 + C

r

∫
D

|∇u||τ | ≤ ‖τ(u(t))‖2
L2(D)

+ C

r
‖τ(u(t))‖L2(D),

(2.2)

where C is finally allowed to depend on E(u0). This expression may now be
integrated between a and b where 0 < a < b < T to give

|�r(b) − �r(a)| ≤
∫ b

a

‖τ(u(t))‖2
L2(D)

dt + C

r

∫ b

a

‖τ(u(t))‖L2(D) dt (2.3)

≤
∫ T

a

‖τ(u(t))‖2
L2(D)

dt + C(T − a)
1
2

r

×
(∫ T

a

‖τ(u(t))‖2
L2(D)

dt

) 1
2

. (2.4)

Keeping in mind (1.4) we see that the right-hand side of (2.4) converges to zero as
a ↑ T , and hence that �r(t) must have a limit as t ↑ T . This allows us to define

L := lim
t↑T

�r(t) − �r(T ), (2.5)

where L is not dependent on r , or equivalently

lim
t↑T

E(u(t), Dr) = L + E(u(T ), Dr), (2.6)

(where we are using the Ck convergence of u(t) to u(T ) away from the origin).
Referring back to Theorem 1.1 we then must have

L = lim
r↓0

lim
t↑T

E(u(t), Dr) > 0. (2.7)
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Next we return to (2.4) setting r = γ (T − a)
1
2 (for some constant γ > 0) and

taking b ↑ T (keeping (2.5) in mind) to give∣∣∣∣L + �
γ(T −a)

1
2
(T ) − �

γ(T −a)
1
2
(a)

∣∣∣∣ ≤
∫ T

a

‖τ(u(t))‖2
L2(D)

dt

+ C

γ

(∫ T

a

‖τ(u(t))‖2
L2(D)

dt

) 1
2

. (2.8)

Taking also the limit a ↑ T and using (1.4) again, we then see that

lim
a↑T

�
γ (T −a)

1
2
(a) = L, (2.9)

for all γ > 0. Now, with α > 0, we may send a ↑ T in the inequality

�
α(T −a)

1
2

2

(a) ≤ E(u(a), D
α(T −a)

1
2
) ≤ �

α(T −a)
1
2
(a).

Using (2.9) with γ = α
2 and γ = α, we find that

lim
a↑T

E(u(a), D
α(T −a)

1
2
) = L, (2.10)

for any α > 0.
At this point, let us take stock of which parts of the theorem we have addressed.

In pursuit of part (ii) we have proved that

lim
η↓0

lim
t↑T

E(u(t), Dη) = lim
t↑T

E(u(t), D
(T −t)

1
2
) = L.

Concerning part (iii), our estimates so far imply that

‖u(t) − u(T )‖W 1,2(Dν\D
α(T −t)

1
2

) → 0,

as t ↑ T , for any α > 0.
It remains to analyse the bubbling which may occur at the singular point (0, T ) ∈

D × (0, ∞) at the times tn selected earlier. For the remainder of the paper, we set

µn := (T − tn)
1
2 . For this section, we define rescaled maps un : D → N by

un(y) = u(µny, tn).
By the scaling properties of the tension, and the already-established (1.5), we

must have
‖τ(un)‖L2(D) = µn‖τ(u(tn))‖L2(Dµn ) → 0,

and therefore we may apply Theorem 1.4 to the un. By (2.10) we see that

lim
n→∞ E(un, Dη) = L,

for any η ∈ (0, 1]. In particular,

E(un, D\Dη) → 0 (2.11)

as n → ∞ for any η ∈ (0, 1] and so by part (a) of Theorem 1.4, u∞ is forced to be
constant on D.

It remains to make use of parts (i) to (iv) of Theorem 1.4. These find bubbles
ωi , blow-up centres ai

n and bubble scales λi
n ↓ 0. By (2.11), the origin is the only

bubble point of un (so ai
n → 0 as n → ∞). Scaling the blow-up centres and bubble

scales by a factor µn, then gives exactly those required for Theorem 1.6. ��
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3. The main construction

In this section, we construct the target manifold and flow demanded by Theorem
1.14. Parts (a) to (c) of that theorem will be established here, with the final parts (d)
to (f) left until Section 4. The flow we construct will have various symmetries which
will help us to establish the finer properties of Section 4. However, the construction
itself is quite robust, and will guarantee not only a finite-time singularity but one
that is winding, for much more general asymmetric initial maps.

In the sequel, we will concentrate on the flow up to the time of its first singular-
ity. Whilst the flow is smooth, it will mainly suit us to consider the flow in terms of
intrinsic coordinates on N , ignoring the embedding N ↪→ R

N which is so useful
in the earlier theory.

