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Abstract

For a smooth harmonic map flow u : M× [0, T ) → N with blow-up as t ↑ T , it has been
asked ([6], [5], [7]) whether the weak limit u(T ) : M→ N is continuous. Recently, in [12], we
showed that in general it need not be. Meanwhile, the energy function E(u(·)) : [0, T ) → R,
being weakly positive, smooth and weakly decreasing, has a continuous extension to [0, T ]. Here
we show that if this extension is also Hölder continuous, then the weak limit u(T ) must also be
Hölder continuous.

1 Introduction

Given a smooth map v : M→ N ↪→ RN from a compact boundaryless Riemannian surface M to
a compact boundaryless Riemannian manifold N - which we assume without loss of generality to
be isometrically embedded in RN - we may define the harmonic map energy to be

E(v) :=
1
2

∫
M
|∇v|2. (1.1)

The harmonic map flow is the L2-gradient flow for this functional. Defining the tension τ(v) of v
to be the L2-gradient of E, we may check that

τ(v) = (∆v)T , (1.2)

the projection of the laplacian of v (seen as a map into RN ) onto the tangent space of N . A smooth
harmonic map flow u : M× [0, T ) → N is then a smooth solution to the nonlinear PDE

∂u

∂t
= τ(u(t)),

where u(t) := u(·, t), and the energy decreases according to

d

dt
E(u(t)) = −‖τ(u(t))‖2

L2(M). (1.3)
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Note, for later, that the function E(u(·)) : [0, T ) → R is smooth, bounded below and weakly
decreasing, and is thus extendable to a continuous function on [0, T ].

Any smooth initial map u0 : M → N gives rise to a smooth flow over some time interval (Eells-
Sampson [4]). In our situation, where the domain has dimension 2, Struwe [9] looked at the maximal
time interval [0, T ) over which the flow can be smoothly extended (such an extension is necessarily
unique) and found that the flow enjoys uniform derivative bounds as t ↑ T , away from a finite set
of points S ⊂ M where energy concentrates. By virtue of this theory, we may extend the flow
smoothly to (M× [0, T ])\(S × {T}) by defining

u(x, T ) := lim
t↑T

u(x, t),

for all x ∈M\S. Combining this almost-everywhere smooth convergence with the uniform bound-
edness of u(t) in W 1,2(M,N ) for t ∈ [0, T ), we can also be sure of the weak convergence u(t) ⇀ u(T )
in W 1,2(M,N ) as t ↑ T . In particular, we know that u(T ) ∈ W 1,2(M,N ). The problem of whether
u(T ) is continuous has been raised by Qing-Tian [6] and Lin-Wang [5], and considered recently by
Qing [7]. Of course, the fact that u(T ) lies in W 1,2 just fails to be sufficient to immediately deduce
continuity. Very recently, in [12], we have shown that in general, u(T ) need not be continuous. It is
natural then to ask for additional hypotheses to guarantee continuity of u(T ). A good candidate in
the light of [8] might be real analyticity of the target. Here we succeed assuming that the smooth
bounded scalar energy function of time E(u(·)) : [0, T ) → R has a Hölder continuous extension to
[0, T ]; the limit u(T ) is then also Hölder continuous.

Theorem 1.1 Let u : M × [0, T ) → N be a smooth harmonic map flow on a maximal time
interval, which we extend as above to time t = T . If E(u(·)) : [0, T ) → R lies in C0,α([0, T ]) for
some α ∈ (0, 1], then u(T ) ∈ C0, α

2 (M,N ).

It is not clear at this stage whether there are simple hypotheses on the target which would control
the regularity of the energy as we require here. In fact, although there are now many examples
of finite time blow-up in this flow (see [12]) it is not obvious whether Hölder continuous energy is
an unreasonably strong hypothesis; in particular, we shall see that it restricts the rate of blow-up
of the flow. However, it turns out – see the nonrigorous but detailed calculations in [2] and the
forthcoming work [1] – that this rate of blow-up is consistent with finite time blow-up examples of
Chang-Ding-Ye [3].

Remark 1.2 In a ‘bubbling analysis’ (see [12]) our estimates are strong enough to prove that the
union of the images of the bubbles and of u(T ) must be a connected set under our hypothesis. See
[6] for the equivalent ‘infinite time’ result.

Remark 1.3 The assumption that M is boundaryless is mainly to simplify the exposition. Anal-
ogous results hold for flows on domains with boundary - in which case the flow is fixed on the
boundary as time progresses - and if there is blow-up only in the interior of the domain, then the
results and proof need no alteration.
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2 Basic theory

In this section, we recall some finer properties of the blow-up of the harmonic map flow, and
discuss what we can deduce from our Hölder energy hypothesis. We also prepare here a useful
‘neck estimate’ (Lemma 2.3) and a parabolic estimate (Lemma 2.4) from the recent work of Qing
[7].

