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 RICCI FLOW, ENTROPY AND OPTIMAL TRANSPORTATION

 By Robert J. McCann and Peter M. Topping

 Abstract. Let a smooth family of Riemannian metrics g(r) satisfy the backwards Ricci flow equation
 on a compact oriented «-dimensional manifold M. Suppose two families of normalized «-forms
 lj(t) > 0 and lo(t) > 0 satisfy the forwards (in r) heat equation on M generated by the connection
 Laplacian Ag(r). If these «-forms represent two evolving distributions of particles over M, the
 minimum root-mean-square distance W2(uj(t),lj(t), t) to transport the particles of uj(t) onto those
 of Cj{t) is shown to be non-increasing as a function of r, without sign conditions on the curvature
 of (M,g(r)). Moreover, this contractivity property is shown to characterize supersolutions to the
 Ricci flow.

 1. Introduction. On a compact oriented n-dimensional manifold M, let g(r)
 be a smooth family of metrics for r G [ti,T2]. We are particularly interested in
 the case that g(r) satisfies the backwards Ricci flow equation

 (D ^ = 2Ric(Ä)
 where Ric(g) is the Ricci tensor of g. Given terminal data gfo), such a family
 can always be constructed for t' sufficiently close to T2 (see Hamilton [12],
 DeTurck [10], [29, Ch. 5]). The geodesic distance t/(x,y, r) between two points
 x, y e M, with respect to g(r), evolves according to the formula

 (2) d2(x,y,r)= inf /' ^ ds ds, <T(0)=x,or(l)=y7o ds £(r)

 where the infimum is taken over smooth curves a: [0, 1] - > M joining x to y.
 Similarly, given two Borei probability measures v and v on M, the 2-Wasserstein
 distance W2O, P, r) between them evolves according to its definition

 (3) W¡(v, v, r) = inf / J2(x, y, r) dn(x, y).

 Manuscript received April 11, 2008.
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 217006-03, United States National Science Foundation Grant DMS 0354729, an Engineering and Physical
 Sciences Research Council (UK) Advanced Research Fellowship, and the Leverhulme Trust.
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 7 1 2 ROBERT J. MCCANN AND PETER M. TOPPING

 The infimum is taken over the space F(V, v) of Borei probability measures tt on
 M x M which have marginals v and v, in the sense that

 (4) //(x)di/(x) = [ /(x)d7T(x,y); and Jm Jmxm

 [ /(y)d7T(x,y)= f f(y)dv(j), Jmxm Jm

 for each continuous test function/ e C(M).
 In this paper, we are particularly interested in the case of measures v and v

 which are induced by n-forms uo and uj respectively, in the sense that

 KA) = [ u9
 Ja

 for every Borei A C M, and similarly for Q. (We will often corrupt notation by
 considering the Wasserstein distance between u and O rather than v and v.) The
 advantage of defining W2 as an infimum over joint probabilities tt rather than
 smooth 2ft-forms on M x M is that F(V, P) is a weak-* compact subset of the
 dual space to (C(M x M), || • ||oo), so the infimum in (3) is therefore attained by
 some joint probability tto. The structure of the minimizing tto will be recalled in
 the proofs below; it is not generally smooth.

 Following a construction from Perelman's work on Ricci flow [23], [29,
 Chapter 6], let u(x9r) evolve under the heat equation

 du

 (5) -Q^ = A8(T)U,

 where Ag is the connection Laplacian with respect to g. This evolution preserves
 the total mass:

 TÍ"'0- dr Jm dr Jm

 and gives a smooth rc-form üü(t) at later times r. In particular, the measures
 induced by u{r) at later times continue to be probability measures, absolutely
 continuous with respect to the measure induced by any smooth volume form
 on M. If we write u;(x, r) = w(x, r)dV, where dV = dVg(T) is the volume form
 associated to g(r), then the nonnegative function u solves the conjugate heat
 equation
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 RICCI FLOW 713

 which in the special case of Ricci flow is

 (7) - = Ag(T)u - Ru,

 where R = trRic is the scalar curvature, since the volume form dV evolves

 according to ^dV = ('iv^)dV or -§^dV = RdV in the special case of Ricci
 flow (see [29, (2.5.7)]). By the strong maximum principle, u > 0 for r > t'.

 We precede our main theorem by one of its corollaries, which asserts that the

 diffusion (5) of the form u(r) couples with the backwards Ricci flow to produce
 a 2-Wasserstein contraction:

 Corollary 1. (Coupled contraction) On a compact oriented manifold M, sup-
 pose a smooth family of metrics g(r) satisfies the backwards Ricci flow equation (1)
 on the same interval [t',T2Ì C R that u(x, r) > 0 and ü(x, t) > 0 are unit mass
 solutions to the diffusion equation (5). Then W2(uj(t),Q(t), t) is a non-increasing
 function ofr G [ti, rj'y where 2-Wasserstein distance W2 is defined by (3).

 This result should be compared to 2-Wasserstein contractivity of the ordinary
 heat flow in a stationary metric, which can be established assuming Rie > 0: see
 e.g. Sturm & von Renesse [27], and the subsequent works of Lott & Villani [17]
 [18] and Sturm [24] [25] [26], which build on the Riemannian adaptation by Otto
 & Villani [22] and Cordero-Erausquin, McCann & Schmuckenschläger [8] [9],
 of Jordan, Kinderlehrer & Otto's gradient flow formulation of the dynamics [14]
 [21] from Euclidean space and McCann's displacement convexity [19]. In the
 Euclidean context, W2 -contractivity of the heat evolution was also established by
 Ambrosio, Gigli & Savaré [1] and Carrillo, McCann & Villani [6]. The connection
 between entropy, Ricci curvature, and convergence of diffusion dates back at least
 to Bakry & Emery [2].