3.1. Construction of the target manifold

The target that we will construct will be a warped product manifold. Such manifolds
have been useful in the construction of various examples of harmonic map flows
– see [16], [17], and [20] – and also of nonuniform behaviour in other geometric
problems such as nonunique tangent maps for harmonic maps (see White [22]).
Topologically, the target will be [−1, 1] × S1 × S2. Although this has nonempty
boundary, we will later easily see that the flow remains within the smaller region
[0, 1)×S1 ×S2, so we may agree now to implicitly join the two boundary compo-
nents to give T 2 ×S2 and modify the metric on the region [−1, − 1

2 )×S1 ×S2, say,
to make it everywhere smooth. There is plenty of flexibility here, and in particular,
we could cap each boundary component with a D × S2 to give S2 × S2, although
no singularity could then be winding in the sense defined above.

Let us start off with the strip S = [−1, 1] × R, addressed by real coordinates
(w, z), and equipped with the metric

γ =
(

1 w2

w2 1 + w4

)
.

We then obtain a cylinder C by taking the quotient of S by the group of isometries
� = {(w, z) → (w, z + n) | n ∈ Z}.

Ultimately, we will only be concerned with the half of C where w ≥ 0. On
S ∩ {w > 0}, we will mainly use coordinates (x, y) where x = 1

w
− z and y = z.

(Equivalently w = 1
x+y

and z = y.) We then have the restriction x + y ≥ 1.
In these alternative coordinates, the group of isometries � is now {(x, y) →

(x − n, y + n) | n ∈ Z}, and the metric takes the form

g =
(

1
(x+y)4 0

0 1

)
,

and we see that the curve {x = 0} on C (which should be visualised in w, z coor-
dinates, spiralling towards the circle {w = 0}) is a geodesic.
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We next define a warping function f ∈ C∞(C) by

f (w, z) =
{

e− 2π
w

(
sin 2π( 1

w
− z − 1

8 ) + √
2
)

+ 1 w > 0

1 w ≤ 0.

(Note that f is well defined on C despite being written in coordinates on S.) More
useful to us is the expression for f written in (x, y) coordinates on the half of C
where w > 0,

f (x, y) = e−2π(x+y)

(
sin 2π(x − 1

8
) +

√
2

)
+ 1.

We note the following properties of f :

(i) f (w, z) > 1 for w > 0, and f (w, z) = 1 for w ≤ 0,

(ii) ∂f
∂y

= −2πe−2π(x+y)
(

sin 2π(x − 1
8 ) + √

2
)

< 0 for w > 0,

(iii) ∂f
∂x

= e−2π(x+y)
(
−2π sin 2π(x − 1

8 ) − 2
√

2π + 2π cos 2π(x − 1
8 )
)

= 2
√

2πe−2π(x+y)(cos 2πx − 1).

By property (iii) we have

∂f

∂x
(0, ·) ≡ 0, (3.1)

and by (ii),

∂f

∂y
(0, y) = −

√
2πe−2πy. (3.2)

Finally we define the target manifold to be the warped product

N = C ×f S2.

We denote the projections of N onto its two 2-dimensional components by
P1 : N → C and P2 : N → S2 respectively.

The significance of (3.1) is that it may now be checked that the three dimensional
noncompact manifold

� := {(0, y) | y ≥ 1} × S2 (3.3)

lies totally geodesically within N .
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3.2. Analysis of the flow

3.2.1. Description of the flow and the flow equations. In order to discuss flows
into the target manifold N constructed in the previous section, we equip the S2

part of N with coordinates. We choose spherical polar coordinates (α, θ) where
θ ∈ [0, 2π) is the longitude and α ∈ [0, π ] gives a measure of latitude with α = 0
the ‘north’ pole and α = π the ‘south’ pole.

Let us now define an initial map u0 ∈ C∞(D, N ) for the harmonic map heat
flow. Using polar coordinates (r, θ) on the domain, let

u0(r, θ) = (0, y0, α0(r), θ),

where the number y0 > 1 and the function α0 : [0, 1] → R with α0(0) = 0 and
α(1) = π , will be fixed later to make u0 smooth and of controlled energy. Therefore
when projected onto C, u0 is constant, and when projected onto the S2, u0 maps
once over the whole sphere. The map u0 has constant boundary values.