We will use two different notations for discs. If x ∈ M and r > 0, then Dr(x) will denote the
geodesic disc of radius r, centred at x. The notation Br(y), will imply a disc in R2, and we write
Br := Br(0) and B := B1. The energy of a map v over some subdomain Ω will be written E(v,Ω).
It is important to keep in mind that this energy is invariant under dilations of the map, since we
are working on two dimensional domains.

The following lemma, which is a small part of Theorem 1.6 of [12] (see also Remark 1.10 of that
paper) controls the rate of concentration of energy at a singularity.

Lemma 2.1 Let u : M× [0, T ) → N be a smooth heat flow which we extend to time T away from
the set of points S ⊂M as discussed in Section 1. Then for each x ∈ S, if we define

Lx := lim
η↓0

lim sup
t↑T

E(u(t), Dη(x)) > 0, (2.1)

then
lim
t↑T

E(u(t), D√T−t(x)) = Lx. (2.2)

(Note that the positivity of Lx characterises the points x ∈ S - see [9].) Estimate (2.2) constrains
the blow-up rate for a general flow. When the global energy is assumed to be Hölder, the blow-up
rate must be even quicker, local energy is unable to concentrate as quickly, and we have somewhat
better control on the tension of the flow just prior to the singularity:

Lemma 2.2 Suppose u : M× [0, T ) → N is smooth, with E(u(0)) ≤ E0, and that for some α > 0,
the Hölder α-seminorm of the energy is constrained by

[E(u(·))]C0,α([0,T ]) ≤ κ

for some κ > 0. Then the following statements are true.

(i) For 0 ≤ t ≤ s < T , y ∈ M and µ > 0, with µ less than the injectivity radius of M,
we have

E(u(s), Dµ/2(y)) ≤ E(u(t), Dµ(y)) +
C

µ
(s− t)(1+α)/2,

for some C = C(E0, κ).
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(ii) If u blows up at x ∈M as t ↑ T , then with Lx as defined in (2.1), we have

lim
η→∞

lim inf
t↑T

E(u(t), Dη(T−t)(1+α)/2(x)) = Lx.

(iii) For all ε > 0, there exists t ∈ (T − 2ε, T − ε) such that

‖τ(u(t))‖L2(M) ≤ κ1/2ε−(1−α)/2.

Part (i) extends a useful estimate of Struwe [9, Lemma 3.6] valid for arbitrary flows. Part (ii)
controls the rate of blow-up, allowing us to assume that any ‘bubble scale’ (see [12]) lies below
(T − t)(1+α)/2. This is certainly not true for all flows ([12]) but is the case for flows constructed by
Chang-Ding-Ye [3] as discussed in [2] and [1]. The control on the tension of part (iii) is a little better
than we expect in general. In particular, we mention that there are flows for which the function
‖τ(u(·))‖L2(M) does not lie in L2+δ(0, T ) for any δ > 0 (see [12]). In practice, this improved tension
control means that we do not have to blow up the flow as much (in space) to obtain a map with
small tension.

We will require a so-called neck estimate to control energy decay in annular regions of the flow.
The following lemma is essentially identical (and equivalent) to [12, Lemma 4.4] and is a special
case of Lemma 2.9 (see also Remark 2.8) from [11]. (See the latter of these references for a proof
based on work of Lin-Wang [5] which followed earlier work of Qing-Tian [6].)

Lemma 2.3 Suppose that v : B → N is smooth and satisfies E(v,B) ≤ E0 for some E0. Then
there exist δ > 0 (dependent only on N ) and K > 0 (dependent only on E0 and N ) such that if

E(v,B\Br2) < δ

for some r ∈ (0, 1
2 ], and

‖τ(v)‖2
L2(B) ≤ δ,

then we have the estimate
E(v,B2r\Br/2) ≤ K r. (2.3)

We also need a parabolic estimate for flows with locally small energy, giving pointwise control on
the energy density. The following is equivalent to a recent result of Qing [7, Proposition 2.2], and
may also be derived (along with analogous higher derivative bounds) more along the lines of [9], or
via the theory in [10].

