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0 Preface

Almost all sections come with an accompanying video.

Click on the text in the green boxes to launch the videos.

Welcome to the Complex Analysis course that I prepared between 2021 and 2023 at the University of
Warwick. Almost all sections have their own embedded video. My aspiration is that the lecture notes
are correct and complete, while the videos may have the odd typo and minor slip. Generally I try to
point these out next to the links to the videos.

These notes were supplemented by live lectures, which included an introduction to the subject and
motivation. These notes currently have no introductory video or motivation section.

Current Warwick students should use the version of the notes on the module web page, which contains
additional information about what is examinable, and links with previous Warwick modules. The
starting point for this course is the basic grounding in complex analysis that is given by the final part
of the Analysis 3 module at Warwick. However, we review most of this material, generally either
without proofs or with different proofs.

I have used many sources for the material in this course. The classic book is that of Ahlfors, and this
was useful to give perspective. I learned my basic complex analysis from Alan Beardon, and there
may be elements of his lectures/exercises echoed in these notes. According to the book of Ahlfors,
the proof we give of the general homology form of Cauchy’s theorem is due to Beardon.

The most significant sources for these notes were the lecture notes of previous versions of this module
at Warwick, most recently taught by Stefan Adams using notes that at the time of writing can be found
here, and before that by Hendrik Weber. When constructing this module I generally followed the
logical development of the subject used by previous lecturers, with major deviations in the treatment
of winding numbers, isolated singularities, simply connected domains and homotopies of curves. In
some subsections I followed very closely the earlier notes, particularly those of Hendrik Weber. For
example, the first half of Section 6 and much of Section 7 would fit into this category, but quite a few
other parts have their roots in Hendrik’s presentation, and I am grateful to him for being happy for
me to post these notes. In particular, I am not claiming any great originality. The notes are simply
released in the hope that they might be useful to somebody.

Finally, many thanks are due to the many students who picked up errors and made suggestions, in-
cluding Thomas Macdonagh, Liam O’Neill, Ricardo Antunes Ferreira, Sebastian Woodward, George
Coote, Josh Bridges, Peter Job, Edward Masding, Andy Song, Ladislas Colonna Walewski, Adi
Tangirala, Amiella Venturini, John Wang, Logan Aitchison etc.

Peter Topping, Warwick, Autumn 2023
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1 Review of basic complex analysis I

Most of this material you will have seen, but we will write some of it in different language, and
interpret some of it more geometrically.

1.1 Complex differentiability - definitions and intuition
Click on
green bar
for videoVIDEO: Complex differentiability

By now you should have a good working understanding of complex numbers, how to add, multiply
and conjugate them. You will understand the topology of the complex plane, i.e. what it means
for a sequence {zn} to converge to some z ∈ C. You will understand what it means for a function
f : C → C to be continuous.

The notion of a function being complex differentiable is so fundamental that we repeat it.

Definition 1.1. Suppose Ω ⊂ C is open. Then a function f : Ω → C is complex differentiable at
z ∈ Ω if the limit

lim
h→0

f(z + h)− f(z)

h
(1.1.1)

exists in C. We denote the limit by f ′(z) and call it the derivative of f at z.

In the discussion below, we sometimes view Ω as a subset of R2 rather than C in the obvious way
without change of notation, i.e. we consider

{(x, y) ∈ R2 : x+ iy ∈ Ω},

and still write this as Ω. In this case we still use f to denote the resulting function. Sometimes (but
less and less as time goes on) we decompose f into real and imaginary parts:

f(x+ iy) = f(x, y) = u(x, y) + iv(x, y),

for real valued functions u, v : Ω → R. That is, u = ℜ(f) and v = ℑ(f), the real and imaginary
parts.

If the corresponding function F : Ω → R2 defined by

F (x, y) = (u(x, y), v(x, y))

is differentiable in the sense of multivariable calculus, then we say that f is real differentiable. As
you know, f being complex differentiable is a lot stronger than f being real differentiable. This is
because if we take limits h → 0 in (1.1.1) by setting h = α ∈ R and sending α → 0, or by setting
h = iα, α ∈ R and sending α → 0, then we should obtain the same answer. This imposes some extra
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1.1 Complex differentiability

rigidity. In the first case, we see f ′(z) = ∂f
∂x
(z), and in the second case we find that f ′(z) = 1

i
∂f
∂y
(z).

