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L-optimal transportation for Ricci flow

By Peter Topping at Coventry

Abstract. We introduce the notion of L-optimal transportation, and use it to con-
struct a natural monotonic quantity for Ricci flow which includes a selection of other mo-
notonicity results, including some key discoveries of Perelman [13] (both related to entropy
and to L-length) and a recent result of McCann and the author [11].

1. Introduction

Given a closed manifold M, of dimension n, a smooth family gðtÞ of Riemannian
metrics is called a Ricci flow if it satisifes the nonlinear PDE

qg

qt
¼ %2Ric

!
gðtÞ

"
;ð1:1Þ

introduced by Hamilton [8] (see [16] for further information).

In order to do analysis on Ricci flows, one has been traditionally reliant largely on the
maximum principle. In particular, one does not have a Sobolev inequality; more precisely
one has no a priori control on the evolution of the standard Sobolev constant. Instead, one
can look for other quantities which are controlled under Ricci flow, the best-known of
which is the optimal constant in a certain log-Sobolev inequality. That log-Sobolev con-
stant is monotonic in time by virtue of the monotonicity of Perelman’s W entropy (see
[13] and [16] for details, and its application to proving ‘‘no local collapsing’’ for Ricci flow).

The goal of this paper is to introduce a new geometric quantity for Ricci flow which is
also monotonic, and which simultaneously generalises Perelman’s W entropy and one of
Perelman’s crucial monotonicity results involving his celebrated notion of L-length. Fur-
thermore, the monotonicity of our new quantity includes a recent result of McCann and the
author [11] where Ricci flow was considered in conjunction with the theory of optimal
transportation. The new quantity elucidates why these previous entropies and other quanti-
ties function the way they do, and indicate the extent to which we can hope to generalise
them to other geometric flows.

To describe the new quantity, we introduce a new notion of optimal transportation of
measures through space-time in Ricci flow, and an associated notion of Wasserstein-type



distance between probability measures. Before we can describe this concept, we must first
survey how one can make sense of a distance between two points in space-time.

In light of the work of Perelman, it is convenient to consider the Ricci flow backwards
in time. To this end, we adopt the notation t to represent some backwards time parameter

(i.e. t ¼ C % t for some C A R) and consider the reverse Ricci flow
qg

qt
¼ 2Ric

!
gðtÞ

"
, de-

fined on a time interval including ½t1; t2' where 0e t1 < t2. Perelman’s L-length of a path
g : ½t1; t2' ! M (where one should view the point gðtÞ as a point in the Riemannian mani-
fold

!
M; gðtÞ

"
) is defined [13] by

LðgÞ :¼
Ðt2

t1

ffiffiffi
t

p !
R
!
gðtÞ; t

"
þ jg 0ðtÞj2gðtÞ

"
dt;ð1:2Þ

where Rðx; tÞ is the scalar curvature at x in
!
M; gðtÞ

"
. One can use such a length to give

rise to a distance, mirroring the classical construction of Riemannian geometry: We define
the L-distance between a point ðx; t1Þ and ðy; t2Þ (where x; y A M and 0e t1 < t2 are
times) as

Qðx; t1; y; t2Þ :¼ inffLðgÞ j g : ½t1; t2' ! M is smooth and gðt1Þ ¼ x; gðt2Þ ¼ yg;

with the caveat that this distance can be negative, and one is not directly generating a metric
space via this construction. When t1 and t2 are pushed together, the scalar curvature term
in the definition (1.2) of L is dwarfed by the ‘energy’ term, and one recovers the classical
Riemannian distance in the sense that

lim
t2#t1

2ð
ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
ÞQðx; t1; y; t2Þ ¼ d 2ðx; y; t1Þ;ð1:3Þ

uniformly in x and y, where dð! ; !; tÞ is the Riemannian distance with respect to gðtÞ.

Equipped with Q, we can introduce the L-Wasserstein ‘‘distance’’ Vðn1; t1; n2; t2Þ be-
tween two Borel probability measures n1 and n2, viewed at times t1 and t2 respectively:

Vðn1; t1; n2; t2Þ :¼ inf
p AGðn1; n2Þ

Ð

M)M

Qðx; t1; y; t2Þ dpðx; yÞð1:4Þ

where Gðn1; n2Þ is the space of Borel probability measures on M)M with marginals n1 and
n2 (i.e. pðW)MÞ ¼ n1ðWÞ and pðM)WÞ ¼ n2ðWÞ for Borel WHM). By virtue of (1.3), we
can recover the standard 2-Wasserstein distance W2 from V in the limit that t2 # t1:

lim
t2#t1

2ð
ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
ÞVðn1; t1; n2; t2Þ ¼ W 2

2 ðn1; n2; t1Þð1:5Þ

:¼ inf
p AGðn1; n2Þ

Ð

M)M

d 2ðx; y; t1Þ dpðx; yÞ:

Whilst the distance V will be the main ingredient of our new result, all of the results we will
discuss in this paper are phrased (or can be rephrased) in terms of the probability densities
of Brownian di¤usion on Ricci flows, backwards in time (that is, forwards in t). In other
words, we consider families nðtÞ of Borel probability measures so that if ta < tb and nðtaÞ
represents the probability of the location of a Brownian particle at time ta, then nðtbÞ rep-
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resents the probability of the location of the particle at time tb. Mathematically, if we de-
note the Riemannian volume measure on

!
M; gðtÞ

"
by mðtÞ, and write dnðtÞ ¼ uðtÞ dmðtÞ

for some evolving probability density u : M) ðta; tbÞ !ð 0;yÞ then u satisfies the equa-
tion

qu

qt
¼ Du% Ru;ð1:6Þ

where the scalar curvature term is arising because of the evolution of the volume element
q

qt
dmðtÞ ¼ 1

2
tr
qg

qt

% &
dmðtÞ ¼ RdmðtÞ—see [16], (2.5.7). By considering families nðtÞ over

open intervals, we may always assume that nð!Þ is a smooth family of positive measures, by
which we mean that its density u is smooth and strictly positive. For brevity, throughout
the paper we will refer to such families nðtÞ satisfying (1.6) simply as di¤usions. It is a gen-
eral principle which can be extracted from Perelman’s work [13] that the properties of such
di¤usions are related to the properties of the Ricci flow itself. This mirrors the classical con-
nection between the geometry of fixed Riemannian manifolds and the properties of the heat
kernels they support.

Our main theorem asserts the monotonicity of a renormalised version of the L-
Wasserstein distance between two di¤usions, at di¤erent times. The quantity has a global
space-time aspect, but localising or restricting it will reveal some more familiar monotonic
quantities.

Theorem 1.1. Suppose that 0 < t1 < t2 and gðtÞ is a (reverse) Ricci flow on a closed
manifold M of dimension n, for t in some open interval containing ½t1; t2'. Suppose that n1ðtÞ
and n2ðtÞ are two di¤usions (as defined above) for t in some neighbourhoods of t1 and t2 re-
spectively. Let t1 ¼ t1ðsÞ :¼ t1e

s, t2 ¼ t2ðsÞ :¼ t2e
s be two exponential functions of s A R,

and define the renormal i s ed d i s tance between the di¤usions n1 and n2 at s by

YðsÞ :¼ 2ð
ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
ÞV

!
n1ðt1Þ; t1; n2ðt2Þ; t2

"
% 2nð

ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
Þ2

for s in a neighbourhood of 0 such that ni
!
tiðsÞ

"
are defined ði ¼ 1; 2Þ.

Then YðsÞ is a (weakly) decreasing function of s.

The fact that we should track the di¤usions n1 and n2 with this exponential paramet-
risation is somewhat unconventional but is natural when one considers the invariance of
Ricci flow under parabolic rescaling [16], §1.2.3.

We will prove Theorem 1.1 in Section 4. Before doing so, we will have to develop the
theory of L-optimal transportation (Section 2) in order to understand the structure of the
minimiser p A Gðn1; n2Þ which will exist for the variational problem in (1.4). This will lead
us to a construction of what we will call L-Wasserstein geodesics between two given prob-
ability measures. In Section 3 we will investigate the properties of the classical Boltzmann-
Shannon entropy along these L-Wasserstein geodesics. This will involve investigating care-
fully the behaviour of L-geodesics for Ricci flow, and their L-Jacobi fields, and making
natural computations for the second derivatives of the volume element along L-geodesics
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which extend the first derivative calculations which were used so successfully by Perelman
[13]. Luckily, many of the optimal transportation aspects of this theory can be developed
along similar lines to the development of the original rigorous theory of optimal transpor-
tation on Riemannian manifolds. In particular, we follow the work of McCann [10] and
Cordero-Erausquin, McCann and Schmuckenschläger [6] wherever possible. Heuristics
which motivated some of that original theory can be found in work of Otto and Villani
[12]. Cedric Villani has pointed out to us that an alternative to developing the optimal
transport structure theory following [10] and [6] would be to invoke the theory applicable
to very general cost functions which is developed in his forthcoming lecture notes [18]. Op-
timal transport in this generality is also considered in [3] as pointed out to us by Robert
McCann. The proof of our main result itself is closest in spirit and detail to our previous
work [11] with McCann.

Before proceeding with this detail, we explain how the results of Perelman, and
McCann and the author, fall naturally out of Theorem 1.1, as alluded to earlier. We are
only looking for quantities which are adapted to studying shrinking solitons in Ricci flow;
modifications to the theory could be made to recover corresponding quantities adapted to
steady or expanding solitons if they were required.

1.1. Recovering the result of McCann-Topping. We have seen in (1.5) how the stan-
dard Wasserstein distance W2 arises in a limit of our L-Wasserstein distance V . In Lemma
B.1 and Corollary B.3 of Appendix B, we will sharpen this relationship. Turning to Theo-
rem 1.1, if we take t2 # t1, then for each s, YðsÞ ! W 2

2

!
n1ðt1Þ; n2ðt1Þ; t1

"
, and we find:

Corollary 1.2 (McCann-Topping [11]). Given two di¤usions n1ðtÞ and n2ðtÞ (as de-
fined earlier) on a reverse Ricci flow gðtÞ, the function

t ! W2

!
n1ðtÞ; n2ðtÞ; t

"

is (weakly) decreasing in t.

This result leads in [11] to a characterisation of supersolutions to the Ricci flow equa-
tion, which can be exploited to give a notion of weak solutions for Ricci flow.

1.2. Recovering Perelman’s W -entropy. Perelman’s celebratedW-entropy is used to
prove ‘‘no local collapsing’’ for Ricci flow, and it lies behind Perelman’s pseudolocality re-
sult [13]. To recover it, we need also to consider the limit as t1 and t2 approach each other.
However now, we consider the case that n1ðtÞ and n2ðtÞ coincide. By the previous case, our
renormalised distance YðsÞ will be zero in the limit t2 # t1, so in this case, we will look at the
next term in the expansion of YðsÞ in terms of ðt2 % t1Þ to get a new monotonic quantity.