Let us now take the usual Struwe solution of the harmonic map heat equation
(as found by Theorem 1.1). For a certain nontrivial time interval [0, T ) (for some
T ∈ (0, ∞]) we can be sure that the flow is both smooth, and remains within
the interior of C × S2. Moreover, during this time, by appealing to the uniqueness
described in Theorem 1.1 the flow must remain within the totally geodesic subman-
ifold � described in (3.3) and must retain the rotational and corotational symmetry
enjoyed by the initial map.

We see, therefore, that the flow in these coordinates must take the form

u(r, θ, t) = (0, Y (r, t), α(r, t), θ),

with boundary values ∂Y
∂r

(0, ·) ≡ 0, Y (1, ·) ≡ y0, α(0, ·) ≡ 0 and α(1, ·) ≡ π , for
t ∈ [0, T ).

Remark 3.1 Throughout this paper we will abuse notation as and when convenient
by using Y both as the function Y (r, t) on [0, 1] × [0, T ) and as the corresponding
rotationally symmetric function on D × [0, T ) given by (r, θ, t) → Y (r, t), and
similarly for α etc.

It will be convenient to use the shorthand

e(α) := 1

2

[(
∂α

∂r

)2

+ sin2 α

r2

]
. (3.4)

The energy of u(t) may then be written in terms of Y and α as

E(t) = π

∫ 1

0

((
∂Y

∂r
(r, t)

)2

r + 2f (0, Y (r, t)) [e(α)(r, t)] r

)
dr. (3.5)

=
∫

D

(
1

2
|∇Y |2 + f (0, Y )e(α)

)
(3.6)
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Working either from this expression for the energy, or by working first with general
asymmetric flows into N and then specialising to symmetric flows as considered
here, we find (for t ∈ [0, T )) that the functions Y and α solve the following PDE:

∂Y

∂t
= ∂2Y

∂r2 + 1

r

∂Y

∂r
− ∂f

∂y
(0, Y )e(α) (3.7)

≡ �Y − ∂f

∂y
(0, Y )e(α) (3.8)

∂α

∂t
= ∂2α

∂r2 + 1

r

∂α

∂r
− sin α cos α

r2 + 1

f (0, Y )

∂f

∂y
(0, Y )

∂Y

∂r

∂α

∂r
(3.9)

Having equation (3.8), and keeping in mind the fact that ∂f
∂y

< 0, we may immedi-
ately apply the maximum principle to find that

Y (r, t) ≥ y0 > 1 (3.10)

for all r ∈ [0, 1] and t ∈ [0, T ). In particular, the flow cannot approach the bound-
ary of C × S2, and so without loss of generality, we may take T ∈ (0, ∞] to be the
largest possible value subject to the flow being smooth for times t ∈ [0, T ).

3.2.2. Blow-up of Y We now try to analyse the fate of Y . We will see that Y (0, t)

is unbounded over some finite time interval; this corresponds to the development
of a bubble at the centre of the domain disc in finite time. Moreover, once we have
visualised how the submanifold � from (3.3) sits within the target N , we will see
that the flow will then have the basic winding behaviour which we seek, and more
specifically that the singularity will be winding in the sense of Definition 1.12.

First, we note that the flow cannot stay smooth, with uniform bounds on its
derivatives, for all time. This is because the initial map u0 has constant boundary
values but is homotopically nontrivial. Any flow with this initial map which blew
up neither at finite nor at infinite time, would provide a homotopy from u0 to a har-
monic map within the same nontrivial homotopy class. However, this is impossible
since no such harmonic map exists by Theorem 1.2 of Lemaire.

According to our earlier notation, T ∈ (0, ∞] is then the first blow-up time.
By Theorem 1.6 (in the case T < ∞) or Remark 1.11 (in the case T = ∞) one
or more bubbles ω : S2 → N must develop at time t = T ; by the symmetry of
the flow, and the finiteness of the number of singularities, the one and only bubble
point must be the centre of the domain disc.

We claim, roughly speaking, that any bubble must occur at “y = ∞.”

Lemma 3.2 Let ω : S2 → N be any bubble which develops at time t = T in the
flow constructed. Then the image of ω must lie within the three dimensional sub-
manifold � of N defined by the condition w = 0 (which is topologically S1 × S2).
Moreover, with P1 and P2 the projections defined in Section 3.1 we must have P1 ◦ ω

a constant map, and P2 ◦ ω a harmonic map between 2-spheres.