 We remark that in our Ricci flow setting, no sign condition on the Ricci
 curvature is required. In a region where this curvature is negative, the evolution
 of the metric (1) shrinks distances just enough to compensate for any lack of
 contractivity of the diffusion, whereas in Ricci positive regions, the diffusive
 contraction turns out to be strong enough to compensate for expansion of distances
 by (1).

 The part of the proof of our main theorem which leads to Corollary 1 will
 be based on displacement semiconvexity and other estimates for the Boltzmann-
 Shannon entropy along appropriate Wasserstein geodesies (see Section 3).

 To state our main theorem, we need to introduce the notion of a supersolution
 to the Ricci flow.

 Definition 1. A super Ricci flow (parametrised backwards in time) is a smooth
 family g(r) of metrics, r G [tut21 such that at each r G (ri,r2), and at each
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 714 ROBERT J. MCCANN AND PETER M. TOPPING

 point on M, we have

 (8) -^ + 2Ric(g(r))>0.
 Note that r is reverse-time compared to the time parameter t in the classical Ricci

 flow literature, and so - Jp is a derivative forwards in time t.
 Our main theorem asserts that the contractivity of diffusions backwards in t

 (forwards in r) as in Corollary 1 characterizes super Ricci flows, and there is a
 third equivalent condition involving forwards in t (backwards in r) solutions to
 heat equations.

 Theorem 2. Suppose that M is a compact, oriented manifold equipped with
 a smooth family of metrics g(r) for r G [tì,T2] e R. Then the following are
 equivalent:

 (A) g(r) is a super Ricci flow (i.e., satisfies (8));
 (B) whenever t' < a < b < T2 and a;(x, r) > 0 and ¿t)(x, r) > 0 are unit mass

 solutions to the diffusion equation (5) for r G (a, b), the function W2(w(t), ¿D(t), r)
 is non-increasing in r G (a, b), where 2-Wasserstein distance W2 is defined by (3).

 (C) whenever t' < a < b < ti and f: M x (a, b) - ■> R is a solution to
 - -gt = Ag(Tyf, the function supM | V/(-, r)' is nondecreasing in r.

 This theorem is related to a result of Sturm and von Renesse [27] showing
 that fixed Riemannian manifolds with Rie > 0 can be characterized in terms

 of the properties of the solutions of heat equations. In our situation - working
 with respect to an evolving metric - one must distinguish between forwards in

 t (backwards in r) solutions to the heat equation ^ = A/, which do not have
 preserved mass in our situation, and backwards in t (forwards in r) solutions to

 the diffusion equation |^=Am- i^tr^jw which do have preserved mass.

 Remark 3. Our characterizations indicate how one can define a super Ricci
 flow in certain weaker contexts than having a smooth family of Riemannian
 manifolds. For example, one could consider one-parameter families of path metric
 spaces, each equipped with a reference measure such as the Hausdorff measure of
 nontrivial dimension induced by its metric. Using the ideas of entropy convexity
 for Ricci flow in this paper, it is possible to make sense of weak super Ricci
 flow definitions without constructing any notion of diffusion. This provides a
 dynamic analogue of the approach of the previously mentioned papers of Lott &
 Villani [17] [18] and Sturm [24] [25] [26], which address the static case. A weak
 Ricci flow can then be defined to be a weak super Ricci flow which at each time
 expands distances no faster (to first order in time) than any other super Ricci
 flow which coincides with the given super Ricci flow at that time.

 Remark 4. The orientability assumption in Theorem 2 and Corollary 1 is only
 required to make sense of the inequalities u > 0 (meaning that the form a; is a
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 RICCI FLOW 715

 nonnegative multiple of the volume form dVg(T)) and Q > 0. By reformulating
 the theorem in terms of the measures induced by uj and <D, one gets a result
 which is also true for nonorientable manifolds (albeit at the expense of clarity of
 exposition). The same is true for Lemma 8 below.

 Acknowledgments. We would like to thank Gerhard Huisken and Alessio
 Figalli for useful comments during the course of this work. John Lott has in-
 formed us that he has independently been considering the links between optimal
 transportation and Ricci flow, and has formally derived a result similar to our
 Corollary 1 [15]. We are also grateful to him for pointing out related develop-
 ments due to Carfora [5], and for comments on this work. RJM is pleased to
 acknowledge the hospitality of the Institut Henri Poincaré (Paris) and PT thanks
 the Max Planck Albert Einstein Institute (Golm) and the Free University (Berlin)
 where parts of this work were performed.

 Added in proof. Since this work appeared in preprint form in 2006, there
 have been several developments which we briefly survey. In [30] from 2007,
 a notion of ^-optimal transportation was introduced and a contractivity result
 was proved that generalises the 2-Wasserstein contractivity on Ricci flows in this
 paper. That viewpoint also allows one to recover essentially all of the monotonie
 quantities that Perelman introduced in [23] to study finite-time singularities of
 Ricci flow - see [30] and the subsequent paper of Lott [16] from 2008 where
 Perelman's reduced volume was shown also to arise this way. That latter paper
 [16] also includes a new rigorous proof of the 2- Wasserstein contractivity on
 Ricci flows that makes up part of this paper. Finally it turns out to be fruitful
 to extend the results of this paper to 1 -Wasserstein contractivity. The extension
 to this situation was made by Tom Ilmanen, and in [4] a new space-time Ricci
 soliton construction was made which was inspired by an attempt to reconcile this
 1 -Wasserstein contractivity with the C- Wasserstein contractivity results from [30].