We will need to consider the infinitesimal version of the L-Wasserstein distance im-
plied in the following lemma. Given a smooth family of positive probability measures
nðtÞ on a closed manifold M, for t in some neighbourhood of t1, we call a vector field
X A GðTMÞ an advection field for nðtÞ at t ¼ t1 if there exists a smooth family of di¤eo-
morphisms ct : M ! M, for t in a neighbourhood of t1, with ct1 the identity, and such

that ðctÞKnðt1Þ ¼ nðtÞ and X ¼ qc

qt

''''
t¼t1

.
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Lemma 1.3. Suppose gðtÞ is a (reverse) Ricci flow, and nðtÞ is a smooth family of
positive probability measures on a closed manifold M, for t in some neighbourhood of
t1 A R. Then as t2 # t1,

V
!
nðt1Þ; t1; nðt2Þ; t2

"
¼ ðt2 % t1Þ

(
inf
X

ffiffiffiffiffi
t1

p Ð

M

!
Rð!; t1Þ þ jX j2gðt1Þ

"
dnðt1Þ

)
ð1:7Þ

þ oðt2 % t1Þ;

where the infimum is taken over all advection fields X for nðtÞ at t ¼ t1.

In this lemma, we are choosing the advection field X above to have the least ‘kinetic
energy’; the minimising X can be written explicitly as the gradient of v : M ! R solving

%divðU‘vÞ ¼ dU

dt
at t ¼ t1, where UðtÞ is the one-parameter family of probability densities

satisfying dnðtÞ ¼ UðtÞ dmðt1Þ with mðt1Þ representing the Riemannian volume measure for
gðt1Þ. It is the coe‰cient of ðt2 % t1Þ in (1.7) (the part within square brackets) which we call
the infinitesimal L-Wasserstein distance, or L-Wasserstein speed of nðtÞ, with respect to
gðtÞ, at t ¼ t1. We delay the proof of Lemma 1.3 until Appendix B.

Let us apply this lemma in the case of Theorem 1.1 specialised to the situation that
n1ðtÞ ¼ n2ðtÞ; we will write this measure simply as nðtÞ. We denote its probability density

with respect to Riemannian volume measure mðtÞ by uðtÞ :¼ dnðtÞ
dmðtÞ

and its probability den-

sity with respect to mðt1Þ by UðtÞ :¼ dnðtÞ
dmðt1Þ

as before. Then
qU

qt
¼ DU ¼ Du at t ¼ t1, so

the optimal advection field is given by X ¼ %‘ ln u. Let us write t2 ¼ ð1þ hÞt1, so the
functions t1ðsÞ and t2ðsÞ of the theorem satisfy t2ðsÞ ¼ ð1þ hÞt1ðsÞ for all s. In this situa-
tion, Lemma 1.3 tells us that

YðsÞ ¼ h2
%
t21

Ð

M

ðRþ j‘ ln uj2Þ dnðt1Þ %
nt1
2

&
þ oðh2Þ ¼ h2 t21Fðt1Þ %

nt1
2

% &
þ oðh2Þ;

where for each t,

F ¼
Ð

M

ðRþ j‘ ln uj2Þu dm

is Perelman’s F-information functional [13], [16], §6.2. Theorem 1.1 then tells us that

t2FðtÞ % nt

2

% &
is weakly decreasing in t:ð1:8Þ

We are interested in understanding Perelman’s W-entropy which is normally written (for
given t) as

W ¼
Ð

M

½tðj‘f j2 þ RÞ þ f % n'u dm;
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where f : M ! R is defined by u ¼ e%f

ð4ptÞ
n
2

. (See [13] and [16] for more information and

applications to proving ‘‘no local collapsing’’.) Now a short calculation shows that

dW

dt
¼ 1

t

d

dt
t2FðtÞ % nt

2

% &

so by (1.8) we recover the monotonicity of W:

dW

dt
e 0:

1.3. Recovering Perelman’s enlarged length monotonicity. Whereas we have consid-
ered distances Qðx; t1; y; t2Þ so far, most of Perelman’s constructions involve the special
case Lðy; tÞ :¼ Qðx; 0; y; tÞ for fixed x A M, or variants thereof. In particular, he defines
the enlarged distance Lðy; tÞ :¼ 2

ffiffiffi
t

p
Lðy; tÞ, and proves that the minimum over M of

Lð!; tÞ % 2nt is a weakly decreasing function of t. Because the minimum is zero in the
limit t # 0, this implies that for any t, one can always find a point y A M for which
Lðy; tÞe 2nt, and that fact turns out to be essential in Perelman’s arguments to extract
asymptotic solitons for k-solutions, and also to prove ‘‘no local collapsing’’ estimates
when one is studying Ricci flows with surgery. (See [13] and [14] for more details.)

Here we point out that the above monotonicity is also encoded in our Theorem 1.1.
To see this, we would like to set t1 ¼ 0. (Strictly speaking, we have assumed that t1 > 0 to
avoid dealing with a host of special cases and technical issues in the proofs; we leave the
reader either to extend the theory, or take a limit t1 # 0.) The exponential function t1ðsÞ
will then be zero for all s. For n1ðtÞ, we take the di¤usion which at t ¼ 0 is the point unit
mass dx centred at x. Therefore n1

!
t1ðsÞ

"
is that same measure for all s, and because the

minimising p in the transportation problem defining V
!
dx; 0; n2ðt2Þ; t2

"
will be dx ) n2ðt2Þ,

we have V
!
dx; 0; n2ðt2Þ; t2

"
¼

Ð

M

Lð!; t2Þ dnðt2Þ, and hence

YðsÞ ¼
Ð

M

!
Lð!; t2Þ % 2nt2

"
dn2ðt2Þ:

Theorem 1.1 then shows that the function

t !
Ð

M

!
Lð!; tÞ % 2nt

"
dn2ðtÞ

is weakly decreasing, which because n2ðtÞ is an arbitrary di¤usion, tells us that the mini-
mum of the integrand is also (weakly) decreasing.

1.4. Fixed manifolds. A further precursor to Theorem 1.1 is the work of Sturm and
von Renesse [15]. They showed that on a fixed Riemannian manifold of (weakly) positive
Ricci curvature, the Wasserstein distance between two di¤usions is decreasing. Our results
intersect in the special case that one considers a Ricci flat Riemannian manifold.

Acknowledgements. I would like to thank Robert McCann for many useful conver-
sations about optimal transportation. Following our previous work [11] with McCann, I
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would like to thank John Lott and Ben Chow for encouraging the search for links between
the results in [11] and the entropy monotonicity and L-length theory in [13], respectively.
This work was partly supported by The Leverhulme Trust.

2. Overview of L-optimal transportation

Throughout this section, we will be considering a smooth (reverse) Ricci flow gðtÞ de-
fined on an open time interval including some interval ½t1; t2' with 0 < t1 < t2. Our goal is
to understand the variational problem from (1.4). To begin, we note that Gðn1; n2Þ from
(1.4) is a weak-* compact subset of the dual to the Banach space of continuous functions
on M)M equipped with the C0 norm, and so we can be sure of the existence of a mini-
miser p A Gðn1; n1Þ for the variational problem in (1.4) by the Banach-Alaoglu theorem. We
call this minimising p the optimal transference plan, reusing the standard terminology from
standard mass transportation theory.

However, in order to rigorously prove anything about L-optimal transportation, we
must understand the structure of the minimising p in some detail, and that is what we ad-
dress now.

In order to discuss these issues, we need some basic theory of Perelman’s L-length.
The more elaborate theory we require along these lines will be relegated to Appendix A.
We have already introduced Perelman’s notion of L-distance; he also introduced [13] a
notion of L-geodesic g : ½t1; t2' ! M analogous to the usual Riemannian notion, which

satisfies the equation DtX ¼ 1

2
‘R% 2RcðXÞ % 1

2t
X , where X ¼ g 0ðtÞ, Rc is the Ricci

curvature viewed as an endomorphism, and Dt represents the pull-back under g of the Levi-

Civita connection on
!
M; gðtÞ

"
, acting in the direction

q

qt
. This notion of geodesic then

gives rise to an L-exponential map Lt1; t2 expx : TxM ! M which maps a vector Z A TxM
to the point gðt2Þ A M, where g : ½t1; t2' ! M is the unique L-geodesic such that gðt1Þ ¼ x
and

ffiffiffiffiffi
t1

p
g 0ðt1Þ ¼ Z.

Consider, for the moment, the optimal transference plan p in the case that the mea-
sures n1 and n2 in (1.4) are absolutely continuous with respect to volume measure. (Con-
sider volume measure to be Riemannian volume measure here and in the sequel; the notion
of absolute continuity is independent of the smooth Riemannian metric one chooses.) We’ll
show that the p arises as the push-forward of n1 under a map M ! M)M defined by
x !

!
x;FðxÞ

"
where F : M ! M is a Borel map defined in terms of a potential function

j : M ! R and the L-exponential map (see Remark 2.8). The potential j will arise via a
‘Kantorovich’ dual formulation of the variational problem. Using this structure, we will
be able to control p e¤ectively. For example, p will be seen to give zero measure to the
L-cut locus LCutt1; t2 which could be defined as the smallest subset of M)M o¤ which
Qð!; t1; !; t2Þ is smooth.

Developing this structure theory yields a Jacobian change of variables formula (via
Theorem 2.14) which will allow us later to e¤ectively compute entropies of measures along
L-Wasserstein geodesics, which are certain optimal paths of Borel probability measures
on M defined in terms of the L-exponential map and the potential j mentioned above.
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Ultimately, the entropy calculations will be phrased in terms of L-Jacobi fields, which are
analogues of Riemannian Jacobi fields in this setting. The necessary L-Jacobi field compu-
tations will be made in the next section.

Virtually all of the material in this section is in one to one correspondence with the
development of the standard theory of optimal transportation on manifolds by McCann
[10] and Cordero-Erausquin, McCann and Schmuckenschläger [6]. (As mentioned earlier,
one could also appeal to [18].) We follow their route as closely as possible, and only give
brief sketches of proofs where little adaptation is necessary. Our main goal here is to point
out the exact analogues of their results in our setting. The first deviation of presentation—
of the Legendre-Fenchel-type transform used in the classical theory—is motivated by the
asymmetry of our cost function.