Lemma 2.4 There exist constants ε0 > 0 and C > 0 depending on N such that if u : Bν ×
[−ν2, 0] → N is a smooth heat flow satisfying E(u(t), Bν) ≤ ε0 for all t ∈ [−ν2, 0] then

|∇u|2(0, 0) ≤ C

ν4

∫ 0

−ν2

E(u(t), Bν)dt.
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3 Proof of Lemma 2.2

Each part of the lemma will use, directly or indirectly, the following estimate on the tension,
obtained by integrating (1.3) and using the Hölder hypothesis:

0 <

∫ s

t
‖τ(u(a))‖2

L2(M)da = E(u(t))− E(u(s)) ≤ κ(s− t)α, (3.1)

for 0 ≤ t ≤ s < T .

3.1 Proof of part (i)

We begin in the spirit of Struwe [9, Lemma 3.6] or [12, Section 2]. Let φ ∈ C∞(M, [0, 1]) be a
cut-off function supported in Dµ(y), with φ ≡ 1 on Dµ/2(y) and |∇φ| ≤ 3

µ . For t ∈ [0, T ) the local
energy

Θ(t) :=
1
2

∫
M

φ2|∇u(t)|2

differentiates to give

dΘ(t)
dt

=
∫
M

φ2∇u.∇τ = −
∫
M

φ2|τ |2 − 2
∫
M

φτ.(∇φ.∇)u ≤ 6
µ

∫
M
|τ ||∇u| (3.2)

≤ C

µ
‖τ(u(t)‖L2(M), (3.3)

with C = C(E0). Integrating between times t and s, we find that

E(u(s), Dµ/2(y))− E(u(t), Dµ(y)) ≤ Θ(s)−Θ(t) ≤ C

µ

∫ s

t
‖τ(u(a)‖L2(M)da (3.4)

≤ C(s− t)1/2

µ

(∫ s

t
‖τ(u(a)‖2

L2(M)da

) 1
2

(3.5)

≤ C

µ
(s− t)(1+α)/2 (3.6)

by (3.1), where C = C(E0, κ).

3.2 Proof of part (ii)

We begin by applying part (i) with y = x, and taking the limit s ↑ T , to give

Lx ≤ lim sup
s↑T

E(u(s), Dµ/2(x)) ≤ E(u(t), Dµ(x)) +
C

µ
(T − t)(1+α)/2.
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For any η > 0, we may then set µ = η(T − t)(1+α)/2 - provided that t is sufficiently close to T - to
give

Lx ≤ E(u(t), Dη(T−t)(1+α)/2(x)) +
C

η
.

Combining this with (2.2) from Lemma 2.1, we find that

Lx = lim
t↑T

E(u(t), D√T−t(x)) ≥ lim inf
t↑T

E(u(t), Dη(T−t)(1+α)/2(x)) ≥ Lx −
C

η
,

with C still dependent on E0 and κ. It remains to take the limit η →∞.

3.3 Proof of part (iii)

By applying (3.1) with t = T − 2ε and s = T − ε we have∫ T−ε

T−2ε
‖τ(u(a))‖2

L2(M)da ≤ κεα,

and hence we must be able to pick a ∈ (T − 2ε, T − ε) with

‖τ(u(a))‖2
L2(M) ≤ κεα−1

as desired.

4 Proof of Theorem 1.1

For the flow u, let E0 := E(u(0)) so that E(u(t)) ≤ E0 for all t ∈ [0, T ). We must prove that u(T )
is Hölder continuous near an arbitrary blow-up point x ∈M.

For simplicity of exposition, we will assume that M is flat in a neighbourhood of x. The general
case is an easy (albeit messy) adaptation. By making a parabolic dilation about the point (x, T ) in
space-time, and translating variables, we may see the flow locally as being a flow B×[T−1, T ] → N
with a single blow-up singularity at the origin of B as t ↑ T . (You may prefer to assume without
loss of generality that T = 0 in what follows.) Note that although u is not fixed on the boundary
of B (and in particular, E(u(·), B) need not be a weakly decreasing function) by keeping in mind
the entire flow on a dilated domain M, we still have access to Lemma 2.2.

By the definition of Lx (see (2.1)) we may assume - after making a further parabolic dilation - that
for all t ∈ [T − 1, T ],

E(u(t), B) < Lx +
δ

2
, (4.1)

where δ > 0 is taken to be as in Lemma 2.3 (and depends only on N ).
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Next, by part (ii) of Lemma 2.2 we may choose η > 0 sufficiently large so that

lim inf
t↑T

E(u(t), Bη(T−t)(1+α)/2) ≥ Lx −
δ

4
.

In particular, for t < T sufficiently close to T (partly to ensure that η(T − t)(1+α)/2 < 1) we must
have

E(u(t), Bη(T−t)(1+α)/2) ≥ Lx −
δ

2
.