In the proof below, λn will be the bubble scale for ω (as in Theorem 1.6 for
example). Given the rotational symmetry of the flow, we may assume that an = 0
for all n – i.e. that the bubble is obtained by blowing up about the origin for each n.
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Proof. We have already established that for times t ∈ [0, T ), the image of the flow
lies within the submanifold � described in (3.3). By either part (iv) of Theorem
1.6, or a combination of part (iv) of Theorem 1.4 combined with Remark 1.11
(depending on whether T < ∞ or T = ∞) we then see that the image of ω must
lie within the closure of � in N . Taking the closure of � adds the submanifold �

of the lemma.
Meanwhile, since ω is a smooth map from S2, and there is no finite length path

in �∪� between any point in � and any point in �, the image of ω must lie either
wholly within �, or wholly within �.

Suppose that the image of ω lay wholly within �. If P2 ◦ ω were constant, then
P1 ◦ ω would be harmonic, and would take values in the geodesic {x = 0} within C.
Essentially ω would then be a harmonic function on the 2-sphere, and would there-
fore be constant, which cannot be the case for a bubble. Therefore, if the image of
ω were to lie wholly within �, then P2 ◦ ω would have to be nonconstant. In this
case, if we define, for s ∈ R near 0, the transformations φs : N → N by

φs(x, y, α, θ) = (x, y + s, α, θ)

then it is easy to check, using the inequality ∂f
∂y

< 0, that

d

ds

∣∣∣∣
s=0

E(φs ◦ ω) < 0,

contradicting the fact that ω is harmonic.
We have established that the image of ω lies wholly within �. But � is iso-

metric to the cartesian product of a (scaled) S1 and an S2, and therefore ω splits
into two harmonic maps P1 ◦ ω : S2 → S1 ↪→ C and P2 ◦ ω : S2 → S2. Finally,
any harmonic map from S2 to S1 can be lifted to a harmonic function, and must
therefore be constant. �

Having determined accurately the type of bubble which must occur, we are
now in a position to prove that T < ∞ - i.e. that the first singularity must occur at
finite time. Indeed, if the flow did not blow up at finite time, then we could apply
Lemaire’s Theorem 1.2 to deduce that the limit u∞ of the u(tn) from Remark 1.11
and Theorem 1.4 must be the constant map u∞(r, θ) = (0, y0, π, θ), and therefore
by Remark 1.5, the image of at least one bubble would have to pass through the
point (0, y0, π, θ) ∈ N which is impossible by Lemma 3.2.

Now we know that T < ∞, let tn and k be as in the analysis of Theorem 1.6.
We claim that k = 1, which means that only one bubble can develop. Indeed, by the
description of the bubbles given in Lemma 3.2, we see that any bubble has as much
energy as a harmonic map between 2-spheres, which must have energy at least 4π

(see [5, (11.5)]). By choosing y0 > 1 sufficiently large (to make f (0, y0) suffi-
ciently close to 1) and choosing α0 appropriately we are able to make the energy of
u0 as close as we like to 4π (for example we may start by taking α0 = 2 tan−1(r/ε)

with ε > 0 small and perturb it slightly in order to fit the boundary condition
α0(1) = π ) with u0 smooth. In particular we can make the energy strictly less than
8π , which then limits the flow to develop a single bubble. (We are implicitly using
part (ii) of Theorem 1.6.) One implication of having only one bubble is that part



294 P. Topping

(iv) of Theorem 1.6 applied to this singularity reduces to u(λnξ, tn) → ω(ξ) as
functions of ξ , in W

2, 2
loc (R2, N ).

Finally, knowledge of the type of bubble which must occur also constrains Y

to have a particular type of blow-up at time t = T . In particular, the singularity
must be winding (in the sense of Definition 1.12) since otherwise, after passing to a
subsequence, not only would we have convergence of u(λnξ, tn) in W

2,2
loc (R2, N ),

we would also have convergence of û(λnξ, tn) in C0
loc(R

2, N̂ ) and hence conver-
gence of Y (λnξ, tn) in C0

loc(R
2, R). However, by considering again how � and �

sit within N , we see that the only way that u(λnξ, tn) can converge to a bubble of
the type described in Lemma 3.2 is if Y (λnξ, tn) → ∞ for every ξ ∈ R

2, which is
contradictory.

In conclusion, we have established that a singularity develops in the flow at the
origin, at finite time. Precisely one bubble is created, and the bubble is winding in
the sense of Definition 1.12.

4. Finer properties of the singularity

We now wish to finish the proof of Theorem 1.14 by addressing parts (d) to (f). We
continue to switch between notations for Y as warned in Remark 3.1.

4.1. Oscillation of Y

In this section we establish decay of the oscillation of Y (tn) over scales of length

µn := (T − tn)
1
2 . We define the oscillation of a function or map f over a region �

by
osc(f, �) := sup

a,b∈�

dist (f (a), f (b)).