Given a continuous function j : M ! R, we define the function ĵj : M ! R by

ĵjðyÞ ¼ inf
x AM

½Qðx; t1; y; t2Þ % jðxÞ':ð2:1Þ

Likewise, if c : M ! R is continuous, then !cc : M ! R is defined by

!ccðxÞ ¼ inf
y AM

½Qðx; t1; y; t2Þ % cðyÞ':ð2:2Þ

These transforms depend on t1 and t2, but those parameters can be viewed as fixed for now.
Indeed, let us abbreviate Qðx; yÞ :¼ Qðx; t1; y; t2Þ where no confusion will arise. As men-
tioned above, these transforms are the analogues of the c-transform in classical mass trans-
portation (see [10], for example) with slightly di¤erent notation to emphasise the asymme-
try of Qð! ; !Þ. It is straightforward to check that taking one transform and then the other
can only increase the original function:

!̂jĵjjf j; !̂cc!ccfc:ð2:3Þ

We have equality in, say, the first of these inequalities if j ¼ !cc for some c, because then

!̂jĵjj ¼
!̂!cc!cĉ!cc!cce !cc ¼ j:

Definition 2.1. Given a Ricci flow gðtÞ, we call a function j : M ! R reflexive (with
respect to the interval ½t1; t2') if it is continuous, and satisfies !̂jĵjj ¼ j.

This concept is called c-concavity in the classical theory of optimal transportation.
Taking these transforms improves regularity in the following sense. (The proof can be
adapted from [10].)

Lemma 2.2 (cf. [10], Lemma 2). Suppose that there exists K < y such that for all
x A M, the Lipschitz constant of Qðx; !Þ is no more than K. Then for all continuous
j : M ! R, the function ĵj is also Lipschitz with Lipschitz constant no more than K. Here,
Lipschitz is with respect to gðt2Þ.

Similarly, Lipschitz control on Qð!; yÞ gives Lipschitz control on !cc. (Generally, we
will not state similar results obtained by switching x and y.) As we recall in Appendix A,
Q is Lipschitz in both its variables. Throughout this section, we will be implicitly using the
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consequence of this lemma, via Rademacher’s theorem, that any reflexive j is di¤erentiable
almost-everywhere.

We wish to work towards a Kantorovich dual formulation of the L-optimal transpor-
tation problem. Define

S ¼ fðj;cÞ j j;c : M ! R continuous and jðxÞ þ cðyÞeQðx; yÞ Ex; y A Mg;

and, given Borel probability measures n1 and n2 on M, define J : S ! R by

Jðj;cÞ ¼
Ð

M

j dn1 þ
Ð

M

c dn2:

Lemma 2.3 (cf. [10], Proposition 3). There exists a reflexive j such that the supremum
of J over S is attained at ðj; ĵjÞ.

The proof (following [10]) is based on showing that if ðj;cÞ A S, then ð !̂jĵjj; ĵjÞ A S and
Jðj;cÞe Jð !̂jĵjj; ĵjÞ. By virtue of Lemma 2.2, this allows one to alter any maximising sequence
ðji;ciÞ to one with controlled Lipschitz continuity, which enables us to pass to a limit via
the Ascoli-Arzelà theorem to get a maximum.

By definition of the transform (2.1), we have jðxÞ þ ĵjðyÞeQðx; yÞ for all x; y A M.
The case of equality is special:

Lemma 2.4 (cf. [10], Lemma 7). Suppose that j is reflexive, and is di¤erentiable at
x A M. Then jðxÞ þ ĵjðyÞ ¼ Qðx; yÞ if and only if

y ¼ Lt1; t2 expx %‘jðxÞ
2

% &
:ð2:4Þ

In this case, Qð!; yÞ is di¤erentiable at x, and ‘jðxÞ ¼ ‘
!
Qð!; yÞ

"
ðxÞ.

The gradient here is with respect to gðt1Þ. There is an analogous result in the case of
di¤erentiability of ĵj at y.

Remark 2.5. Whenever we have x; y A M such that jðxÞ þ ĵjðyÞ ¼ Qðx; yÞ, the func-
tion j must be a support function (or ‘lower barrier’) for Qð!; yÞ % ĵjðyÞ near x. That is, the
former function lies below the latter near x, with equality at x. This will repeatedly allow us
to relate di¤erentiability and convexity properties of j and Qð!; yÞ at such points x.

Concerning the proof of the lemma (analogous to that in [10]), for the only if part,
note that by Remark 2.5, and the di¤erentiability of j at x, the function Qð!; yÞ admits
‘jðxÞ as a subgradient at x. Moreover, by Lemma A.3 in Appendix A, %2Z is a supergra-
dient of it at x, where Z A Wðx; t1; t2ÞHTxM satisfies y ¼ Lt1; t2 expxðZÞ. (See Appendix A
for notation.) The supergradient and subgradient must then coincide as a genuine gradient,
%2Z ¼ ‘jðxÞ. This is enough to establish (2.4). The if part is easier; by definition of ĵj,
there always exists at least one point z A M at which jðxÞ þ ĵjðzÞ ¼ Qðx; zÞ, and by what
we have seen, this z must coincide with any y satisfying (2.4).
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These considerations put us in a position to construct maps F which transport certain
measures in an optimal way.

Theorem 2.6 (cf. [10], Theorem 8). Suppose s is a Borel probability measure which
is absolutely continuous with respect to (any) volume measure on M. Suppose that j is a re-
flexive function. Then F : M ! M, a Borel map defined at points of di¤erentiability of j by

FðxÞ :¼ Lt1; t2 expx %‘jðxÞ
2

% &
;ð2:5Þ

minimises the functional

Ð

M

Q
!
x;FðxÞ

"
dsðxÞ

amongst all Borel maps ~FF such that ~FFKs ¼ FKs. Any other minimiser must agree with F
s-a.e.

The proof follows exactly as in [10]: For any ~FF as in the theorem, and any ðu; vÞ A S,
then with J defined with respect to n1 ¼ s and n2 ¼ FKs, we have

Jðu; vÞ ¼
Ð

M

u dsþ
Ð

M

v dðFKsÞð2:6Þ

¼
Ð

M

u dsþ
Ð

M

v
!
~FFðxÞ

"
dsðxÞe

Ð

M

Q
!
x; ~FFðxÞ

"
dsðxÞ:

But by Lemma 2.4 and the almost-everywhere di¤erentiability of j, we have
jðxÞ þ ĵj

!
FðxÞ

"
¼ Q

!
x;FðxÞ

"
for almost all x (with respect to any volume measure) and

hence

Jðj; ĵjÞ ¼
Ð

M

Q
!
x;FðxÞ

"
dsðxÞ:

Combining with (2.6), we find that

Jðj; ĵjÞ ¼ sup
S

J ¼ inf
~FF

Ð

M

Q
!
x; ~FFðxÞ

"
dsðxÞ ¼

Ð

M

Q
!
x;FðxÞ

"
dsðxÞ;

and in particular, that F is the sought minimiser. If ~FF is any other minimiser, we must still
have jðxÞ þ ĵj

!
~FFðxÞ

"
¼ Q

!
x; ~FFðxÞ

"
for s-almost all x, and by Lemma 2.4, we then know

that ~FFðxÞ ¼ FðxÞ for s-almost all x.

Given the previous theorem, one would like to be able to find a reflexive j (and hence
F ) to make the measure FKs coincide with a measure of our choice:

Theorem 2.7 (cf. [10], Theorem 9). Suppose that n1 and n2 are Borel probability mea-
sures, with n1 absolutely continuous with respect to (any) volume measure on M. Then there
exists a reflexive function j : M ! R such that Borel F : M ! M defined at points of di¤er-
entiability of j by (2.5) satisfies FKn1 ¼ n2.

The proof mimics that of [10], Theorem 9. The function j is that given by Lemma
2.3.
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Remark 2.8. Theorem 2.7 can be extended using Theorem 2.6 to assert that the
optimal transference plan p in the definition (1.4) of Vðn1; t1; n2; t2Þ is given by the push-
forward of n1 under the map x !

!
x;FðxÞ

"
.

Returning to Lemma 2.4 and the definition of F from Theorem 2.6, we see that
the image of F at a point x of di¤erentiability for j, is the unique point y at which
jðxÞ þ ĵjðyÞ ¼ Qðx; yÞ. Following [6], we now view F as the multi-valued function which
assigns to an arbitrary point x the set of points y at which jðxÞ þ ĵjðyÞ ¼ Qðx; yÞ. (We
will tend to abuse notation by occasionally retaining the old viewpoint for F at points of
di¤erentiability of j.)

The following is merely a fragment of the proof of Lemma 2.4, but is included as the
analogue of [6], Lemma 3.7, and is needed to prove Lemma 2.13 below. Again, the termi-
nology Wðx; t1; t2Þ comes from Appendix A.

Lemma 2.9. If j is reflexive, y A FðxÞ and we pick Z A Wðx; t1; t2ÞHTxM such that
y ¼ Lt1; t2 expxðZÞ, then %2Z is a supergradient of j at x.

We now turn to study second derivatives of Q and potentials j. We are particularly
interested in semiconcavity properties. (If necessary, see Appendix A for the definition of
semiconcave.) Given any reflexive function j, we can pick arbitrary points x A M and
y A FðxÞ and consider j as a support function for Qð!; yÞ % ĵjðyÞ at x as in Remark 2.5.
This implies that for u A TxM su‰ciently small,

jðexpx uÞ þ j
!
expxð%uÞ

"
% 2jðxÞ

juj2
ð2:7Þ

e
Qðexpx u; yÞ þQ

!
expxð%uÞ; y

"
% 2Qðx; yÞ

juj2
;

where we are using the exponential map with respect to gðt1Þ. We then see that j inherits
the uniform semiconcavity of Q from Lemma A.4 in Appendix A, and we may deduce
semiconcavity of j from [6], Lemma 3.11:

Lemma 2.10. A reflexive function is semiconcave.

We have already seen that a reflexive function j is di¤erentiable almost everywhere,
because it is Lipschitz. By virtue of the semiconcavity of j, we can be sure also that a Hes-
sian in the sense of Alexandrov exists almost everywhere (see [6], [1]). The following lem-
mata obtain refined control at points where this Hessian exists. (See Appendix A for a dis-
cussion of the L-cut locus LCut and its subset LCutt1; t2 .)

Lemma 2.11 (cf. [6], Proposition 4.1(a)). Suppose that j : M ! R is a reflexive
function which admits a Hessian at x A M. With FðxÞ still defined by (2.5), we have!
x; t1;FðxÞ; t2

"
B LCut—hence Q

!
!;FðxÞ

"
is smooth near x—and at x there holds

‘
*
Q
!
!;FðxÞ

"
% j

+
¼ 0; Hess

*
Q
!
!;FðxÞ

"
% j

+
f 0:ð2:8Þ
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To prove this, we have, similarly to (2.7), that for u A TxM su‰ciently small,

jðexpx uÞ þ j
!
expxð%uÞ

"
% 2jðxÞ

juj2
e

Q
!
expx u;FðxÞ

"
þQ

!
expxð%uÞ;FðxÞ

"
% 2Q

!
x;FðxÞ

"

juj2
;

and since the left-hand side is controlled from below in the limit u ! 0 (because the Hessian
of j exists) the right-hand side must be also. By Lemma A.5 in Appendix A, this implies
that

!
x; t1;FðxÞ; t2

"
B LCut (hence the local smoothness of Q by Lemma A.2) and (2.8)

follows by returning to Remark 2.5 and using the fact that Q
!
!;FðxÞ

"
% j has a minimum

at x. (The first part of (2.8) is already contained in Lemma 2.4.)