 2. Properties of the distance function. We consider now the distance func-

 tion d: M x M x [t',T2¡ - > [0, oo) associated to an arbitrary smooth family of
 Riemannian metrics g(r) on M for r G [t',T2].
 Since we are working with a smooth flow on a compact manifold M, over

 a compact time interval, we may assume that the diameter is bounded (that is,

 d(-,-,') < C) and |^f | is bounded. This latter fact implies control on the rate
 that distances can expand or shrink (cf. [29, Lemma 5.3.2]) and we can deduce
 that the distance function r i-> d(x, y, r) is a Lipschitz function on [t' , tj' with
 Lipschitz constant independent of x and y.
 If K < oo is an upper bound for the Lipschitz constant of ¿/2(x, y, •): [r' , r2] - >

 R, for all x,y e M, then we may work directly from the definition of 2-
 Wasserstein distance (3) to see that for fixed unit mass nonnegative n-forms
 u) and ¿D, the function r >- ► W^Ìoj.uj.t) is Lipschitz, with Lipschitz constant no
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 716 ROBERT J. MCCANN AND PETER M. TOPPING

 more than K. With the hindsight of the proof of Theorem 2, it will be clear
 that with cj(r) and uj(t) evolving smoothly, as in the theorem, the function
 T - » W|(u;(r),cc)(r), r) is also Lipschitz away from r = t', but for now let
 us observe the more elementary fact that it is continuous on the whole of [t', t{'.

 Meanwhile, at each instant r, the squared distance function ¿/2(x, y, r) defined

 by (2) is smooth on an open subset of M x M whose complement (the cut locus)
 is denoted by Cut(M,g(r)) C M x M. A minimizing geodesic links each pair
 of points x,y G M by completeness. For (x,y) ^ Cut(M,g(r)), this geodesic
 is unique, and we represent it as a constant speed smooth map s G [0, 1] - >
 a(x,y,s,r) G M with <j(x,y,0, r) = x and a(x,y, l,r) = y, which attains the
 infimum (2). When appropriate, we will abbreviate <r(x, y, s, r) by a(s) and write

 da/ds instead of da/ds.
 We also need to consider the space-time cut locus

 CutsT := {(x,y,r) eMxMx [rur2] | (x,y) G Cut(M,g(r))}.

 The following elementary properties of CutsT will be proved in the appendix.

 Lemma 5. Suppose M is a compact manifold with a smooth family g(r) of
 Riemannian metrics for r G On, T2). Then CutsT is closed in M x M x (n, T2).

 Moreover, on the complement of Cutsj, writing the unique constant speed mini-

 mizing geodesic from x to y, with respect to g(r), as s G [0, 1] - > cr(x, y, s, r) G M,

 the point <r(x, y, s, r) is smoothly dependent on x, y, s and r, and in particular, the

 squared distance function ¿/2(x, y, r) is smoothly dependent on x, y and r.

 Remark 6. By translating time, let us assume that 0 G (ti,T2). By virtue of
 the lemma, given (x,y) ^ Cut(M,g(0)), and two smooth maps X, Y: [t',T2Ì ->
 M with X(0) - x and Y(0) = y, we may precisely compute the evolution of
 d2(X(r), y(r), r). One gets terms owing to the evolution of X(r) and Y{r), and
 of the metric g(r):

 d_ d'X{T'Y{T'T) = IdX da ' + /¿T ^ '
 dr T=o 2 = 'dr T=o' ¿s ¿=0+/ + '^T r=o' <^ j=i-/

 + [ll^l(^ *1) ds
 Jo 2dr'ds'ds) a(x,y,5,0)

 where the shorthand cr(^) refers to the specific geodesic cr(x, y, s, 0).

 3. Derivatives of the classical entropy along wasserstein geodesies. In
 this section we consider Wasserstein geodesies on a fixed Riemannian mani-
 fold. We begin by recalling briefly the strategy for showing W2-contractivity of
 the diffusion equation on a fixed, Ricci nonnegative manifold. The central idea
 of the contractivity estimate [1] [6] [27] goes back to Jordan, Kinderlehrer &
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 RICCI FLOW 717

 Otto's realization [14] that the heat equation represents steepest descent of the
 Boltzmann-Shannon entropy

 (10) E(u)= [ (logu)udV
 JM

 with respect to 2- Wasserstein distance. In Euclidean space, (displacement) con-
 vexity of the entropy [19] along ^-geodesies [3] allowed Otto [21] to quantify
 rates of convergence to the heat kernel. This displacement convexity extends to
 Ricci nonnegative manifolds [8] as conjectured by Otto & Villani [22], and ac-
 tually characterizes Ricci non-negativity as observed by Sturm & von Renesse
 [27]. On a manifold whose Ricci curvature takes both signs, the second deriva-
 tive of the entropy (10) is estimated from below by a lower bound for the Ricci
 curvature [9] [27] - a fact used by Lott & Villani [17] [18] and Sturm [24]
 [25] [26] to develop a theory of Ricci bounds on measured length spaces. From
 the entropy, we shall require a more precise manifestation of displacement con-
 vexity (part of Lemma 8 below) to balance the possible metric expansion arising
 from (1). We derive this manifestation (14) following a Jacobi-field calculation of
 Cordero-Erausquin, McCann & Schmuckenschläger [9], in the spirit of classical
 comparison geometry, instead of their original proof [8]. This calculation explic-
 itly links the behaviour of the entropy E(u) along ^-geodesies, to an appropriate
 average of the Ricci curvature along ordinary geodesies.