Lemma 4.1 The flow constructed in Section 3.2.1 satisfies

osc(Y (tn), Dµn) → 0,

as n → ∞.

Remark 4.2 For general flows, from arbitrary compact domain surfaces into arbi-
trary compact target manifolds, there is a weaker analogue of Lemma 4.1 which
states that after lifting the flow around a neighbourhood of a singularity to the
universal cover of the target, the oscillation of the lifted flow û over Dµn at time
tn, is bounded uniformly in n. This weaker result would in fact suffice for our
requirements in this paper.

Proof. In Section 3.2.2 we established that precisely one bubble developed in
the sequence u(tn), at a scale λn, say. Moreover, by Lemma 3.2, and part (iv) of
Theorem 1.6, we know that P1 ◦ u(λnξ, tn) → p as functions of ξ , in C0

loc(R
2, C)

where p := image(P1 ◦ ω) ∈ C. In particular, we have

osc(Y (tn), DRλn) → 0 (4.1)

for any R ∈ (0, ∞), as n → ∞.
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We now define rescaled maps un : D → N by un(ξ) := u(2µnξ, tn). (We
may assume that µn ≤ 1

2 for all n.) In this new language, by appealing to The-
orem 1.6 (parts (v) and (iii)) we see that un develops the same bubble at a scale
λn(2µn)

−1 → 0, and that un converges to a constant map in W
1,2
loc (D\{0}, N ).

(Note once again that no bubble develops at the scale µn in the maps u(tn).) By the
scaling properties of the tension, and by (1.5) of Theorem 1.6 we have

‖τ(un)‖L2(D) = µn‖τ(u(tn))‖L2(D2µn ) → 0,

as n → ∞. We are then in a position to apply Theorem 1.4 to the un. Part (b) of
that theorem tells us that un converges to a constant not only in W

1,2
loc (D\{0}, N )

but also in L∞
loc(D\{0}, N ). In particular, we must have

osc(Y (tn), Dµn\D2νµn) → 0 (4.2)

for arbitrarily small ν > 0, as n → ∞.
We also gain the important L∞ convergence of part (iii) of Theorem 1.4 (which

is the contribution of Qing-Tian [12]). This implies that for arbitrarily small ε > 0,
there exist R > 0 and ν ∈ (0, 1] such that we have the ‘neck estimate’

osc(un, Dν\DRλn(2µn)−1) < ε

for sufficiently large n. Renormalising, we have

osc(Y (tn), D2µnν\DRλn) < ε (4.3)

for sufficiently large n. Combining (4.1), (4.2) and (4.3) then gives us the lemma.
��

4.2. Discontinuity of u(T )

In this section we prove that Y (T ), the weak limit of Y (tn) in W 1,2(D, R), must be
discontinuous, and hence that u(T ) must also be discontinuous as claimed in part
(d) of Theorem 1.14. (It is important to keep in mind that the image of the flow for
t ∈ [0, T ) remains in �, and that the flow u is smooth away from the origin, up
to and including time t = T .) The function Y (T ) must be smooth away from the
origin. Our aim is to prove that it must be unbounded.

We begin by defining a measure of the average of Y over certain annuli in D.
Let φ ∈ C∞([0, ∞), [0, 1]) be nonconstant and be supported in the interval [ 1

4 , 1].
We may then define, for r ∈ (0, 1] and t ∈ [0, T ],

�r(t) :=
∫

D

1

r2 φ

( |ξ |2
r2

)
Y (ξ, t) dξ.

Retaining the notation µn := (T − tn)
1
2 from before, we then consider �µn(tn).

We established during Section 3.2.2 that Y (0, tn) → ∞. Combining with Lemma
4.1, we see that infξ∈D Y(µnξ, tn) → ∞. In particular, this forces

�µn(tn) → ∞, (4.4)
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as n → ∞. We now try to control how �r evolves over short time intervals.
Differentiating, and using 3.8, we find that

d�r

dt
=
∫

D

1

r2 φ

( |ξ |2
r2

)
∂Y

∂t
(ξ, t) dξ

=
∫

D

1

r2 φ

( |ξ |2
r2

)[
�Y − ∂f

∂y
(0, Y )e(α)

]

=
∫

D

[
1

r2 φ

( |ξ |2
r2

)(
−∂f

∂y
(0, Y )

)
e(α) − 1

r2 φ′
( |ξ |2

r2

)
2

r2 ξ .∇Y

]

Keeping in mind the boundedness of the energy, written as in (3.6), the inequality
f ≥ 1, and the fact that by (3.2) and (3.10)