Combining Theorem 2.7 and Remark 2.8 with this lemma, we obtain:

Corollary 2.12. Suppose that n1 and n2 are Borel probability measures, with n1
absolutely continuous with respect to (any) volume measure on M. If we denote by p the
optimal transference plan in the definition (1.4) of Vðn1; t1; n2; t2Þ, then pðLCutt1; t2Þ ¼ 0.

We next want to define a di¤erential dF for the map F , where such a notion makes
sense, and confirm that it has the properties one would expect given the name and notation.

Lemma 2.13 (cf. [6], Proposition 4.1(b)). Suppose that j : M ! R is a reflexive
function which admits a Hessian at x A M. Define F again by (2.5), and a map
dFðxÞ : TxM ! TFðxÞM by

dFðxÞ :¼ 1

2
dðLt1; t2 expxÞ %‘jðxÞ

2

% &
+
*
hess

!
Q
!
!;FðxÞ

"
% j

"
ðxÞ

+
;ð2:9Þ

where hessð f ÞðxÞ is the Hessian of a function f : M ! R viewed as an endomorphism of
TxM (i.e. the covariant derivative of the gradient of f ). Then for u A TxM, we have

supjv% dFðxÞðuÞj ¼ oðjujÞ;ð2:10Þ

where the supremum is taken over all v A TFðxÞM such that expgðt2Þ
FðxÞ ðvÞ A F

!
expgðt1Þ

x ðuÞ
"
and

jvjgðt2Þ ¼ d
!
FðxÞ; expgðt2Þ

FðxÞ ðvÞ; t2
"
.

It is worth pointing out that when j is smooth in a neighbourhood of x (making F a
smooth single-valued map in a neighbourhood of x) then this formula for dFðxÞ coincides
with the di¤erential of F as classically defined.

As usual, the lemma above follows by adapting the corresponding proof from [6]. The
same is true for the following result which uses the di¤erential we have just defined to give a
Jacobian identity.

Theorem 2.14 (cf. [6], Theorem 4.2). Suppose that n1 and n2 are Borel probability
measures on M, which are absolutely continuous with respect to (any) volume measure. Let
ft1 and ft2 be the densities defined by dn1 ¼ ft1 dmðt1Þ and dn2 ¼ ft2 dmðt2Þ. If j : M ! R is a
reflexive function for which FKn1 ¼ n2 (where F is from (2.5)) as provided by Theorem 2.7,
then there exists a Borel set KHM with n1ðKÞ ¼ 1 such that
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, j admits a Hessian at each x A K;

, for all x A K , we have ft1ðxÞ ¼ ft2
!
FðxÞ

"
det dFðxÞ3 0.

We now have enough technology to construct L-Wasserstein geodesics, along the
lines of [6], Section 5. We define these to be one-parameter families of measures Vt, with
t A ½t1; t2', which arise as the push-forwards ðFtÞKn1 by Borel maps Ft : M ! M defined at
points of di¤erentiability of j by

FtðxÞ :¼ Lt1; t expx %‘jðxÞ
2

% &
:ð2:11Þ

The theory above involving F has always required that the function j in the definition of F
is reflexive, or more precisely, reflexive with respect to ½t1; t2'. In order to apply the theory
we have developed to Ft as well as F ¼ Ft2 , we must check that such a function j is also
reflexive with respect to ½t1; t'.

Lemma 2.15. If j : M ! R is a reflexive function with respect to ½t1; t2', then for any
t A ðt1; t2Þ, it is also reflexive with respect to ½t1; t'.

Proof. By definition of Q, we have Qða; t1; y; t2ÞeQða; t1; z; tÞ þQðz; t; y; t2Þ, and
so with respect to ½t1; t',

!̂jĵjjðxÞ ¼ inf
z

(
Qðx; t1; z; tÞ % inf

a
½Qða; t1; z; tÞ % jðaÞ'

)
ð2:12Þ

e inf
z

(
Qðx; t1; z; tÞ þQðz; t; y; t2Þ % inf

a
½Qða; t1; y; t2Þ % jðaÞ'

)

¼ Qðx; t1; y; t2Þ % inf
a
½Qða; t1; y; t2Þ % jðaÞ':

If we now minimise over y A M, the right-hand side becomes precisely !̂jĵjjðxÞ with respect to
½t1; t2', which is jðxÞ by hypothesis. Keeping in mind the first inequality of (2.3), the proof
is complete. r

Note in particular, that in the context of Theorem 2.6, the maps Ft will all map s
optimally to Vt :¼ ðFtÞKs.

Lemma 2.16 (cf. [6], Lemma 5.3). If j : M ! R is a reflexive function and Ft is de-
fined as in (2.11), for x in the subset of M (of full measure) on which j is di¤erentiable, then
Ft is injective.

In practice, we need a quantified version of this:

Lemma 2.17 (cf. [6], Proposition 5.4). Suppose that n1 and n2 are Borel probability
measures on M which are both absolutely continuous with respect to (any) volume measure.
If j : M ! R is a reflexive function such that ðFt2ÞKn1 ¼ n2, then for all t A ðt1; t2', the inter-
polant measure Vt :¼ ðFtÞKn1 is also absolutely continuous with respect to (any) volume mea-
sure.
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Again, the proof is a translation of that in [6]. The analogue of the condition

Hess
d 2
FtðxÞ

2
% tf

 !

> 0 in that proof in [6] translates to Hess
!
Q
!
!; t1;FtðxÞ; t

"
% j

"
> 0

in our setting, whilst the inequality Hess
d 2
FtðxÞ

2
% t

d 2
FðxÞ

2

 !

f 0 from [6] is simply

Hess
!
Q
!
!; t1;FtðxÞ; t

"
%Q

!
!; t1;Ft2ðxÞ; t2

""
f 0 for us (which follows immediately from

the analogue of the triangle inequality

Q
!
a; t1;Ft2ðxÞ; t2

"
eQ

!
a; t1;FtðxÞ; t

"
þQ

!
FtðxÞ; t;Ft2ðxÞ; t2

"
:

In the next section, we want to analyse the behaviour of the classical entropy (to
be defined in (3.15)) along L-Wasserstein geodesics (see also [11], [6] and the references
therein). We will compute this functional using the second part of Theorem 2.14 applied
to Ft, and hence we need to compute det dFtðxÞ for x at certain points where j admits a
Hessian, where

dFtðxÞ :¼
1

2
dðLt1; t expxÞ %‘jðxÞ

2

% &
+
*
hess

!
Q
!
!; t1;FtðxÞ; t

"
% j

"
ðxÞ

+
;

is the generalisation of (2.9). In practice, we will do that with the following observation (cf.
[6]) involving L-Jacobi fields (which will be discussed further in Section 3).

Lemma 2.18. Suppose that j : M ! R is a reflexive function which admits a Hessian
at x A M, and that ŶY A TxM. Let g : ½t1; t2' ! M be the L-geodesic gðtÞ ¼ FtðxÞ, and
define Y A G

!
g*ðTMÞ

"
by YðtÞ :¼ dFtðxÞðŶY Þ for t A ðt1; t2', and Yðt1Þ :¼ lim

t#t1
Y ðtÞ. Then

Y ðtÞ is the L-Jacobi field along g, with initial data

Yðt1Þ ¼ ŶY and DtY ðt1Þ ¼ % 1

2
ffiffiffiffiffi
t1

p hessðjÞðŶYÞ:

Remark 2.19. Because of this lemma, we find that if we choose any orthonormal
basis fŶY igi¼1;...;n for TxM (with respect to gðt1Þ) and consider the L-Jacobi fields

Yi A G
!
g*ðTMÞ

"
determined by Yiðt1Þ ¼ ŶY i and DtYiðt1Þ ¼ % 1

2
ffiffiffiffiffi
t1

p hessðjÞðŶY iÞ, then

det dFtðxÞ ¼ dethYiðtÞ;YjðtÞi
1
2

gðtÞ:

3. Behaviour of Boltzmann-Shannon entropy along L-Wasserstein geodesics

In this section, we perform the computations for L-Jacobi fields which allow us to
understand the behaviour of the entropy along an L-Wasserstein geodesic. The discussion
at the end of the last section motivates the inequalities of the following lemma. (We con-
tinue to consider a smooth (reverse) Ricci flow gðtÞ defined on an open time interval includ-
ing some interval ½t1; t2' with 0 < t1 < t2.)

Lemma 3.1. Suppose that g : ½t1; t2' ! M is an L-geodesic, and fYiðtÞgi¼1;...;n is a
set of L-Jacobi fields along g which form a basis of TgðtÞM for each t A ½t1; t2', with
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fYiðt1Þg orthonormal and hDtYi;Yji symmetric in i and j at t ¼ t1. Then defining

a : ½t1; t2' ! R by aðtÞ ¼ % 1

2
ln dethYiðtÞ;YjðtÞigðtÞ, and writing s ¼ t

1
2, we have

d 2a

ds2
¼ 4t

1
2
d

dt
t
1
2
da

dt

% &
f 2tHðXÞ;ð3:1Þ

and

d 2ðsaÞ
ds2

¼ 4
d

dt
t
3
2
da

dt

% &
f 2t

3
2HðX Þ % nt%

1
2;ð3:2Þ

where X ¼ g 0ðtÞ as before, and

HðXÞ :¼ % qR

qt
% 2X ðRÞ þ 2RicðX ;X Þ % R

t

is the Hamilton Harnack quantity [9], [13].

We clarify that Ric denotes the Ricci curvature of gðtÞ viewed as a bilinear form,
while Rc refers to that tensor viewed as an endomorphism, using gðtÞ.

Proof. The starting point for proving this is the equation for an L-Jacobi field YðtÞ

D2
tY :¼ Dt

!
DtðYÞ

"
¼% RðX ;YÞ þ 1

2
‘Y ð‘RÞ % ‘Y RcðX Þ % 2RcðDtYÞð3:3Þ

% 1

2t
DtY þ ‘X RcðYÞ % ½‘Ricð!;X ;Y Þ'K;

where we are using the sign convention RðX ;Y ÞZ ¼ %‘X‘YZ þ ‘Y‘XZ þ ‘½X ;Y 'Z, and
other conventions from [16].