The statement that these are equal, i.e.
∂f

∂x
= −i∂f

∂y
, (1.1.2)

is precisely equivalent to the Cauchy-Riemann equations. Indeed, f being complex differentiable is
precisely equivalent to the pair of conditions that f is real differentiable AND the Cauchy-Riemann
equations hold.

To write all this in the slickest way possible, we define

fz̄ :=
∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, (1.1.3)

and

fz :=
∂f

∂z
:=

1

2

(
∂f

∂x
− i

∂f

∂y

)
, (1.1.4)

which make sense at any point where f is real differentiable. Take great care with the signs here!

The Cauchy-Riemann equations can then be written simply as

fz̄ = 0. (1.1.5)

Although fz makes sense for merely real differentiable f , if f is also complex differentiable at z (so
∂f
∂x

= −i∂f
∂y

) then we find that fz = 1
2

(
∂f
∂x

− i∂f
∂y

)
= ∂f

∂x
= −i∂f

∂y
= f ′(z), so we have

fz̄ = 0 and f ′(z) = fz.

Remark 1.2. Let’s pause to try to understand better the meaning of the Cauchy-Riemann equations.
First, we can rephrase (1.1.5) or (1.1.2) as

i
∂f

∂x
=
∂f

∂y
. (1.1.6)

Let’s try to go from this algebraic statement to a geometric picture. By definition, the quantity ∂f
∂x

is
the velocity vector of the path x 7→ f(x+ iy). Similarly, the quantity ∂f

∂y
is the velocity vector of the

path y 7→ f(x + iy). They are related by the multiplication by i. But geometrically this a rotation
anticlockwise by 90 degrees, according to (1.1.6).

I’ll draw some pictures in the lectures/videos.

Remark 1.3. We see that at a point z where f is complex differentiable, the derivative of F is a
linear map R2 → R2 that is a rotation and dilation (expansion or contraction). Indeed, in complex
notation this linear map is given byw 7→ f ′(z)w. It preserves orthogonality and is invertible, provided
f ′(z) ̸= 0. This will be handy to apply the Inverse Function Theorem later.

Now let’s switch from considering complex differentiability at individual points to considering com-
plex differentiability in open sets.

6



1.2 Product and chain rules

Figure 1: A conformal map. Picture created by Oleg Alexandrov (public domain).

Definition 1.4. Suppose Ω ⊂ C is open. We say that a function f : Ω → C is holomorphic if it
is complex differentiable at every point z ∈ Ω. In the case that Ω = C, we sometimes say that f is
entire.

Being holomorphic is a much stronger condition than being merely continuously differentiable from
R2 to R2. As an example, there are many continuously differentiable functions from R2 to R2 that are
‘real valued’ in that they map into R × {0}, but the only ones of these that come from holomorphic
functions are the constant functions.

By the discussion in Remark 1.2, a holomorphic function that has nonzero derivative everywhere
has the property that it preserves angles/orthogonality. For example, it will map a grid of lines to
deformed grid of curves that meet orthogonally as in Figure 1. See the video for an explanation of
this figure.

Generally, a function or map preserving angles like this is called conformal. We will settle on a
precise definition of ‘conformal’ that is adapted to this course in Section 2.9.

1.2 Product and chain rules

VIDEO: Product and chain rules
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1.2 Product and chain rules

In this section we recast the familiar product and chain rules in the ∂
∂z

and ∂
∂z̄

notation.

By definition of fz̄ and fz, given two functions f and g that are real differentiable at z, we have
product rules

(fg)z̄ = f.gz̄ + fz̄g and (fg)z = f.gz + fzg. (1.2.1)

In particular, if f and g are both complex differentiable at z then so is fg, and

(fg)′(z) = f(z)g′(z) + f ′(z)g(z). (1.2.2)

We also need several variants of the chain rule in this notation.

Lemma 1.5. Suppose f : Ω → C, for Ω ⊂ C open, and γ : I → Ω, for I ⊂ R some open interval. If
γ is differentiable at t ∈ I and f is real differentiable at γ(t), then f ◦ γ : I → C is differentiable at
t and

(f ◦ γ)′(t) = fz(γ(t))γ
′(t) + fz̄(γ(t))γ′(t). (1.2.3)

In particular, if f is complex differentiable at γ(t) then

(f ◦ γ)′(t) = f ′(γ(t))γ′(t). (1.2.4)

Proof. If we write γ(t) = u(t) + iv(t), then the usual chain rule tells us that

(f ◦ γ)′(t) = fx(γ(t))u
′(t) + fy(γ(t))v

′(t).