−∂f

∂y
(0, y) ≤

√
2π,

we may then estimate∣∣∣∣d�r

dt

∣∣∣∣ ≤ C

r2

∫
D

e(α) + C

r3

∫
Dr

|∇Y | ≤ C

r2 ,

where C depends on the choice of φ and E(0). Specialising to the case r = µn and
integrating from time tn to some later time t ∈ [tn, T ), we then find that

|�µn(t) − �µn(tn)| ≤ (T − tn) sup

∣∣∣∣d�µn

dt

∣∣∣∣ ≤ C,

with C independent of n and t . Keeping in mind (4.4), we must have

lim
n→∞ lim inf

t↑T
�µn(t) → ∞. (4.5)

However, as mentioned earlier, if u(T ) were continuous, Y (T ) would be a bounded
function. By smoothness of the flow on D\{0} × (0, T ] we would then have

lim
t↑T

�µn(t) = �µn(T ) ≤ M,

for some M < ∞ independent of n, which would contradict (4.5). We conclude
that u(T ) must be discontinuous as claimed.

4.3. Upper bounds for Y

Although we know from Section 3.2.2 that Y (0, tn) → ∞ as n → ∞, we do not
yet have any control on how fast Y (·, tn) blows up in relation to (T − tn)

−1.

Lemma 4.3 The flow constructed in Section 3.2.1 satisfies

Mn := sup
D

Y(·, tn) ≤ C [− ln(T − tn)]
1
2 ,

with C independent of n, for sufficiently large n.
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Proof. The strategy behind the proof is that if Y (0, tn) were too large, then Y (·, tn)
would be large on a disc of radius Dµn by Lemma 4.1, and this would force the
Dirichlet energy of Y (tn) to be unreasonably large.

In more detail, we may use (3.6) and the fact that E(t) is a weakly decreasing
function of t ∈ [0, T ) to estimate

E(0) ≥ E(t) ≥ 1

2

∫
D

|∇ Y (t)|2 ≥ 1

2

∫
D\Ds

|∇ Y (t)|2,

for s ∈ (0, 1). The final term, being the Dirichlet energy of Y (t), will be at least
the Dirichlet energy of the unique harmonic function with the same values as Y (t)

on the boundary ∂(D\Ds). That function is (r, θ) → ( ln r
ln s

)
(Y (s, t) − y0) + y0,

which has energy π
− ln s

(Y (s, t) − y0)
2. Therefore, we find that for all t ∈ [0, T )

and s ∈ (0, 1),

Y (s, t) ≤
[
E(0)

π
(− ln s)

] 1
2

+ y0. (4.6)

In particular, for all s ∈ [µn, 1], we have

Y (s, tn) ≤ C [(− ln(T − tn))]
1
2 ,

for sufficiently large n. This proves the desired estimate on the annulus D\Dµn ,
and may be combined with Lemma 4.1 to extend the estimate to the whole
disc D. ��

4.4. Rate of blow-up

In this section we prove the lower bound on the bubble scale λn which is claimed

in part (e) of Theorem 1.14 and states that for all δ > 0, λn(T − tn)
−( 1

2 +δ) → ∞
as n → ∞. (The upper bound of part (e) has already been proved for general flows
as part (v) of Theorem 1.6.)

Our strategy will be to argue that if the flow were too concentrated at time tn,
then the tension of u(tn) would be unreasonably large, in some sense. We will esti-
mate the tension from below by constructing an explicit variation of u(tn) which
will create a large drop in the energy. In the process, we will require a ‘neck anal-
ysis’ (see Lemma 4.4 below) and the control of the blow-up of Y we established
in Lemma 4.3. The first result about necks in the context of maps with small but
nonzero tension was proved by Qing-Tian [12] and their analysis is strong enough
for our purposes. Here we quote a slight simplification and perturbation of Lemma
2.9 of [18] (see also Remark 2.8 of [18]) the proof of which was more along the
lines of Lin-Wang [9].

Lemma 4.4 Suppose that v : D → N is smooth and satisfies E(v, D) < M for
some M . Then there exist δ > 0 (dependent only on N ) and K > 0 (dependent
only on M and N ) such that if

E(v, D\Dr2) < δ
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for some r ∈ (0, 1
2 ], and

‖τ(v)‖2
L2(D)

< δ,

then we have the estimate

E(v, D2r\Dr) ≤ K r. (4.7)

Here, as in [18], this sort of lemma will allow us to argue that if the bubble scale
is sufficiently small then we can find a dyadic annulus D2r\Dr surrounding the part
of the domain where concentration is occurring, and with very small energy. Such
energy control then allows us to analyse the concentrated part of the flow (which
is converging to the bubble) in isolation from the rest of the flow.