This equation looks at first glance somewhat di¤erent to the L-Jacobi equation else-
where in the literature (e.g. [5], (7.121)) but our second derivative term is a little di¤erent to
the conventional one, as we now clarify. Given a curve g : ½t1; t2' ! M, and a metric g on
M, we denote by Dg

t the pull-back of the Levi-Civita connection of g by g, acting in the

direction
q

qt
. Given a flow of metrics (e.g. a Ricci flow) our previous notation Dt then co-

incides with DgðtÞ
t in this more general notation. At t ¼ t̂t, the second derivative

Dt

!
DtðYÞ

"
¼ DgðtÞ

t

!
DgðtÞ

t ðY Þ
"
¼ Dgðt̂tÞ

t

!
DgðtÞ

t ðY Þ
"
is then not equal to Dgðt̂tÞ

t

!
Dgðt̂tÞ

t ðY Þ
"
in

general since the connection itself needs to be di¤erentiated. Considering [16], Proposition
2.3.1, we have, at t ¼ t̂t that

Dt

!
DtðYÞ

"
¼ Dgðt̂tÞ

t

!
Dgðt̂tÞ

t ðY Þ
"
þ ð‘Y RcÞðX Þ þ ð‘X RcÞðYÞð3:4Þ

% ½ð‘RicÞð!;X ;YÞ'K;

which accounts for the extra terms.
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Consider the frame field ei A G
!
g*ðTMÞ

"
, i ¼ 1; . . . ; n, with eiðt1Þ :¼ Yiðt1Þ orthonor-

mal, satisfying the ODE

Dtei þRcðeiÞ ¼ 0:ð3:5Þ

Then feiðtÞg is an orthonormal frame for all t A ½t1; t2'. We write YjðtÞ ¼ AkjðtÞekðtÞ for a
t-dependent n) n matrix A. By applying Dt both once and twice, and taking the inner
product

!
gðtÞ

"
with ei, we find that

A 0
ij ¼ hDtYj; eiiþ Akj Ricðek; eiÞ;ð3:6Þ

and

A 00
ij ¼ hD2

tYj; eiiþ 2A 0
kj Ricðek; eiÞ þ Akj

,
Dt

!
RcðekÞ

"
; ei

-
:ð3:7Þ

The first term on the right-hand side of (3.7) can be dealt with using (3.3) and the definition
of Aij. We find that

hD2
tYj; eii ¼ Akj

(
%RmðX ; ek;X ; eiÞ þ

1

2
HessðRÞðei; ekÞ þ ‘X Ricðei; ekÞð3:8Þ

% h‘ek RcðXÞ; eii% h‘ei RcðX Þ; eki

þ 2hRc2ðekÞ; eiiþ 1

2t
Ricðei; ekÞ

)

% 2A 0
kj Ricðei; ekÞ %

1

2t
A 0

ij:

The inner product of the third term on the right-hand side of (3.7) can be expanded out,
using the definition of feig, to give

,
Dt

!
RcðekÞ

"
; ei

-
¼ qRic

qt
ðei; ekÞ þ ‘X Ricðei; ekÞ % 3hRc2ðekÞ; eii:ð3:9Þ

(One pitfall to avoid here is that while Ric and Rc di¤er only by ‘‘raising/lowering an

index’’, the tensors
qRic

qt
and

qRc

qt
do not, because raising/lowering an index involves using

the metric gðtÞ which depends on t.) Combining (3.7), (3.8) and (3.9), we find that

A 00 þ 1

2t
A 0 ¼ MA;ð3:10Þ

where MðtÞ is the t-dependent n) n symmetric matrix given by

Mik ¼ %RmðX ; ei;X ; ekÞ þ
1

2
HessðRÞðei; ekÞð3:11Þ

% h‘ek RcðXÞ; eii% h‘ei RcðXÞ; eki

þ 2‘X Ricðei; ekÞ % hRc2ðekÞ; eiiþ 1

2t
Ricðei; ekÞ þ

qRic

qt
ðei; ekÞ:
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The trace of M is then

trM ¼ %RicðX ;XÞ þ 1

2
DRþ 2dRicðXÞ þ 2XðRÞ % jRicj2 þ R

2t
þ tr

qRic

qt
;

but exploiting the contracted second Bianchi identity 2dRicþ dR ¼ 0 (using the notation

and conventions of [16], (2.1.9)) along with the evolution equation % qR

qt
¼ DRþ 2jRicj2

for the scalar curvature [16], Proposition 2.5.4, and the fact that tr
qRic

qt
¼ qR

qt
þ 2jRicj2

from [16], Proposition 2.3.6, this simplifies to

trM ¼ % 1

2
HðXÞ:ð3:12Þ

We are now in a position to compute the volume element aðtÞ of the lemma, in the spirit of
classical comparison geometry, and following the analogous [7], Lemma 6. By definition,

aðtÞ ¼ %ln detA, and so
da

dt
¼ %tr

dA

dt
A%1

% &
and

d 2a

dt2
¼ tr

dA

dt
A%1 dA

dt
A%1

% &
% tr

d 2A

dt2
A%1

% &
:

If we define B :¼ dA

dt
A%1, then this may be combined with (3.10) and (3.12) to give

t%
1
2
d

dt
t
1
2
da

dt

% &
¼ tr

dA

dt
A%1 dA

dt
A%1

% &
% tr

 
d 2A

dt2
þ 1

2t

dA

dt

% &
A%1

!

ð3:13Þ

¼ trB2 þ 1

2
HðXÞ;

and

t%
3
2
d

dt
t
3
2
da

dt

% &
¼ tr

 
B% 1

2t
I

% &2
!
þ 1

2
HðXÞ % n

4t2
:ð3:14Þ

It remains to show that B (and hence also B% 1

2t
I ) is symmetric, so that the first terms

on the right-hand sides of (3.13) and (3.14) are (weakly) positive. But following [7],

Lemma 6 by writing BT % B ¼ ðA%1ÞTHA%1, where H :¼ dAT

dt
A% AT dA

dt
, and noting

that
d

dt
ðt

1
2HÞ ¼ 0 and that Hðt1Þ is the zero matrix (because at t ¼ t1, A ¼ I , and—using

(3.6) and the hypothesis of the lemma—
dA

dt
ðt1Þ is symmetric) we see that HðtÞ is zero for

any t, and hence B is symmetric for any t. r
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We now turn to consider the Boltzmann-Shannon entropy of probability measures
f dm, where m is Riemannian volume measure, and f is a suitably regular weakly positive
function on M, defined by

Eð f dmÞ ¼
Ð

M

f ln f dm:ð3:15Þ

We are now in a position to investigate the behaviour of this entropy along L-Wasserstein
geodesics (as defined in the previous section) with a result analogous to [11], Lemma 8. We
re-use the alternative variable s ¼ t

1
2.

Lemma 3.2. Suppose that Vt is an L-Wasserstein geodesic, for t A ½t1; t2', induced by
a potential j : M ! R, with Vt1 and Vt2 both smooth, and write dVt ¼ ft dmðtÞ where mðtÞ is
the volume measure of gðtÞ. Then for all t A ½t1; t2', we have ft A L lnL

!
mðtÞ

"
, and the func-

tion t ! EðVtÞ is semiconvex and satisfies, for almost all t A ½t1; t2' (where s ! EðVtÞ ad-
mits a second derivative in the sense of Alexandrov)

4t
1
2
d

dt
t
1
2
dEðVtÞ

dt

% &
¼ d 2

ds2
EðVtÞf 2t

Ð

M

H
!
X ðtÞ

"
dVt1 ;ð3:16Þ

4
d

dt
t
3
2
dEðVtÞ

dt

% &
¼ d 2

ds2

!
sEðVtÞ

"
f 2t

3
2

Ð

M

H
!
X ðtÞ

"
dVt1 % nt%

1
2;ð3:17Þ

where XðtÞ, at a point x A M where j admits a Hessian, is g 0ðtÞ, for g : ½t1; t2' ! M the
minimising L-geodesic from x to FðxÞ. Moreover, the one-sided derivatives of EðVtÞ at t1
and t2 exist, with

d

dt

''''
tþ
1

EðVtÞf%
Ð

M

Rð!; t1Þ þ
‘j

2
ffiffiffiffiffi
t1

p ;‘ ln ft1

. /% &
dVt1 :ð3:18Þ

The j of the lemma is the j which induces the L-Wasserstein geodesic under consid-
eration. This also induces a map F via (2.5) which we use below.

Proof. The main ingredient in the proof is Lemma 3.1, applied to L-geodesics and
L-Jacobi fields arising in Remark 2.19. Note that our volume density aðtÞ will now have a
(suppressed) x-dependency. At the core of the proof of Lemma 3.2 is the fact that we can
relate the entropy at di¤erent values of t in terms of the volume density a. With Kt the set
provided by Theorem 2.14 with t in place of t2, we have (by that theorem)

EðVtÞ ¼
Ð

M

ln ft dVt ¼
Ð

M

ln ft d
!
ðFtÞKVt1

"
¼

Ð

Kt

ln ft + Ft dVt1ð3:19Þ

¼
Ð

Kt

ln
ft1

det dFt
dVt1 ¼ EðVt1Þ þ

Ð

Kt

aðtÞ dVt1 :

We will combine this with Lemma 3.1 to yield the result. Indeed, that lemma gives

immediately a lower bound
d 2a

ds2
f%C, for C < y independent of the point x A M at

which we compute a, and this gives the semiconvexity of EðVtÞ (with respect to s, or
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equivalently t). For values of s where s ! EðVtÞ admits a second derivative in the sense of
Alexandrov, the identity

d 2

ds2
EðVtÞ :¼ lim

d!0

EðVðsþdÞ2Þ þ EðVðs%dÞ2Þ % 2EðVs2Þ

d2
¼

Ð

M

q2a

qs2
ðsÞ dVt1

follows from (3.19) thanks to Fatou’s lemma, as in the proof of [11], Lemma 8. This com-
bines with Lemma 3.1 to give (3.16), and a similar approach gives (3.17).