After making a third and final parabolic dilation, about (0, T ), by an amount depending on η, we
may then assume that

E(u(t), B(T−t)(1+α)/2) ≥ Lx −
δ

2
, (4.2)

for all t ∈ [T − 1, T ). Note that when we dilate the flow parabolically, the Hölder seminorm of the
energy decreases. In particular, it remains below κ, as originally hypothesised.

Our considerations above, and their conclusions (4.1) and (4.2), give us the annular energy bound

E(u(t), B\B(T−t)(1+α)/2) < δ, (4.3)

for t ∈ [T − 1, T ).

The remainder of the proof of Theorem 1.1 will be devoted to the proof of the following claim which
is easily seen to imply the Hölder continuity of the theorem. The claim, which cannot be true for
general flows in the light of [12], should be compared to the similar result of Qing [7, Theorem 1.1]
which does hold in general, but is not strong enough to deduce continuity.

Claim 4.1 The flow u currently being considered satisfies

|∇u(z, T )| ≤ C|z|
α
2
−1 (4.4)

for all z ∈ B\{0}, where C is a constant independent of z.

Proof of claim. We will use the shorthand R := |z|, and ε := R2 1
4

(
κ
δ

)1/2. We are free at this stage
to increase κ, if necessary, to ensure that

ε ≥
(

R

4

)2

. (4.5)

Given that u(T ) is smooth on B\{0}, it suffices to prove the claim for z in some small neighbourhood
of the origin. In particular, we may assume that ε is sufficently small to guarantee that

(a) ε <
1
2
; (b) σ := δ1/2κ−1/2ε(1−α)/2 < 1; (c) r := 2δ−1/4κ1/4εα/2 <

1
2
. (4.6)

With this value of ε, we may now request from part (iii) of Lemma 2.2 a time t ∈ (T − 2ε, T − ε) ⊂
(T − 1, T ) at which

‖τ(u(t))‖2
L2 ≤ κε−(1−α).

7



Rescaling u(t) to a map v : B → N defined by v(y) = u(σy, t) (with σ < 1 as in (4.6b)) scales the
tension to give

‖τ(v)‖2
L2(B) = σ2‖τ(u(t))‖2

L2(B) ≤ δ. (4.7)

Meanwhile, by (4.3) we must have

E(v,B\Bσ−1(T−t)(1+α)/2) < δ,

and since

σ−1(T − t)(1+α)/2 ≤ δ−1/2κ1/2ε−(1−α)/2(2ε)(1+α)/2 ≤ 4δ−1/2κ1/2εα = r2,

with r as in (4.6c), we have
E(v,B\Br2) < δ.

Coupled with (4.7) and the fact that E(v,B) ≤ E0 (and keeping in mind (4.6c)) we may then apply
Lemma 2.3 to deduce that

E(v,B2r\Br/2) ≤ K r,

with K = K(N , E0). Noting that

σr =
(
δ1/2κ−1/2ε(1−α)/2

) (
2δ−1/4κ1/4εα/2

)
= 2δ1/4κ−1/4ε1/2 = R,

we may rescale back from v to u(t) to find that

E(u(t), B2R\BR/2) ≤ K r = C(N , E0, κ)εα/2 ≤ C(N , E0, κ)Rα.

Consequently, for the z of the claim, since BR/2(z) ⊂ B2R\BR/2, we have

E(u(t), BR/2(z)) ≤ C(N , E0, κ)Rα.

We wish to obtain such an estimate not just at the special time t, but over a time interval of length
(of the order of) R2, just prior to time T . To achieve this, we apply part (i) of Lemma 2.2 again,
with y = z and µ = R

2 . For s ∈ [t, T ) ⊃ [T − ε, T ) we then have

E(u(s), BR/4(z)) ≤ E(u(t), BR/2(z)) +
C(E0, κ)

R/2
(s− t)(1+α)/2

≤ C(N , E0, κ) Rα + C(E0, α, κ)
1
R

ε(1+α)/2

≤ C(N , E0, α, κ)Rα.

By (4.5), and the smoothness of u on BR/4(z) × [T − 1, T ], this inequality holds, in particular,
for s ∈ [T − (R/4)2, T ], and therefore we may apply Lemma 2.4 with ν = R/4 (over a translated
domain) to deduce that

|∇u(z, T )|2 ≤ C

R4

∫ T

T−(R/4)2
E(u(s), BR/4(z))ds

provided that R is sufficiently small with respect to ε0 to satisfy the hypothesis of Lemma 2.4. In
particular, we may conclude that

|∇u(z, T )|2 ≤ C

R4

(
R

4

)2

C Rα ≤ C Rα−2,

where C = C(N , E0, α, κ), provided that |z| is sufficiently small.
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