As in previous sections we use the shorthand µn := (T − tn)
1
2 and consider

rescaled maps un : D → N defined this time by un(ξ) = u(µnξ, tn). As before,
by (1.5) we have τ(un) → 0 in L2(D). Retaining the notation λn for the scale
of the (unique) bubble produced by Theorem 1.6 (and keeping in mind parts (v)
and (iii) of that theorem) the rescaled maps un must develop a bubble at the scale
λn/µn → 0 and we must have

lim
R→∞

lim
n→∞ E(un, D\DRλn

µn

) = 0.

In particular, we may fix R > 0 sufficiently large so that

E(un, D\DRλn
µn

) < δ

for sufficiently large n (where δ is as in Lemma 4.4). Therefore, after setting rn :=√
Rλn

µn
, we may apply Lemma 4.4 for sufficiently large n to deduce that

E(un, D2rn\Drn) ≤ Krn.

Retranslating to the original scale gives

E(u(tn), An) ≤ Krn. (4.8)

where An := D2
√

Rλnµn
\D√

Rλnµn
.

We now wish to describe explicitly a variation of the map u(tn) which will
reduce its energy by a controlled amount, and thus give control on its tension.
The variation will be written in terms of the Y and α of Section 3.2.1, and so
let us write Yn := Y (·, tn) and αn := α(·, tn). We define a cut-off function φ ∈
C∞([0, ∞), [0, 1]) supported in [0, 4), identically equal to 1 on [0, 1], and with
‖φ′‖L∞ ≤ 1, and a scaled cut-off φn : D → R by

φn(ξ) = φ

( |ξ |2
Rλnµn

)
.

We may then vary u(tn) through a family of maps v
(s)
n : D → N where, for s in a

neighbourhood of 0 ∈ R, we define (using the coordinate notation for N of Section
3.2.1)

v(s)
n (ξ) = (0, Yn(ξ) + sφn(ξ), αn(ξ), θ),

so that v
(0)
n ≡ u(tn).
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Writing the energy in terms of these coordinates (c.f. (3.6)) gives

E(v(s)
n ) =

∫
D

(
1

2
|∇(Yn + sφn)|2 + f (0, Yn + sφn)e(αn)

)

and hence

d

ds
E(v(s)

n )

∣∣∣∣
s=0

=
∫

D

∇Yn.∇φn +
∫

D

∂f

∂y
(0, Yn)φne(αn). (4.9)

Let us label the two terms on the right-hand side I and II respectively. First
we estimate

|I | =
∣∣∣∣
∫

An

∇Yn.∇φn

∣∣∣∣ ≤
(∫

An

|∇Yn|2
) 1

2
(∫

An

|∇φn|2
) 1

2

(4.10)

≤ C (E(u(tn), An))
1
2 ≤ C(K)r

1
2
n ≤ C(K, R)

(
λn

µn

) 1
4

(4.11)

where we have used the fact that ∇φn is supported on An, the Cauchy-Schwarz
inequality, the dilation invariance of the energy, and (4.8).

Next we wish to estimate II . By (3.2)

−∂f

∂y
(0, Yn) =

√
2πe−2πYn ≥ e−2πYn ≥ e−2πMn (4.12)

where we are still using the notation Mn := supD Yn. By the description of the
bubble ω given by Lemma 3.2, and the expression for the energy (3.6) we have∫

Dλn

e(αn) = E(P2 ◦ u(tn), Dλn) → E(P2 ◦ ω, D) =: κ > 0, (4.13)

where P2 is the projection N → S2 as in Section 3.1. Moreover, we may use the
facts that φn ≡ 1 on D√

Rλnµn
and that λn

µn
→ 0 to deduce that

∫
D

φne(αn) ≥
∫

Dλn

e(αn) (4.14)

for sufficiently large n. Combining (4.12), (4.13) and (4.14), we have

−II ≥ e−2πMn

∫
D

φne(αn) ≥ e−2πMn
κ

2
,

for sufficiently large n.
Finally, we deal with the left-hand side of (4.9) by exploiting the fact that the

tension is the L2 gradient of the energy, and so, using suggestive notation,∣∣∣∣ d

ds
E(v(s)

n )
∣∣
s=0

∣∣∣∣ =
∣∣∣∣
∫

D

〈τ(u(tn)),
d

ds
v(s)
n

∣∣
s=0〉

∣∣∣∣ ≤ ‖τ(u(tn))‖L2(D)‖φn‖L2(D)

≤ C
√

Rλnµn‖τ(u(tn))‖L2(D) ≤ C(R)