By semiconvexity, the one-sided derivative of EðVtÞ at t ¼ t1 must exist, allowing the
possibility that it is %y. If we take any sequence tk # t1, and set K ¼

T
k

Ktk , then we may
exploit (3.19) once again to give that

d

dt

''''
tþ
1

EðVtÞ ¼ lim
k!y

Ð

K

aðtkÞ % aðt1Þ
tk % t1

dVt1 :

If a were a convex function of t for each x, then the monotone convergence theorem would
tell us that

d

dt

''''
tþ
1

EðVtÞ ¼
Ð

K

a 0ðt1Þ dVt1 ;ð3:20Þ

and it is not hard to see that the same conclusion follows from the known semiconvexity of
a. By definition of a, keeping in mind that the L-Jacobi fields on which a depends were
chosen as in Remark 2.19, we have (at t ¼ t1)

a 0ðt1Þ ¼ % 1

2
tr

d

dt
hYi;YjigðtÞ

( )
ð3:21Þ

¼ % 1

2
tr½2RicðYi;YjÞ þ hDtYi;Yjiþ hYi;DtYji'

¼ %R%
P
i
hDtYi; ŶY ii

¼ %Rþ 1

2
ffiffiffiffiffi
t1

p Dj:

Returning to (3.20), and exploiting the semiconcavity of j to be sure that the singular part
of the distributional Laplacian DD 0j of j is weakly negative, we have

d

dt

''''
tþ
1

EðVtÞ ¼
Ð

K

%Rðx; t1Þ þ
1

2
ffiffiffiffiffi
t1

p Dj

% &
dVt1ð3:22Þ

f
Ð

M

%Rðx; t1Þ þ
1

2
ffiffiffiffiffi
t1

p DD 0j

% &
dVt1 :

Because dVt1 ¼ ft1 dmðt1Þ, this gives (3.18) as desired. r

We have given (3.16) for use in future work. Here we only require (3.17), and then
only the version of it one obtains by integrating with respect to t (not s). Indeed, by semi-
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concavity of sEðVtÞ, we can see that (3.17) holds in the distributional sense, and integrates
to

2t
3
2
dEðVtÞ

dt

( )t2

t1

f
Ðt2

t1

%
t
3
2

Ð

M

H
!
X ðtÞ

"
dVt1 %

n

2
t%

1
2

&
dtð3:23Þ

¼
Ð

M)M

Kðx; t1; y; t2Þ dpðx; yÞ % nð
ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
Þ;

where K is defined in (A.8) of Appendix A, and p is the push forward of Vt1 by the map
x !

!
x;FðxÞ

"
as in Remark 2.8.

Meanwhile, by exploiting Lemma 2.11 to write ‘jðxÞ ¼ ‘1Q
!
x; t1;FðxÞ; t2

"
for ap-

propriate x, where ‘1Q represents the gradient of Q with respect to its first argument, and
with respect to gðt1Þ, we can rewrite (3.18) as

d

dt

''''
t1

EðVtÞf%
Ð

M)M

Rðx; t1Þ þ
‘1Qðx; t1; y; t2Þ

2
ffiffiffiffiffi
t1

p ;‘ ln ft1ðxÞ
. /% &

dpðx; yÞ;ð3:24Þ

where p is again the push forward of Vt1 by the map x !
!
x;FðxÞ

"
. Taking this viewpoint,

we have the right notation to give the analogous inequality for the other one-sided deriva-
tive:

d

dt

''''
t2

EðVtÞe
Ð

M)M

%Rðy; t2Þ þ
‘2Qðx; t1; y; t2Þ

2
ffiffiffiffiffi
t2

p ;‘ ln ft2ðyÞ
. /% &

dpðx; yÞ;ð3:25Þ

where ‘2Q is the gradient with respect to the y argument, and with respect to gðt2Þ.

Combining (3.23), (3.24) and (3.25), we obtain the following corollary which is what
we shall require in the proof of Theorem 1.1.

Corollary 3.3. Under the hypotheses of Lemma 3.2, we have

Ð

M)M

!
K% 2t

3
2
1Rðx; t1Þ % t1h‘1Q;‘ ln ft1ðxÞigðt1Þ þ 2t

3
2
2Rðy; t2Þð3:26Þ

% t2h‘2Q;‘ ln ft2ðyÞigðt2Þ
"
dpðx; yÞ

e nð
ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
Þ;

where p is the optimal transference plan from Vðt1Þ to Vðt2Þ ( for L-optimal transport).

4. Proof of Theorem 1.1

We will follow [11], Section 4, as closely as possible. All we need to show is that

dþY

ds

''''
s¼0

:¼ lim sup
s#0

YðsÞ %Yð0Þ
s

e 0:
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Defining hðsÞ :¼ V
!
n1
!
t1ðsÞ

"
; t1ðsÞ; n2

!
t2ðsÞ

"
; t2ðsÞ

"
, this is equivalent to proving that

dþh

ds

''''
s¼0

e% 1

2
hð0Þ þ nð

ffiffiffiffiffi
t2

p
%

ffiffiffiffiffi
t1

p
Þ:ð4:1Þ

Let us write dniðtÞ ¼ uiðtÞ dmðtÞ, so uiðtÞ : M ! ð0;yÞ is the probability density of niðtÞ,
for i ¼ 1; 2. Since n1 and n2 are di¤usions, by Fourier’s law, if we take families ct

i : M ! M
of di¤eomorphisms with cti

i the identity, generated by %‘ ln ui, then ðct
i ÞKniðtiÞ ¼ niðtÞ for

t near ti.

If we now let p0 be the minimiser for the variational problem (1.4) in the case of
V
!
n1ðt1Þ; t1; n2ðt2Þ; t2

"
, and use ps :¼ ðct1ðsÞ

1 ) c
t2ðsÞ
2 ÞKp0 as a competitor for the varia-

tional problem defining V
!
n1
!
t1ðsÞ

"
; t1ðsÞ; n2

!
t2ðsÞ

"
; t2ðsÞ

"
, then we may compute similarly

to [11] that

hðsÞ % hð0Þe
Ð

M)M

!
Q
!
c

t1ðsÞ
1 ðxÞ; t1ðsÞ;ct2ðsÞ

2 ðyÞ; t2ðsÞ
"

ð4:2Þ

%Qðx; t1; y; t2Þ
"
dp0ðx; yÞ;

and hence (keeping in mind Lemma A.2 and Corollary 2.12) we have

dþh

ds

''''
s¼0

e
Ð

M)M

d

ds

''''
s¼0

Q
!
c

t1ðsÞ
1 ðxÞ; t1ðsÞ;ct2ðsÞ

2 ðyÞ; t2ðsÞ
"
dp0ðx; yÞð4:3Þ

¼
Ð

M)M

%
h‘1Q;%‘ ln u1ðt1Þit1 þ

qQ

qt1
t1

þ h‘2Q;%‘ ln u2ðt2Þit2 þ
qQ

qt2
t2

&
dp0;

where the inner products used are gðt1Þ and gðt2Þ respectively. Exploiting Lemma A.6 from
Appendix A, this may be written

dþh

ds

''''
s¼0

e
Ð

M)M

!
%t1h‘1Q;‘ ln u1ðt1Þi% t2h‘2Q;‘ ln u2ðt2Þið4:4Þ

þ 2t2
3
2Rðy; t2Þ % 2t1

3
2Rðx; t1Þ þK

"
dp0 %

1

2
hð0Þ:

By Corollary 3.3, we deduce our desired (4.1).

Appendix A. Theory of L-length

In this appendix we briefly survey the theory of Perelman’s L-length, and the dis-
tance Q it induces. Some of this material can be found in the foundational paper [13], §7,
described for Lðy; tÞ :¼ Qðx; 0; y; tÞ. Details of the remaining parts can either be found in
[5], Chapter 7, or [19], or can be arrived at by adapting the analogous theory of Riemann-
ian length in Riemannian geometry.
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Throughout this appendix, we will be considering a smooth (reverse) Ricci flow
gðtÞ on a closed manifold M, defined on an open time interval ðbt1t1; bt2t2Þ where
0 < bt1t1 < t1 < t2 < bt2t2. We use the notation

1 :¼ fðx; ta; y; tbÞ j x; y A M and bt1t1 < ta < tb < bt2t2g:

We will continue to abbreviate Qðx; t1; y; t2Þ by Qðx; yÞ.

We have already recalled, in the introduction and Section 2, the definitions of
L-length, L-geodesics and the L-exponential map, and we shall require these in this
appendix. (One can also define an L-exponential map backwards in time.) The notion of
L-geodesic also induces a notion of L-Jacobi field, and we refer the reader to [5], Chapter
7, for details.

The first point to note is that the distance function Qðx; t1; y; t2Þ defined in the intro-
duction is locally Lipschitz on 1, where we use the metric on 1 arising as the sum of gðt1Þ,
dt21, gðt2Þ and dt22 corresponding to the four respective arguments of Q. This follows by a
variation on the argument for showing that Perelman’s L distance is locally Lipschitz (see
e.g. [5], Lemma 7.30, or [19]). In particular, for fixed t1 and t2, the function Qð!; t1; y; t2Þ is
Lipschitz with Lipschitz constant independent of y A M.

Just as for Riemannian distance, Q need not be smooth; Q will fail to be smooth on
some subset LCutH1 which we will define and study now. It is convenient to define

Wðx; t1; t2Þ :¼ fZ A TxM j g : ½t1; t2' ! M defined by gðtÞ ¼ Lt1; t expxðZÞðA:1Þ

is a minimising L-geodesicg:

This set clearly shrinks as t2 is increased, and exhausts TxM in the limit t2 # t1. (Beware,
however, that it need not be star-shaped as would its classical Riemannian analogue.) De-
fine W*ðx; t1; bt2t2Þ to be the intersection of all the sets Wðx; t1; t2Þ, over t2 A ðt1; bt2t2Þ. For
Z A TxMnW*ðx; t1; bt2t2Þ, define tðx; t1;ZÞ :¼ supft A ðt1; bt2t2Þ jZ A Wðx; t1; tÞg A ðt1; bt2t2Þ. We
can then define the possibly empty set

LCut :¼
0!

x; t1;Lt1; tðx; t1;ZÞ expxðZÞ; tðx; t1;ZÞ
"
j x A M; t1 A ðbt1t1; bt2t2Þ;ðA:2Þ

Z A TxMnW*ðx; t1; bt2t2Þg:

It will also be convenient to define the slice LCutt1; t2 to be the subset of LCut consisting of
those points of the form ðx; t1; y; t2Þ for some x; y A M.

Remark A.1. Much of the classical theory of cut loci in Riemannian geometry
carries over to LCut. In particular, LCut can be characterised as the union of two sets:
the first consisting of points ðx; t1; y; t2Þ such that there exists more than one minimising
L-geodesic g : ½t1; t2' ! M with gðt1Þ ¼ x and gðt2Þ ¼ y, and the second consisting of
points ðx; t1; y; t2Þ such that y is conjugate to x (with respect to L-Jacobi fields) along a
minimising L-geodesic g : ½t1; t2' ! M with gðt1Þ ¼ x and gðt2Þ ¼ y.
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This characterisation is used to prove the first three parts of the following lemma,
using the techniques of the proof of [11], Lemma 5. Implicit here is the existence of mini-
mising L-geodesics between given end-points (see, for example, [5], Lemma 7.27).

Lemma A.2. We have that:

(i) The set LCut is closed in 1.

(ii) The function Q is smooth on 1nLCut.

(iii) The minimising L-geodesic corresponding to each point in 1nLCut is
smoothly dependent on that point in the sense that if we associate to each point
ðx; t1; y; t2Þ A 1nLCut the vector Z A Wðx; t1; t2ÞHTxM for which Lt1; t2 expxðZÞ ¼ y,
then Z depends smoothly on ðx; t1; y; t2Þ.