On the other hand, if we expand out the right-hand side of (1.2.3), omitting the arguments, then we
obtain

fzγ
′ + fz̄γ′ =

1

2
(fx − ify)(u

′ + iv′) +
1

2
(fx + ify)(u

′ − iv′) = fxu
′ + fyv

′,

which is the same.

Essentially the same calculation gives us the following chain rules, the proofs of which are left to the
exercises.

Lemma 1.6. Suppose that Ω1,Ω2 ⊂ C are open sets. If g : Ω1 → Ω2 is real differentiable at z ∈ Ω1,
and f : Ω2 → C is complex differentiable at g(z), then f ◦ g is real differentiable at z and we have
the two chain rules

(f ◦ g)z(z) = f ′(g(z))gz(z), (1.2.5)

and
(f ◦ g)z̄(z) = f ′(g(z))gz̄(z). (1.2.6)

In particular, if g is also complex differentiable at z, then f ◦ g is complex differentiable at z and we
have the chain rule

(f ◦ g)′(z) = f ′(g(z))g′(z). (1.2.7)

8



29 July 2024 Complex Analysis Peter Topping

1.3 Exercises

To start off, we try to get used to the notation fz and fz̄, also written ∂f
∂z

and ∂f
∂z̄

. We will assume
throughout that functions are sufficiently regular to admit the derivatives we consider!

1.1. Verify by computation that ∂f
∂z

= ∂f̄
∂z̄

.

Deduce (without repeating the computation) that ∂f
∂z̄

= ∂f̄
∂z

.

Remark: Another way of writing these identities would be fz = f̄z̄ and fz̄ = f̄z. But if you use
this notation you have to take care not to confuse fz and f̄z.

1.2. Verify that ∂z
∂z

= 1, ∂z
∂z̄

= 0, ∂z̄
∂z

= 0 and ∂z̄
∂z̄

= 1.

1.3. Verify that fzz̄ = 1
4
∆f . Here, fzz̄ means (fz)z̄.

1.4. Verify that the assertion fz̄ = 0 is equivalent to the pair of Cauchy-Riemann equations ux = vy
and uy = −vx.

1.5. By expanding out definitions, verify the product rules (1.2.1) and (1.2.2).

1.6. Use appropriate product rules to verify that

(a) (|z|2)z = z̄, and
(b) (zn)z = nzn−1 for n ∈ N (by induction).

Remark: Do not do the computation using x and y. Please write everything in terms of z and z̄.

1.7. Which of the following define holomorphic functions f : C → C?

(a) f(z) = z̄

(b) f(z) = ℜ(z)
(c) f(z) = |z|2

(d) f(z) = 1
1+z2

1.8. Prove that if h : C ≃ R2 → R is a harmonic function (i.e. h is C2 and ∆h ≡ 0) then
hz : C → C is holomorphic.

1.9. Suppose f : C → C is an entire function. Prove that the function z 7→ f(z) is also entire.

Remark: We’ll use this principle later when we encounter so-called Schwarz reflection.

1.10. This is a chance to revise some basic facts from topology that we will need a few times. It is not
a complex analysis exercise.

Recall that an open set Ω ⊂ C is said to be connected if whenever we partition Ω into two open
sets A,B ⊂ Ω, then either A or B is the empty set (so the other is Ω). This is more abstract
than the notion of path connected but easier to work with.

Suppose Ω ⊂ C is a connected open set, and f : Ω → C is a locally constant function. That
is, each point z0 ∈ Ω has a neighbourhood around it on which f is constant. Prove that f is
constant throughout.



1.3 Exercises

1.11. Suppose Ω ⊂ C is open and f : Ω → C is a holomorphic function with f ′ ≡ 0. Prove that f is
constant on each connected component of Ω.

Remark: In other words, if f is a real differentiable function such that fz ≡ fz̄ ≡ 0, then f is
constant on each connected component.