 Definition 7. (Push-forward) Given manifolds M and M, any Borei map
 F: M - > M and probability measure v on M induce a Borei probability
 measure on M, called the push-forward of v through F, denoted F#v and de-
 fined by (F#z/)[V] = is[F-'V)] for all Borei V C M. For Borei test functions
 v: M - > R U {±oo}, it follows that

 (11) / vd(F#fi)= [ (voF)dfi.
 JM JM

 Since the lemma below applies to a manifold with a fixed metric g, rather
 than a flowing metric g(r), we adapt our notation a(x, y, s, r), from Section 2,
 and our notation W2{y, v, r), by dropping the time argument r.

 Lemma 8. (Derivatives of the entropy along Wasserstein geodesies) Suppose
 M is a compact oriented manifold with a smooth metric g. Let u > 0 and Q > 0 be
 smooth n-forms on M with unit total mass, inducing probability measures v and v.

 Let Tro G Hz/, V) denote the minimizing measure on M x M from the definition of
 W2(v, v).

 Then there exists a family of probability measures is(s), for s G [0, 1], with
 v(0) = v and v(X) = vy such that

 (12)

 S 1-5
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 718 ROBERT J. MCCANN AND PETER M. TOPPING

 for each s G (0, 1). For each s G [0, 1], there exists a nonnegative function u(s) G

 Ll(M) such that v(s) is the measure induced by u(s)dVg. The entropy E{u{s)) is
 semiconvex for s G [0, 1], and a. e. 5 G (0, 1) satisfies

 (13) 4 ds¿ £(„«> := lim *W + *» + *-(»-«» 62 -MW» ds¿ s ó->o 62

 (14) > / Ricf^,^) dS ¿7T0(x,y). JMxM 'dS dS J a(x,y,5)

 Moreover,

 (15) - E(u(s)) := lim

 as s-q+ s'o s

 > i (Ç ,V log ii(0) )d7TO(x,y).
 JMxM as (7(x,y,0+) x

 By exchanging uj and Q in (15) (equivalently, by transforming s to 1 - s) we
 also have

 ~ dS E(u(s))> [ (-^ dS ,Vlogn(l) 'd7To(x,y), dS 5=1- JMXM ' dS a(X,y,l-) y/

 and through (14), (15) and the semiconvexity of E(u(s)), the lemma yields what
 we will require in the proof of Theorem 2:

 Corollary 9. Suppose M is a compact oriented manifold with a smooth metric
 g.Letuj = udV > Oandíü = üdV > 0 be smooth n-forms on M with unit total mas s.
 Let Tro denote the minimizing measure on M x M from the definition ofW2(oü, Q).
 Then

 <16)/ 'VT 'V1°g" )~VT 'V1°êM )Wo(x,y)
 JMxM ''ds <r(x,y,l-) y/ ' OS CT(x,y,0+) x//

 >[l([ Ricfe^) 'dS dS J ^o(x,y)U. JO 'JMxM 'dS dS J afayj) J

 Proof (Lemma 8) Before beginning the proof, we highlight a few implicit
 assertions within the statement of the lemma. First, we have defined tto as the

 minimizer; uniqueness here follows from [20] because u) and O are smooth, and
 thus v and v do not charge sets of zero volume. Second, the semiconvexity of
 E(u(s)) and the smoothness of u(0) and u{') tacitly imply that u(s) G LlogL for
 each s G [0, 1] - that is, E(u(s)) is finite. Third, implicit in the integrals (14)
 and (15) is the existence of a geodesic s G [0, 1] - > cr(x,y,s) for yro-almost
 all (x,y) G M x M; this relies on a result of Cordero-Erausquin, McCann &
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 RICCI FLOW 719

 Schmuckenschlâger [8] which asserts that 7ro[Cut(M,g)] = 0. Fourth, the limits
 in (13) and (15) exist owing to the semiconvexity of E(u(s)).
 Let us begin by recalling the basic facts about the minimizer of (3) established

 in [20]. The minimizing joint measure tto G T(v, v) is unique (as mentioned
 above) and can be expressed tto = (id x F)#z/ as the push-forward of v through a

 Borei map x - > (x, F(x)). The map F: M - > M can be written F(x) = expx V0,
 for some potential 9: M - ► R whose negation is ¿2/2-concave, meaning -9 =

 (( - #)¿/2/2)d2/2> where the operation

 (17) ^2/2(y) := min ¿2(x,y)/2 - 0(x)

 defines a variant of the Legendre-Fenchel transform adapted to functions 0: M - >
 R on a Riemannian manifold. In particular, 9 is semiconvex and admits a second
 order Taylor expansion on a set domD2# C M of full volume [9]. Define, for
 x G domD2ö, the displacement Fs(x) := expxsVÖ which interpolates geodesi-
 cally between id and F. It is by now well-known that v(s) satisfies (12) if and
 only if v(s) = (Fs)#u [17]. Fixing s G (0, 1), a cr-compact set K C dom£>20 of
 full measure exists [9, Proposition 5] on which the Monge-Ampère equation