(iv) On 1nLCut we have

qQ

qt1
ðx; t1; y; t2Þ ¼

ffiffiffiffiffi
t1

p jZj2

t1
% Rðx; t1Þ

 !
; ‘1Qðx; t1; y; t2Þ ¼ %2Z;ðA:3Þ

where ‘1Q denotes the gradient with respect to the first argument, x, using the metric gðt1Þ.
Analogous formulae hold for the derivatives with respect to y and t2.

The equations of part (iv) are similar to Perelman’s formulae for the derivatives of L,
from [13], §7. When we write jZj here, we mean its length with respect to gðt1Þ.

To extend the lemma above, we need further notation. Suppose

ðx; t1; y; t2Þ A 1nLCut;

and let g : ½t1; t2' ! M be the minimising L-geodesic from x to y. We write X ðtÞ ¼ g 0ðtÞ,
so

ffiffiffiffiffi
t1

p
Xðt1Þ coincides with the Z of the previous lemma. In place of (A.3) we have

qQ

qt1
ðx; t1; y; t2Þ ¼

ffiffiffiffiffi
t1

p !
jXðt1Þj2 % Rðx; t1Þ

"
;ðA:4Þ

‘1Qðx; t1; y; t2Þ ¼ %2
ffiffiffiffiffi
t1

p
X ðt1Þ;

and the corresponding formulae for the other derivatives of Q are then

qQ

qt2
ðx; t1; y; t2Þ ¼

ffiffiffiffiffi
t2

p !
Rðy; t2Þ % jXðt2Þj2

"
; ‘2Qðx; t1; y; t2Þ ¼ 2

ffiffiffiffiffi
t2

p
X ðt2Þ:ðA:5Þ

We now have enough control on Q o¤ LCut, but we need at least some control on Q
across its whole domain. Up to now, we know simply that it is locally Lipschitz. The first
observation is that although Qð!; yÞ need not be everywhere di¤erentiable on M, it does
admit a supergradient everywhere:

Lemma A.3. For all x; y A M, if we pick Z A Wðx; t1; t2ÞHTxM such that
y ¼ Lt1; t2 expxðZÞ, then %2Z is a supergradient of Qð!; yÞ at x.
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One can easily construct an upper barrier for Qð!; yÞ at x which implies this lemma,
either using the so-called Calabi trick, or by considering the L-lengths of a smooth varia-
tion of a minimising L-geodesic from x to y. See [5], Lemma 7.32, for this latter approach
to prove the corresponding result for L instead of Q.

We now turn to look at second derivative properties of Q. We need several times in
the paper that Qð!; yÞ is semiconcave. (This means that near each point, one can add a
smooth function to give a (geodesically) concave function. This notion is independent of
the choice of metric [1].) However, we also need Qð!; yÞ to be uniformly semiconcave (see
[6]) which is stronger and is the content of the following lemma.

Lemma A.4 (cf. [6], Corollary 3.13). There exists Cey such that for all x; y A M
and v A TxM,

lim sup
r!0

Q
!
expgðt1Þ

x ðrvÞ; y
"
þQ

!
expgðt1Þ

x ð%rvÞ; y
"
% 2Qðx; yÞ

r2
eC:ðA:6Þ

We stress that C here is independent of x and y (and v). Note that according to [6],
Lemma 3.11, such a uniform estimate implies semiconcavity. This uniform estimate can be
proved by exploiting the second variation calculations of [13], §7. See also the discussion of
Hessian bounds in [19].

Although Lemma A.4 gives an upper bound for the left-hand side of (A.6), there is no
lower bound in general.

Lemma A.5 (cf. [6], Proposition 2.5). For each point ðx; t1; y; t2Þ A LCut, the func-
tion Qð!; t1; y; t2Þ is not smooth at x, and its Hessian is unbounded below in the sense that

lim inf
u!0

Q
!
expgðt1Þ

x ðuÞ; y
"
þQ

!
expgðt1Þ

x ð%uÞ; y
"
% 2Qðx; yÞ

juj2
¼ %y:ðA:7Þ

To prove this, one can follow the proof of the corresponding Riemannian result from
[6]. One should deal with each point of LCut di¤erently depending on its place in the char-
acterisation ofLCut mentioned in Remark A.1. For example, if there are two distinct mini-
mising L-geodesics from x to y along which x and y are not conjugate, then each can be
used to construct upper barriers for Qð!; yÞ with di¤erent gradients at x, and the result is
clear in that case. When x and y are conjugate along a minimising L-geodesic, then one
considers the L-index form (refer to [5], (7.134)) analogously to the proof of [6], Proposi-
tion 2.5.

Finally, the proof of the main theorem in Section 4 will require a formula in-
volving the derivatives of Q which we derive now. Suppose ðx; t1; y; t2Þ A 1nLCut, let
g : ½t1; t2' ! M be the minimising L-geodesic from x to y, and write X ðtÞ ¼ g 0ðtÞ as be-
fore. Following [13], we define

K ¼ Kðx; t1; y; t2Þ :¼
Ðt2

t1

t
3
2H

!
X ðtÞ

"
dt;ðA:8Þ
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where Hð!Þ is the Hamilton Harnack quantity defined in Lemma 3.1. Perelman was only
considering the case t1 ¼ 0 at this point in his work, but the direct analogue of [13], (7.4) is

t
3
2
2

!
Rðy; t2Þ þ jXðt2Þj2

"
% t

3
2
1

!
Rðx; t1Þ þ jXðt1Þj2

"
ðA:9Þ

¼ %Kðx; t1; y; t2Þ þ
1

2
Qðx; t1; y; t2Þ:

Combining with (A.4) and (A.5), we find (corresponding to [13], (7.5)) the following lemma.

Lemma A.6. Under Ricci flow, Q satisfies

t2
qQ

qt2
þ t1

qQ

qt1
¼ 2t

3
2
2Rðy; t2Þ % 2t

3
2
1Rðx; t1Þ þK% 1

2
Q:ðA:10Þ

Appendix B. Wasserstein and L-Wasserstein distance, and their infinitesimal versions

Throughout this appendix, we will be considering a (reverse) Ricci flow gðtÞ defined
on a closed manifold M, with t ranging over an open interval containing ½t1; t2', for
0 < t1 < t2. We will be concerned with the limit in which t1 and t2 approach each other.

We start by noting the most elementary relationship between V and W2.

Lemma B.1. Suppose n1 and n2 are Borel probability measures on M. Define
R :¼ inf R, R :¼ supR and R1 :¼ supjRicj, where the infimum and supremums are taken
over the whole of space-time. Then

2

3
Rðt

3
2
2 % t

3
2
1Þ þ

e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
W 2

2 ðn1; n2; t1ÞeVðn1; t1; n2; t2ÞðB:1Þ

and

Vðn1; t1; n2; t2Þe
2

3
Rðt

3
2
2 % t

3
2
1Þ þ

e2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
W 2

2 ðn1; n2; t1Þ:ðB:2Þ

To prove Lemma B.1, one needs merely to integrate the inequalities of the follow-
ing proposition with respect to the optimal transference plans p associated to the L-
Wasserstein distance and Wasserstein distance respectively.

Proposition B.2. If g : ½t1; t2' ! M is a minimising L-geodesic such that

gðt1Þ ¼ x A M and gðt2Þ ¼ y A M;

and such that ReR
!
gðtÞ; t

"
eR for t A ½t1; t2', then

2

3
Rðt

3
2
2 % t

3
2
1Þ þ

e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
d 2ðx; y; t1ÞeQðx; t1; y; t2ÞðB:3Þ
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and

Qðx; t1; y; t2Þe
2

3
Rðt

3
2
2 % t

3
2
1Þ þ

e2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
d 2ðx; y; t1Þ:ðB:4Þ

In turn, the estimates of Proposition B.2 follow by elementary consideration of
(respectively) the L-lengths of a minimising L-geodesic g : ½t1; t2' ! M from x to y, and
a minimising Riemannian geodesic from x to y on

!
M; gðt1Þ

"
(parametrised with respect to

s :¼
ffiffiffi
t

p
). For similar considerations, see [5], Lemma 7.13. One should keep in mind that

the bound jRicjeR1 on a Ricci flow constrains the length of vectors—and hence the dis-
tance between two points—to grow/shrink at most exponentially [16], Lemma 5.3.2. This
control on the evolution of distances also implies that

W2ðn1; n2; taÞe eR1jtb%tajW2ðn1; n2; tbÞ:

This combines with Lemma B.1 to give the following corollary.

Corollary B.3. If n1ðtÞ and n2ðtÞ are continuous families of Borel probability measures
(with respect to W2ð! ; !; t0Þ) for t in a neighbourhood of t0 A ðt1; t2Þ, and t1ðsÞ, t2ðsÞ are con-
tinuous functions of a real variable s such that t1ðsÞ ! t0 and t2ðsÞ ! t0 as s ! 0, then

2
! ffiffiffiffiffi

t2
p

ðsÞ %
ffiffiffiffiffi
t1

p
ðsÞ

"
V
!
n1
!
t1ðsÞ

"
; t1ðsÞ; n2

!
t2ðsÞ

"
; t2ðsÞ

"
! W 2

2

!
n1ðt0Þ; n2ðt0Þ; t0

"

as s ! 0.

One of the applications of Proposition B.2 is to relate the L-Wasserstein distance to
the infinitesimalL-Wasserstein distance, orL-Wasserstein speed, as defined in Section 1.2,
by proving Lemma 1.3. The quickest approach to this is to exploit the following well-
known analogue of that lemma for the Wasserstein distance W2, which follows on from
ideas implicit in the work of Benamou-Brenier [2] and the heuristics of Otto-Villani [12],
§3. We follow most closely Otto’s argument described in [17], §7.6. The Riemannian metric
is fixed in the following lemma, so we drop the third parameter t for W2 and d.

Lemma B.4. Suppose that ðM; gÞ is a closed Riemannian manifold, and nðtÞ is a
smooth family of positive probability measures on M (i.e. its density with respect to Riemann-
ian volume measure is smooth and positive) for t in a neighbourhood of 0. Then

W 2
2

!
nð0Þ; nðtÞ

"
¼ t2 inf

X

Ð

M

jX j2 dnð0Þ þ oðt2Þ;ðB:5Þ

where the infimum here and later in this section is taken over all advection fields for nðtÞ at
t ¼ 0, as defined in Section 1.

Proof. For each t, let X ðtÞ be the minimising advection field for nð!Þ at time t, and
write X ¼ X ð0Þ. Write dnðtÞ ¼ uðtÞ dm where m is Riemannian volume measure. Then

X ¼ ‘v where v solves %divðu‘vÞ ¼ qu

qt
(cf. Section 1).

We first prove that the left-hand side of (B.5) is less than the right-hand side. Let
ct : M ! M be the family of di¤eomorphisms generated by X ðtÞ, with c0 the identity. We
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write p0 for the push forward of nð0Þ under the diagonal map x ! ðx; xÞ, which we view as
the optimal transference plan between nð0Þ and nðtÞ at t ¼ 0. Taking this viewpoint, we may
take as a candidate transference plan at nearby t, the measure pt obtained by pushing for-
ward nð0Þ under the map x !