√
λn

µn

,

for sufficiently large n, because of (1.5).
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Combining our knowledge about all three terms of (4.9), we see that

e−2πMn ≤ C(−II ) ≤ C

(
λn

µn

) 1
4

+ C

(
λn

µn

) 1
2

≤ C

(
λn

µn

) 1
4

,

for sufficiently large n, with C independent of n. Incorporating the control on Mn

offered by Lemma 4.3, we then have

exp
(
−C [− ln(T − tn)]

1
2

)
≤ λn

µn

,

for sufficiently large n. Rewriting, we have

λn ≥ (T − tn)
1
2 +C[− ln(T −tn)]−

1
2
, (4.15)

which is stronger than the bound claimed in the theorem. ��

4.5. Estimates on the tension

By (1.4) we know that for any Struwe solution of the harmonic map heat equation
(as in Theorem 1.1) we always have ‖τ(u(t))‖L2(D) ∈ L2([0, ∞)) as a function of
t . We now wish to point out that for the flow we have constructed in this paper, this
cannot be improved in that

‖τ(u(t))‖L2(D) /∈ L2+ε((T − ε, T ))

for any ε > 0, as claimed in part (f) of Theorem 1.14.
To establish this, we use the control on the rate of blow-up we found in Section

4.4 (which makes up part (e) of Theorem 1.14). Interpreting this in the language of
the cut energy from Section 2, we see that

�
(T −tn)

1
2 +δ

(tn) → 0

as n → ∞. In contrast, with L defined as in Section 2, we must have

lim
t↑T

�
(T −tn)

1
2 +δ

(t) ≥ L > 0,

for fixed n. Combining, we see, for sufficiently large n, that

0 <
L

2
≤ lim

t↑T
�

(T −tn)
1
2 +δ

(t) − �
(T −tn)

1
2 +δ

(tn) =
∫ T

tn

d

dt
�

(T −tn)
1
2 +δ

(t) dt.

We then return to (2.1) of Section 2 and note the variant of (2.2)

d�r(t)

dt
≤ C

r
‖τ(u(t))‖L2(D).

In our situation this gives, via the Hölder inequality,

L

2
≤ C

(T − tn)
1
2 +δ

∫ T

tn

‖τ(u(t))‖L2(D) dt ≤
(∫ T

tn

‖τ(u(t))‖
2

1−2δ

L2(D)
dt

) 1
2 −δ

.
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In particular, for any ε > 0, the quantity

∫ T

tn

‖τ(u(t))‖2+ε

L2(D)
dt

must be bounded below by a strictly positive number, independent of n, which
implies our claim.

5. Appendix

We end by sketching a proof of Lemma 1.3. We may take the target N to be the
warped product S1 ×f S2 where f : S1 → [1, 3] is defined to be f (θ) = 2−cos θ .
Note now that since min f = f (0) = 1, the least energy of a map S2 → N which
has degree one once projected onto the S2 component of the target, is 4π . Fix now
a point q ∈ S2, and choose a sequence of smooth maps vn : D → N with the
properties that vn|∂D = (π

2 , q), the projection of vn onto the S2 component of
the target covers the sphere precisely once, and E(vn) ↓ 4π . (A typical such map
sends a small disc in the domain conformally over most of {0} × S2 – costing a
little less than 4π of energy – and then uses the rest of the domain to match up with
the boundary values – costing very little extra energy.)

We now claim that the v0 of the lemma may be taken to be one of the vn in
this sequence. If that were not the case, then for all n, we could deform vn to a
lower energy smooth map with arbitrarily small tension in L2. In particular, we
could find a new sequence of smooth maps un : D → N with the properties that
un|∂D = (π

2 , q), the projection of un onto the S2 component of the target is still
homotopically nontrivial, E(un) ↓ 4π , and τ(un) → 0 in L2(D) as n → ∞.

Such a sequence of maps undergoes bubbling, as described in Theorem 1.4 of
this paper. By Lemaire’s Theorem 1.2, the map u∞ must send the whole disc to the
point (π

2 , q). A more elaborate version of Theorem 1.4 in which we considered the
possibility of bubbling at the boundary would tell us that a bubble must then be cre-
ated, with energy 4π , and the only bubbles with this energy which can account for
the change in homotopy class between un and u∞ are harmonic maps ω : S2 → N
with image {0} × S2. However, by Qing-Tian’s ‘no necks’ result – see Remark 1.5
– extended suitably to cover singularities at the boundary, the image of u∞ cannot
be disconnected from the image of ω, so we have a contradiction. ��
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