 (18) m(0, x) = u(s9 Fs(x)) det Ax(s) > 0

 holds for all x G K and s G [0, 1] such that s-s G Q is rational. Here s - > Ax(s)
 is the unique n x n matrix of Jacobi fields along the geodesic Fs(x) verifying
 Ax(0) = I and Ax(0) = D29(x) (working with respect to a parallel orthonormal
 frame along the geodesic). Furthermore, FS(K) is a Borei set of full mass for us

 and we have (x,Fi(x)) 0 Cut(M,g) and Fs(x) = cr(x,F(x)9s) forxeK [8]. By
 compactness, our manifold admits a Ricci curvature bound Rie > Xg for some
 À G R. Theorem 10 of Cordero-Erausquin, McCann & Schmuckenschlâger [9]
 asserts convexity of E(u(s))+'W2(u;,ü)s2/2 on s e [0, 1]. In other words, E(u(s))
 is semiconvex and has a second order Taylor expansion a.e. in [0, 1]. If s is such
 a point, the limit (13) exists and can be computed along a rational sequence
 Q 3 6 -> 0. From the fact that v(s) = (Fs)#v we find

 E(u(s + 6)) + E(u(s - 6)) - 2E(u(s))

 = [ u (X)io u(S + 6' fm(*)Ms - à, Fg-a(x))
 Jk u(s, x)2

 Using (18) when S is rational, and knowing the limit exists, we find that

 (19) ds1 * Eiuis)) = lim / ,(x)^iW^M 62 ds1 s s^oJk 62
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 720 ROBERT J. MCCANN AND PETER M. TOPPING

 where <p(s,x) := -logdetAxO) (a smooth function of s for each x G K). By
 working directly with the definition of Jacobi fields, one can estimate, for x G K,

 d2(f 1 [dip '2 . (da da'
 (20) -f ds2 (s, x) > - [dip 'ds -^(s, x) ) + Rie . ( ' (da - ds , - ds J ) ds2 n 'ds ) ' ds , ds J a(x,F(x),s)

 as in Lemma 6 of [9] (cf. [13, §17] or [11, (4.18)], say). One deduces first from

 this a lower bound for -g^rC?, x), uniformly in s G [0, 1] and xGÍ. (We are using

 the boundedness of the diameter of (M,g) here to control ^.) This then gives us
 a uniform lower bound on the ratio jz((p(s + <5, x) + (p(s - 6, x) - 2(p(s, x)) when
 6 > 0 is small enough for all terms to be well-defined. Consequently, we may
 address (19) with Fatou's lemma to deduce

 d2 f d2ip
 (21) -^ ds2 E(u(s)) > Jk / f w(x)-|(5,x) d2ip ds2 -^ ds2 ~s Jk ds2

 f x . {da da' I
 > Jk / f o;(x)Ric x . {da 'ds - , - ds J ) Jk 'ds , ds J 'a(x,F(x),s)

 using (20). Since tto = (id x F)#v, and K carries the full mass of the measure v
 induced by u>, (11) yields the desired estimate (14).

 For the final estimate (15), we follow a similar argument with s = 0 and
 compute as above, that

 E(u(s)) - E(u(0)) = r u(s)logu(s)-u(0)logu(0)dv

 .í/logí^WVx) sJk*' J sJk*' m(0,x) J
 1 r

 = - / y?(5,x)a;(x),

 where the final equality is holding for any rational s by (18). Before taking the
 limit s ' 0 in Q, we need:

 Claim.

 liminf / ¥^dv >-[ Mdu.
 s'o Jk s Jk

 Indeed, for xGi,we have (p(0, x) = 0 and f£(0,x) = -AÔ(x), so by Taylor's
 expansion, we have

 ^) = _aö(x)+ir(i_Ä,XÄ
 s s Jo os¿
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 RICCI FLOW 721

 and using again the fact that ^(Z?,x) is bounded below, uniformly in x, we find
 that

 ^>-A0(x)-,C,
 S

 for some C < oo. Fatou's lemma may then be invoked to conclude the proof of
 the claim:

 0 = / liminf ((£^l + Ae(x)] du(x) Jk s'o ' s )

 < liminf / ( ^^ + A6(x)) dv(x). s'o Jk' s )

 Using the claim, we may now take a limit in (22) to give

 (23) - E(u(s)) := hm

 as s=q+ j'o s

 > - [ A9du
 Jk

 > - [ (Av>0)u(0)dV
 Jm

 = Jm [ <W,VW(0))^- u(0) Jm u(0)

 since 0 < w(0) G C°°(M). In the last inequality we used semiconvexity of 9 to
 know that the distributional Laplacian Ap/Ö was a signed measure with nonneg-
 ative singular part, and thus pass from its absolutely continuous part A6 on K to
 the full distributional Laplacian on M. Appealing to the facts that tto = {id x F)#u,

 and ^|i7(x,F(x),o+) = V0(x) on the set K of full measure, we recover the desired
 conclusion (15). D

 Remark 10. With a little more work, one can in fact show that equality holds
 in the first inequality of (23). Thus, the difference between the left-hand side and

 the right-hand side in (15) can be written precisely in terms of the integral of the
 singular part of the distributional Laplacian Ap/0. This clarifies the speculation
 in the last few lines of [9].