1.12. If you still have some energy, you could try to do the calculations to prove the following exten-
sion of Lemma 1.6. Otherwise, it’s safe to move on! No answers will be given for this!

Lemma: Suppose that Ω1,Ω2 ⊂ C are open sets. If g : Ω1 → Ω2 is real differentiable at
z ∈ Ω1, and f : Ω2 → C is real differentiable at g(z), then f ◦ g is real differentiable at z and
we have the two chain rules

(f ◦ g)z(z) = fz(g(z))gz(z) + fz̄(g(z))ḡz(z), (1.3.1)

and
(f ◦ g)z̄(z) = fz(g(z))gz̄(z) + fz̄(g(z))ḡz̄(z). (1.3.2)

Warning: when we write ḡz, we mean ∂
∂z
(ḡ), whereas gz would be ḡz̄, i.e. ∂

∂z̄
(ḡ). See Q. 1.1.
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2 Möbius transformations

In general, Complex Analysis gains a lot of its power and interest from being a combination of
analysis and geometry; this section makes a start on the geometric side.

2.1 The Riemann sphere

VIDEO: The Riemann sphere

It will turn out to be a very good idea to extend the complex plane by adding an extra point at infinity;
we write

C∞ := C ∪ {∞}

for this extended complex plane.

We delay a discussion of why this is such a good idea for a moment until we have equipped C∞ with
a bit more structure. At the moment, it is just a set. We can equip it with a topology by viewing it
as the one point compactification of C. It doesn’t matter if you don’t know what that means because
we can see the topology extremely explicitly. In particular, a sequence {zi} in C ⊂ C∞ converges to
∞ ∈ C∞ if zi → ∞ in the usual sense.

But a topology is not enough geometric structure. We want to be able to see ∞ ∈ C∞ in just the
same way as we would see any other point in C∞. Eventually we want to be able to make sense of
whether a function f : C∞ → C∞ can be thought of as being holomorphic, including at ∞, and
including at points that map to ∞. An efficient way of seeing all points in C∞ as equal is to consider
stereographic projection. This will turn C∞ into the Riemann sphere.

2.2 Stereographic projection

VIDEO: Stereographic projection

Typo at around 06:30 in the video: the π in red needs to be moved to the other point. That is, swap
(x1, x2, x3) and π(x1, x2, x3).

We would like to realise concretely the extended complex plane as a sphere.

To do this, we start by imagining the points x+ iy in the complex plane as points (x, y, 0) in R3.

We will find a correspondence between this complex plane and S2 \N , where

S2 := {(x1, x2, x3) : x21 + x22 + x23 = 1} ⊂ R3
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2.2 Stereographic projection

and N := (0, 0, 1) is the ‘north pole’. We do this by mapping each point (x1, x2, x3) on the unit
sphere, other than N , to the unique point on the plane that is on the line through N and (x1, x2, x3).

{x3 = 0} ≃ C

π(x1, x2, x3)

(x1, x2, x3)

N = (0, 0, 1)

Thus the south pole S := (0, 0,−1) is mapped to 0 ∈ C. The lower hemisphere is mapped to the unit
disc in C. Each point on the unit circle representing the equator is fixed under the correspondence.
The upper hemisphere is mapped to the complement of the unit disc in C.

This map is the so-called stereographic projection and by some basic trigonometry that is discussed
in the exercises on page 28, one can find an explicit formula for it:

Definition 2.1. We define stereographic projection π : S2 \N → C by

π(x1, x2, x3) =
x1 + ix2
1− x3

. (2.2.1)

It extends to a bijection π : S2 7→ C∞ by sending N ∈ S2 to ∞ ∈ C∞.

The inverse of π can be computed to be the map C 7→ S2 \N given by

z = x+ iy 7→
(

2x

1 + |z|2
,

2y

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
, (2.2.2)

Warning: Don’t let the notation make you think that x, y, z are coordinates in R3! Of course, z is
complex, x and y are real, |z|2 = x2 + y2 etc.

The bijection π : S2 7→ C∞ can be used to transfer the standard topology on S2 to a topology on C∞;
this coincides with the topology we alluded to in the previous section. With this topology in hand we
can say, for example, that the function z 7→ 1/z is a homeomorphism C∞ → C∞, without worrying
about any singularity at 0 (now mapped to the point ∞ in the target C∞) and without worrying about
the function omitting 0 in the range (now ∞ in the domain is mapped to 0). In fact, the function
z 7→ 1/z corresponds to a rotation of the sphere by 180 ◦ as we will see later in Section 2.5.