!
x;ctðxÞ

"
. We may then estimate

W 2
2

!
nð0Þ; nðtÞ

"
e

Ð

M)M

d 2ðx; yÞ dptðx; yÞðB:6Þ

¼
Ð

M)M

d 2
!
x;ctðxÞ

"
dnð0ÞðxÞ

by definition of push-forward measures. By definition of X , we have

d
!
x;ctðxÞ

"
¼ tjX ð0ÞjðxÞ þ oðtÞ;

uniformly in x, so

W 2
2

!
nð0Þ; nðtÞ

"
e t2

Ð

M

jX j2 dnð0Þ þ oðt2Þ;ðB:7Þ

as desired. To prove the opposite inequality, we compute at t ¼ 0 that

Ð

M

jX j2 dnð0Þ ¼
Ð

M

j‘vj2u dm ¼ %
Ð

M

v divðu‘vÞ dm:ðB:8Þ

But %div
!
uð0Þ‘v

"
¼ qu

qt
ð0Þ ¼ uðtÞ % uð0Þ

t
þ oð1Þ uniformly over M, as t ! 0, so

Ð

M

jX j2 dnð0Þ þ oð1Þ ¼
Ð

M

v

!
dnðtÞ % dnð0Þ

"

t
¼ 1

t

Ð

M)M

½vðyÞ % vðxÞ' dp̂ptðx; yÞ;ðB:9Þ

where p̂pt is the optimal transference plan from nð0Þ to nðtÞ. By smoothness of v, and com-
pactness of M, we know that jvðxÞ % vðyÞje j‘vjðxÞdðx; yÞ þ Cd 2ðx; yÞ, and so keeping in
mind the Cauchy-Schwarz inequality,

jtj
Ð

M

jX j2 dnð0Þ þ oðtÞe
Ð

M)M

½j‘vjðxÞdðx; yÞ þ Cd 2ðx; yÞ' dp̂ptðx; yÞðB:10Þ

e

% Ð

M)M

j‘vj2ðxÞ dp̂ptðx; yÞ
&1

2
% Ð

M)M

d 2ðx; yÞ dp̂ptðx; yÞ
&1

2

þ C
Ð

M)M

d 2ðx; yÞ dp̂ptðx; yÞ

¼
% Ð

M

j‘vj2 dnð0Þ
&1

2

W2

!
nð0Þ; nðtÞ

"
þ CW 2

2

!
nð0Þ; nðtÞ

"
:

The conclusion (B.7) of the first part of the lemma tells us that the very last term of (B.10) is
Oðt2Þ. Therefore, by the first equality of (B.8),

jtj
Ð

M

jX j2 dnð0Þe
% Ð

M

jX j2 dnð0Þ
&1

2

W2

!
nð0Þ; nðtÞ

"
þ oðtÞðB:11Þ
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or equivalently

t2
Ð

M

jX j2 dnð0ÞeW 2
2

!
nð0Þ; nðtÞ

"
þ oðt2Þ: rðB:12Þ

Lemma B.4 puts us in a position to prove Lemma 1.3 from Section 1.

Proof of Lemma 1.3. We prove the lemma in two steps, first proving that the left-
hand side of (1.7) is less than the right-hand side, just as in the proof of Lemma B.4. Ana-
logously to that proof, we consider the optimal advection field X ðtÞ for nð!Þ at time t, and
the di¤eomorphisms ct : M ! M it generates (with ct1 the identity) and compute that

V
!
nðt1Þ; t1; nðt2Þ; t2

"
e

Ð

M

Q
!
x; t1;ct2ðxÞ; t2

"
dnðt1ÞðxÞðB:13Þ

e
Ð

M

Lðgx; t1; t2Þ dnðt1ÞðxÞ;

where gx; t1; t2 : ½t1; t2' ! M is the integral curve of XðtÞ starting at x A M. That is,
gx; t1; t2ðtÞ ¼ ctðxÞ. Working directly from the definition (1.2) of L, we then find that

V
!
nðt1Þ; t1; nðt2Þ; t2

"
e ðt2 % t1Þ

%
ffiffiffiffiffi
t1

p Ð

M

!
Rð!; t1Þ þ jX j2gðt1Þ

"
dnðt1Þ

&
ðB:14Þ

þ oðt2 % t1Þ;

as t2 # t1. To get the reverse direction, controlling V from below, we must work a little
harder. Fix x > 0, and choose r ¼ rðxÞ > 0 su‰ciently small so that Rðy; t2ÞfRðx; t1Þ % x
whenever dðx; y; t1Þ < r and t2 A ðt1; t1 þ r2Þ. From now on in this proof, we only consider
values of t2 in this range. Define the set

Sðt2Þ ¼ fðx; yÞ A M)M j dðx; y; t1Þ < r and b minimising L-geodesicðB:15Þ

from ðx; t1Þ to ðy; t2Þ remaining in Bgðt1Þðx; rÞg;

(also depending on our fixed t1 and r). For ðx; yÞ A Sðt2Þ, by Proposition B.2,

Qðx; t1; y; t2Þf
2

3
ðt

3
2
2 % t

3
2
1Þ
!
Rðx; t1Þ % x

"
þ e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
d 2ðx; y; t1Þ;ðB:16Þ

which we may integrate with respect to the optimal transference plan pt2 (optimal between
nðt1Þ and nðt2Þ for L-optimal transportation (1.4)) to give

Ð

Sðt2Þ
Qðx; t1; y; t2Þ dpt2ðx; yÞf

ffiffiffiffiffi
t1

p
ðt2 % t1Þ

Ð

Sðt2Þ

!
Rðx; t1Þ % x

"
dpt2ðx; yÞðB:17Þ

þ e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
Ð

Sðt2Þ
d 2ðx; y; t1Þ dpt2ðx; yÞ

þ oðt2 % t1Þ:
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We will need the full strength of this estimate, but also the weaker consequence that the
left-hand side cannot be too negative:

Ð

Sðt2Þ
Qðx; t1; y; t2Þ dpt2ðx; yÞfOðt2 % t1Þ:ðB:18Þ

Meanwhile, we need to consider the integral of Q over the complement of Sðt2Þ. For
ðx; yÞ A ðM)MÞnSðt2Þ, a slight variation on the argument for the first inequality (B.3)
of Proposition B.2 tells us (by definition of Sðt2Þ) that for t2 su‰ciently close to t1 (depend-
ing on r and the curvature of the Ricci flow),

Qðx; t1; y; t2Þf
r2

2ðt2 % t1Þ
:ðB:19Þ

Integrating this, we find that

pt2
!
ðM)MÞnSðt2Þ

"
e

2ðt2 % t1Þ
r2

Ð

ðM)MÞnSðt2Þ
Qðx; t1; y; t2Þ dpt2ðx; yÞ:ðB:20Þ

On the other hand, the integral on the right-hand side can be viewed as the di¤erence of the
integral over M)M and the integral over Sðt2Þ, and both of these terms are controlled
from above by Oðt2 % t1Þ thanks to (B.14) and (B.18) respectively. Therefore

pt2
!
ðM)MÞnSðt2Þ

"
eO

!
ðt2 % t1Þ2

"
:ðB:21Þ

The benefit of such an estimate is that when we integrate Q over ðM)MÞnSðt2Þ, terms
involving scalar curvature become negligible and can be removed and added at will. In par-
ticular, integrating (B.3) of Proposition B.2, we can see that

Ð

ðM)MÞnSðt2Þ
Qðx; t1; y; t2Þ dpt2ðx; yÞðB:22Þ

fO
!
ðt2 % t1Þ2

"
þ e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
Ð

ðM)MÞnSðt2Þ
d 2ðx; y; t1Þ dpt2ðx; yÞ

f
ffiffiffiffiffi
t1

p
ðt2 % t1Þ

Ð

ðM)MÞnSðt2Þ

!
Rðx; t1Þ % x

"
dpt2ðx; yÞ

þ e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
Ð

ðM)MÞnSðt2Þ
d 2ðx; y; t1Þ dpt2ðx; yÞ þ oðt2 % t1Þ:

We can now add this to the analogous inequality (B.17) for Sðt2Þ to give

V
!
nðt1Þ; t1; nðt2Þ; t2

"
f

ffiffiffiffiffi
t1

p
ðt2 % t1Þ

Ð

M)M

!
Rðx; t1Þ % x

"
dpt2ðx; yÞðB:23Þ

þ e%2R1ðt2%t1Þ

2ð ffiffiffiffiffi
t2

p % ffiffiffiffiffi
t1

p Þ
W 2

2

!
nðt1Þ; nðt2Þ; t1

"
þ oðt2 % t1Þ;

and by Lemma B.4 (and the definition of push-forward measures) this reduces to
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V
!
nðt1Þ; t1; nðt2Þ; t2

"
ðB:24Þ

f
ffiffiffiffiffi
t1

p
ðt2 % t1Þ

% Ð

M

!
Rð!; t1Þ % x

"
dnðt1Þ þ

Ð

M

jX j2 dnðt1Þ
&

þ oðt2 % t1Þ:

Because x > 0 was arbitrary, this improves to

V
!
nðt1Þ; t1; nðt2Þ; t2

"
f ðt2 % t1Þ

%
ffiffiffiffiffi
t1

p Ð

M

!
Rð!; t1Þ þ jX j2

"
dnðt1Þ

&
ðB:25Þ

þ oðt2 % t1Þ;

which combines with (B.14) to conclude the proof. r
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Riemannian manifolds, Jacobi fields, and optimal transport, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006),
613–635.

[8] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Di¤. Geom. 17 (1982), 255–306.
[9] R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Di¤. Geom. 37 (1993), 225–243.
[10] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001),

589–608.
[11] R. J. McCann and P. M. Topping, Ricci flow, entropy and optimal transportation, Amer. J. Math., to appear.
[12] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev

inequality, J. Funct. Anal. 173 (2000), 361–400.
[13] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arXiv.org/

math.DG/0211159v1, 2002.
[14] G. Perelman, Ricci flow with surgery on three-manifolds, http://arXiv.org/math.DG/0303109v1, 2003.
[15] K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy and Ricci curvature,

Comm. Pure Appl. Math. 58 (2005), 923–940.
[16] P. M. Topping, Lectures on the Ricci flow, L.M.S. Lect. notes ser. 325 (2006).
[17] C. Villani, Topics in optimal transportation, Grad. Stud. Math. 58 (2003).
[18] C. Villani, Optimal transport, old and new (Saint-Flour 2005), Version of October 2007.
[19] R. Ye, On the l-function and the reduced volume of Perelman, preprint 2004.

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

Eingegangen 22. November 2007

122 Topping, L-optimal transportation for Ricci flow