 4. Proof of Theorem 2: (A) => (B). We now return to study the coupled
 system described in the introduction, and prove that (A) implies (B) in Theo-
 rem 2, and hence prove Corollary 1 by restricting super Ricci flows to Ricci
 flows.
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 722 ROBERT J. MCCANN AND PETER M. TOPPING

 Proof. Recall from Section 2 that h(r) := W|(a;(r),iD(r),r)/2 is a continuous
 function of r on [tì,T2]. By translating time, we may assume that 0 G Cn,T2),
 and prove that

 d+h h(r) - h(0)
 - - := hm sup

 dr r=0 r'o T

 We define, as in the introduction, the function u: M x (ti,T2) - > (0, oo) by

 a;(x,r) = m(x, r)JV^(T). In contrast to the construction in Section 3, the maxi-
 mum principle and parabolicity now guarantee that u is smooth and positive. Let
 ipT: M - ► M be the family of diffeomorphisms generated by the time-dependent
 vector field -V log u, with ^o the identity map. Then analogously to the situation
 in [23] and [29, Chapter 6] for Ricci flow, one can calculate the pull-back

 ^>(r) = a;(0)

 for each r G (ti,T2); the diffeomorphism property makes this equivalent to a
 push-forward: abusing the distinction between n-forms and measures, we have
 (ípT)#üj(O) = uj(t). One can also make the identical construction for ¿D, yielding
 diffeomorphisms $T, generated by the vector field -Vlogw.

 Let Tro be the (unique) optimal transport plan taking lj(0) to £(0). A rea-
 sonable competitor for the optimal transport plan at time r is (ißT x Vv)#7ro. In
 particular, we note that the marginals of this measure are (the measures induced
 by) lj(t) and c5(r), making it a valid transport plan. We then know, by (3) and
 the definition of push-forward measures, that

 (24) h(r) <' ( rf2(x,y,r) d((^T x Vv)#7ro)(x, y)

 1 Í ?
 = - 2 / ¿Z('0r(x),'0r(y),r)d7ro(x,y). ? 2 JmxM

 By definition of tto, we now have

 (25) m-m^t d^Ax),M),T)-d'x,y,o)d7ro(x^
 T JMxM 2t

 for t > 0. We wish to take the limit r ' 0. On any time interval / CC (r' , T2], we
 have m bounded away from 0, and so d2(i/jT(x),ipT(y),T) is a Lipschitz function
 of r G /, with Lipschitz constant independent of x and y. Therefore, we may
 appeal to the Dominated Convergence Theorem and then Remark 6 (which gives
 a formula for the r derivative of d2(i(jT(x),ipr(y),T) valid for (x,y) outside the
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 RICCI FLOW 723

 vanishing vro-measure [8] set Cut(M, g(O))) to establish that

 ™ - d+h <r < hm v Í ™ (26) - < <r hm v / Í
 dr T=o t-+ojMxM It

 . , i ^(^(x>^W.,)dTO(xy)

 = JMxM / (<Vlog«,£> äS -<Vlpgfi,^> ds JMxM ' äS o-(x,y,o+,0) ds cr(x,y,l-,0)

 fl idg (da da' '
 JO 2ÓT 'dS dS J a(x,y,s,0) J

 By considering the ^-geodesic between u(0) and O(0) - and in particular, by
 invoking Corollary 9, we conclude that

 d+h f fl 1 idg ^ ' [da da' J J / x ^
 -j- < JmxMJO f / fl ^ 2 idg /-2Ric ^ [da - ,- dS dsdiro(x,y)<O. J J / x ^ D -j- ÛT r=0 JmxMJO ^ 2 'OT J 'dS dS J a(x,y,s,0)

 5. Proof of Theorem 2: (B) => (C). Define

 Z= {(x,r,x,f) G M x [ri,r2] x M x [ri,r2]: r < f},

 and a smooth function u: E - >• (0, oo) as follows. Given (x, f) G M x (ri, r2], we
 define w(x, r, x, f) for r < f by asking that

 (27) Dm := --^ - Axu = 0 for (x,r) G M x (ri,f)
 ÕT

 m(-, f, x, f ) = <5X on M,

 where Ax is the Laplacian with respect to the x entry of w(x, r, x, f ) using the
 metric g(r), and the initial condition is the usual shorthand for

 (28) lim / ii(x, r, x, f)<p(x, r)dx = (p(x, f) for all tp G C°°(M x (n , f ]),

 where dx is the Riemannian volume measure with respect to g(r) for the para-
 meter x.

 The equation in (27) is the usual forward-in-i heat equation (with x and f
 fixed) since ^ = - ^ . In fact, for fixed x and r , the function u will then satisfy
 the "conjugate heat equation" in x and f:
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 724 ROBERT J. MCCANN AND PETER M. TOPPING

 Lemma 11. The function u defined as above satisfies y for fixed x and r,

 (29) D*a := ^ - At ii + Q tr ||) u = Ofor (x, f) G M x (r, r2)
 w(x,t, -,r) = 6xonM

 where A* w iAe Laplacian with respect to the x ercíry 6>/w(x, r, x, f) wsmg the metric

 g(f), the notation ^4 represents the r-derivative of g at f (evaluated at x), and the
 initial condition is the usual shorthand for

 (30) lim / w(x, r, x, f)(/?(x, f)dx = <p(x, r)for all ip G C°°(M x [r, r2)),

 where dx is the Riemannian volume measure with respect to g(f)for the parameter x.

 For fixed x and r, one should interpret w(x, r, x, f)dx as the probability mea-
 sure of a Brownian path starting at (x, r) and diffusing forwards in r until f. In
 contrast, for fixed x and f, the function w(-,r,x,f) is a likelihood function, not
 a probability density.

 Proof Having defined w: E -► (0, oo) by (27), define v: Z -> (0, oo) to be
 the solution of (29). It remains to prove that u=v.

 Fix r,f with t' < T < f < T2 and x,x G M. We wish to show that

 w(x, r, x, f) = ¿>(x, r, x, f). Writing i/(z, r/) := w(z, 77, x, f) and V(z, r/) := t;(x, r , z, 77),

 this would be t/(x, r) = V(x, f).