The bijection π : S2 7→ C∞ also allows us to endow C∞ with some additional geometric structure.
The essential idea is that just as every point in the sphere is much the same as ever other, for many
purposes every point in C∞ is much the same as every other, including ∞. This will allow us to make

12



2.3 Möbius transformations - definition and first properties

sense of a continuous function f : C∞ → C∞ being complex differentiable at a point z0 ∈ C for
which f(z0) = ∞. Geometrically we simply rotate the target under the transformation z 7→ 1

z
so the

point ∞ becomes the point 0, and ask that z 7→ 1
f(z)

is complex differentiable at z0. Alternatively, we
could make sense of f being complex differentiable at ∞ by rotating the domain. If f(∞) ̸= ∞ this
amounts to asking that z 7→ f(1

z
) is holomorphic at 0, while in the remaining case that f(∞) = ∞

we can rotate both domain and target and ask that z 7→ 1
f( 1

z
)

is holomorphic at 0.

In Section 2.3 we will find that the function f(z) = 1/z is just one of a large class of homeomorphisms
f : C∞ → C∞ known as Möbius transformations for which both f and f−1 are holomorphic (i.e.
complex differentiable everywhere in the above sense).

Remark 2.2. Stereographic projection has the property that circles on S2, i.e. intersections of S2

with planes in R2 that consist of more than just one point, are mapped to either circles or lines in
C. More precisely, if the circle does not pass through N then π maps it to a circle in C, while if the
circle passes through N , then it is mapped to a line. You will check these facts in exercise sheet Q.
2.3 and Q. 2.4. This correspondence also works the other way round. That is, circles and lines in C
are mapped to circles in S2 by π−1.

This fact motivates the following definition.

Definition 2.3. A circle in C∞ is any subset of C∞ that arises as the image under π of the intersection
of S2 with any plane that intersects the open unit ball in R3. In other words, it is either a circle in C
or a line in C together with the point ∞ ∈ C∞.

The requirement that the plane intersects the open unit ball is there to ensure that the intersection is
nonempty and does not consist of only one point.

To reiterate, a circle in C∞, when restricted to C, is precisely a line or a circle.

Historical remark: Stereographic projection was known at least as far back as Hipparchus, born about
2200 years ago.

Hipparchus of Nicaea, c.190BC - c.120BC. Greek astronomer, mathematician and geographer. Con-
sidered by some to be the founder of trigonometry.

2.3 Möbius transformations - definition and first properties

August Ferdinand Möbius (1790 - 1868).

VIDEO: Möbius transformations

These are going to be bijections, and even homeomorphisms, from the Riemann sphere to itself, with
special properties.
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2.3 Möbius transformations - definition and first properties

Definition 2.4. The Möbius transformations (also known as Möbius maps) are the functions f :
C∞ → C∞ of the form

f(z) =
az + b

cz + d
,

for coefficients a, b, c, d ∈ C such that ad − bc ̸= 0. For c = 0, the point ∞ is sent to ∞. For c ̸= 0,
the point z = −d/c is sent to ∞ ∈ C∞, and the point z = ∞ is sent to a/c.

All Möbius transformations are continuous functions on the whole of C∞. You should verify that you
agree with this; the claim is still valid at z = ∞, and for c ̸= 0, it is still valid at z = −d/c despite
that point being mapped to ∞.

Why are we asking that ad − bc ̸= 0? Because if not, then f will just map to one point because
some cancellation is possible in the expression for f . For example, if d ̸= 0 then we would have
az + b = bc

d
z + b = b

d
(cz + d), in which case f(z) = b

d
, which is independent of z.

As it is, because of the assumption that ad− bc ̸= 0, the Möbius transformations are invertible:

Lemma 2.5. The Möbius transformation

f(z) =
az + b

cz + d
(2.3.1)

is invertible from C∞ to C∞. The inverse f−1 is also a Möbius transformation and is given by

f−1(z) =
dz − b

−cz + a
. (2.3.2)

It would be a good idea to pause and give a proof by direct calculation. Brushing the issue of ∞ under
the rug, you are essentially setting w = az+b

cz+d
and then rearranging in order to write z in terms of w.