 For a, b with r < a < b < f, integration by parts (see [29, §6.3]) tells us
 that

 (31) [/ Viz^Wfr^dzY =-/ f V(z,ri)(nU)(z9ri)dzdri
 UM irj=a Ja JM

 + f f U(z,ri)(nrV)(z9ri)dzdri Ja JM

 = 0,

 where dz is the Riemannian volume element associated to g(rj) for the parameter
 z. By (28),

 (32) lim / V(z, b)U(z, b)dz = V(x, f).
 b/fJM

 Similarly, by (30) (which holds for v, not u, by assumption in this proof) we
 have

 (33) lim / V(z,a)U(z,a)dz= i/(x,r).
 a'r Jm

 Combining (31), (32) and (33), we conclude that i/(x,r) = V(x,f) as desired. D
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 RICCI FLOW 725

 Armed with the function u and its properties, we are in a position to prove
 the implication (B) => (C) of Theorem 2. The proof is inspired by the work of
 Sturm and von Renesse [27].

 Proof. Suppose that t' < a < b < r2. By Lemma 11, we know that for
 fixed x e M and a G (ti,T2), the function y i-> w(x,a,y, r) is the probability
 density, with respect to g(r), of Brownian diffusion in the direction of r, start-
 ing at (x,a) (for r G (¿z,t2)). Since we are assuming (B), we then know that
 W2(w(x, a, y, r)dy, w(x, a, y, r)dy, r) is a non-increasing function of r. Moreover,
 by construction,

 W2(m(x, a, y, r)dy, w(x, a, y, r)df, r) -> ¿/(x, x, a)

 as r ' û. Consequently, for r G (a, T2),

 (34) W2(m(x, a, y, r)¿/y, w(x, a, y, r)Jy, r) < J(x, x, a).

 We are trying to show (C) which we recast into the following equivalent condition:

 (C). If n < ã < a < b < b < r2, and/: Mx(a,fc)^R solves - J£ = Ag(r/,
 then

 Lip(f,a)<Lip(f,b),

 where

 Lip(/, r. ,. r) x J 1/(X,T)-/(X,T)1 Lip(/, r. ,. r) x := sup J

 x,xGM;x/x ¿(x,X,r) „

 is the Lipschitz constant of/(-,r).
 To prove this, we write/(-,a) in terms of u: E - > (0, 00) and/(-,è):

 /(x,a)= / u(x,a,y,b)f(y,b)dy.
 JM

 Now for x,x G M, let 7r(y,y) be any transport plan between the measures
 w(x, a, y, è)Jy and w(x, 0, y, è) Jy. Then

 /(x,fl)= / f(j9b)dir(y9y),
 JMxM

 and similarly,

 /(x,fl)= / f(y,b)dn(y9y).
 JMxM
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 726 ROBERT J. MCCANN AND PETER M. TOPPING

 Subtracting, we may estimate

 (35) 'f(x,a)-f(x,a)' < / 'f(j,b)-f($,b)'d7r(j,y)
 JMxM

 < Lip(f9b) i d(y,y,b)dn(j9y)
 JMxM

 < Lip(f, b)(f ¿2(y, y, b)dn(j9 f)) * , 'Jmxm J

 where we have used the Cauchy-Schwarz inequality. If we now choose tt to be
 the optimal transport plan, we find that

 (36) |/(x,a)-/(x,a)| < Up(f9b)W2(u(x9a9y9b)dyMx9a9y9b)dy9b)

 < Lip(f,b)d(x,x,a),

 by (34). Dividing by d(x,x,a) and taking the supremum over x,x G M (x ^ x)
 we conclude that

 Lip{f,a)<Lip(f,b)

 as desired. D

 6. Proof of Theorem 2: (C) => (A). We now complete a circle of impli-
 cations which establishes Theorem 2, mirroring [27].

 Proof. Suppose on the contrary, that g{r) is not a super Ricci flow, despite
 (C) holding. Then there exists a time tq G (tì,T2), a point x G M and a vector
 X G TXM of unit length when measured using g(ro), such that

 (37) (-^(ro) + 2Ric(g(To))) (X,X) < 0.

 Let us work on the fixed Riemannian manifold (M, g(ro)) for a moment. Choose
 R > 0 less than the injectivity radius of (M,g(ro)). Let {x1} be normal coordinates

 centred at x, such that -^ = X, defined in the ball B(x,R). Let ¥: B(x9R/2) -> R
 be the signed distance function from the level set {xl = 0} such that XÇí*) = 1
 (rather than -1). Then *F is a Lipschitz function with the property that |V*F| < 1
 almost everywhere in B(x, /?/2), with equality in some neighborhood of x. By
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 RICCI FLOW 727

 virtue of being a signed distance function from a hypersurface, the Hessian of *F
 at x can be calculated to be

 HessOF)(y,Z) = -d^iliY7 'ZT)'

 where YT, ZT are the projections onto the hypersurface of arbitrary vectors Y,Z G

 TXM, and /(•, •) represents the second fundamental form of the hypersurface. By
 construction, we have /(•,) = 0 at x, so

 Hess (40 = 0

 at x. Now define </?: M -> [09R/2] to be the Lipschitz cut-off function ip =
 [R/2 - ¿/(-,x)]+, which is supported in B(x,R/2). Define a Lipschitz function
 /o: M -^ R to be the function *F truncated from above by <p, and from below by
 -(f. In other words, set

 /o(y) = max{min{*F(y), <p(y)}, -(¿>(y)}.

 This globally defined function is smooth in a neighborhood of x, has Lipschitz
 constant equal to 1, and retains from *F the properties that

 (38) Hess (/o) = 0 at x; V/0(x) = X' | V/o| = 1 near x.

 We now drop our focus on the fixed Riemannian manifold (M,g(ro)) and
 consider again space-time. Let/: M x (ti,t0] - ► R be the continuous solution
 forwards in time (backwards in r) of the ordinary heat equation:

 (39) nu := - J£ - A/ = 0 on M x (n,^)
 /(•»to) =/o onM.

 The function / is smooth for r < tq, and even all the way to r = to in a
 neighborhood of x. It also satisfies

 limsupsup|V/(-,r)| < Lip(f,r0) = 1,
 t/Vo M

 and

 lim |V/(x,r)| = l.
 t/Yo

 Since we are assuming (C), we can deduce that

 (40) sup | V/(-, t)' < 1 for all r G (rur0).
 M
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 728 ROBERT J. MCCANN AND PETER M. TOPPING

 In contrast, we can compute at (x, to),

 (41) dlV/l2 = d'df'2
 dr dr

 - -|(V/.V/, + 2(,l|.4f)

 = -|^(V/,V/)-2(rfA/,J/)

 = "ff <V/> V/) + 2Ric (V/, V/) - A'df'2 + 2| Hess (/)|2,

 by the Bochner formula, and so because /(•, to) =/o, and by (38), we deduce that

 ^|^(x,to) = (-|^(To) + 2Ric(g(To))) (X,X).

 However, by (37), we then find that

 ^^(x,T0)<0, or

 and hence that for some r G (ti,to), |V/|2(x, t) > 1, contradicting (40). D

 7. Appendix: Proof of Lemma 5.

 Proof. Implicit in the proof will be the standard characterization of Cut(M, g)
 as the complement of the set of points (x, y) G M x M such that there exists a
 unique shortest constant speed geodesic s G [0, 1] - > cr(x,y,s) from x to y, and
 x and y are not conjugate along a(x, y, •).

 Suppose (x0, Co) G TM, to G (ti, t2) and fo ^ TConj(x0, to), where for xe M,
 r G (ti,t2),

 TConj(x,T) := {£ G TXM: expxg(r) is critical at £}.

 By applying the Inverse Function Theorem to the smooth map (p: TM x (r' , t2) - »

 M x M x (ti,t2) given by <p(x,£,r) = (x,expxg(r)£,T), we see that there exist
 neighborhoods V C TM x (ti,t2) of (xo,£o,7o) and U C M x M x (ti,t2) of
 (xo, expXo £(ro) Co, ^o), such that the restriction <p: V - > f/ is a smooth diffeomor-
 phism.

 A first consequence of this is that

 (42) (x,í,r)GV^^ TConj(x, t).

 Now consider an arbitrary point (xo,yo,7o) ^ CutsT- Let Co G rXoM be the

 unique shortest vector (shortest with respect to #(to)) such that yo = expXo g(To) Co-
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 By the characterization of the cut locus recalled at the start of the proof, £o £
 TConj(xo,To), and so we may find the neighborhoods U and V as above, and
 deduce (42).

 Claim. For a possibly smaller neighborhood V of (xo,£o,7"oX given any

 (x,£,t) g V, the geodesic s e [0,1] - > 7(x,£,s,r) := expx^(r)(^O is the
 unique minimizing geodesic (with respect to g(r)) linking x to expx g(r) (£)•
 Before proving the claim, we remark that combining with (42), it would imply

 that the open neighborhood ip(V) is disjoint from CutsT, from which we would
 deduce the closedness of CutsT- It would also enable us to write, for (x,y,r) G

 <p(V), the geodesic s G [0, 1] - > cr(x,y,s,r) G M as cr(x9y9s9r) = expxg(r) (s£)9

 where y = expx^r)£, and (x,£, r) G V. In particular, by the smoothness of <p~l9
 we would deduce the smooth dependence of cr(x, y, s, r) and the squared distance
 function cf(x, y, r) on their parameters, whilst in <p(V)9 and hence throughout the
 complement of CutsT-

 It remains to prove the claim. If false, there exist sequences {(x,-,£,-)} C 7M,
 {t,-} C (ri,r2) such that (x/,&) -> (xo,£o) and n -> r0, but with s G [0, 1] - ►
 7(x/, £i9 s, Ti) not a unique minimizing geodesic with respect to giri) joining x,- to

 y i := expx. g(r/) & for each i. Note that y,- -> y0 as i -> oo. By omitting a finite
 number of terms, we may assume that (x,-, ^-, r¿) G V, and thus (x,-, y,-, r,-) G Í/ :=

 <p(V), for all i.

 Let us choose vectors ¿ G TXM such that 5 - > 7(x¿, ¿, 5, r,-) is a minimizing
 geodesic from x,- to y¿, with £• ^ ^-. After passing to a subsequence, we may
 assume that (x,-, ¿) - > (x0, ^o) as / - ► oc, for some £0 G TXoM. Since ^(x,-, ¿, r,-) =

 (p(Xi,£i9Ti) = (x/,y/,T,-), and the restriction y?: V -> U is a diffeomorphism, we
 must have (x,-, ¿, r,-) ^ V for all /, and in particular, we must have £o i- ^o-
 Consequently, s - > 7(xo,^o^^o) and s - ► j(xq9^o9s9to) must be distinct

 minimizing geodesies between xo and yo, with repect to g(ro), contradicting the
 assumption that (xo,yo,ro) ^ CutST- □
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