Or you could simply verify that

f

(
dz − b

−cz + a

)
= z.

We won’t do either here because this lemma will follow from a more general picture in a moment.

The invertibility claimed in Lemma 2.5 above implies that Möbius transformations are not just con-
tinuous functions, they are even homeomorphisms.

Lemma 2.6. Let f1 and f2 be two Möbius transformations given by

fi =
aiz + bi
ciz + di

i = 1, 2.

Then f1 ◦ f2 is again a Möbius transformation and is given by

f1 ◦ f2(z) =
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
. (2.3.3)

14



2.4 PSL(2,C)

The proof of formula (2.3.3) is a simple calculation that you must do yourself in order to get a feeling
for what is going on. There is one slightly subtle point in the claim that this is a Möbius transform-
ation, which is that Möbius transformations must have coefficients that satisfy the nondegeneracy
condition ad − bc ̸= 0, and it is initially a bit daunting to verify this directly for the transformation
in (2.3.3). One could instead establish this indirectly by double-checking that failure to satisfy this
nondegeneracy condition would imply that the composition was constant, as indicated above; but the
composition of two homeomorphisms is another homeomorphism and so cannot be constant. How-
ever, there is a more illuminating approach that we describe in the next section, so we are happy to
delay that part of the proof.

Already, equipped with Lemmata 2.5 and 2.6, we see that the set of Möbius transformations forms a
group under composition, with the identity f(z) = z being the identity of the group.

2.4 PSL(2,C)

VIDEO: PSL(2,C)

Consider the map from GL(2,C), i.e. the group of invertible 2× 2 matrices with complex entries, to
the set of Möbius transformations, given by

M =

(
a b
c d

)
7−→ fM(z) :=

az + b

cz + d
. (2.4.1)

The assumption ad − bc ̸= 0 in the definition of Möbius transformation is precisely the condition
that the matrix on the left-hand side of (2.4.1) is invertible. Indeed we have det(M) = ad − bc.
In particular, the map M 7→ fM is well-defined and every Möbius transformation arises from some
matrix M ∈ GL(2,C).

Given two matrices M1,M2 ∈ GL(2,C), written

Mi :=

(
ai bi
ci di

)
i = 1, 2,

consider the Möbius transformations f1 := fM1 and f2 := fM2 as in Lemma 2.6. Because the product
M1M2 has determinant det(M1M2) = det(M1) det(M2) ̸= 0, it also lies in GL(2,C), as we need
for GL(2,C) to be a group. Therefore its image fM1M2 under (2.4.1) is a Möbius transformation. A
calculation reveals that

M1M2 =

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
,

and so the Möbius transformation fM1M2 is precisely the map f1 ◦ f2 in (2.3.3)! In particular, we
now see that f1 ◦ f2 is indeed a Möbius transformation, i.e. it satisfies the nondegeneracy condition,
completing the proof of Lemma 2.6. In other notation, this can be written

fM1 ◦ fM2 = fM1M2 . (2.4.2)
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2.5 Decomposition of Möbius transformations

One consequence of (2.4.2) is that Lemma 2.5 concerning the inversion of Möbius transformations is
now obviously true simply because(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)

The identity (2.4.2) is also telling us that the map defined in (2.4.1) is a group homomorphism.

This group homomorphism is not a group isomorphism because although it is surjective, it is not
injective. Indeed, if you take any matrix M ∈ GL(2,C), and any nonzero λ ∈ C, then the scaled
matrix λM will also lie in GL(2,C), and will give exactly the same Möbius transformation under
(2.4.1). You can almost fix this by replacing GL(2,C) with the smaller group SL(2,C) in which
the determinant is assumed to be not just nonzero, but to be equal to 1. (Note that det(λM) =
λ2 det(M).) We still have a surjective group homomorphism, this time from SL(2,C) to the group of
Möbius transformations, but injectivity fails still because for any matrix M ∈ SL(2,C), the negative
matrix −M will also lie in SL(2,C), and will then give exactly the same Möbius transformation
under (2.4.1) as before. A simple calculation shows that the kernel of this group homomorphism is
precisely the subgroup {±I}. Indeed, if fM from (2.4.1) is the identity fM(z) ≡ z, then we must
have b = c = 0 and a/d = 1. Together with the constraint that det(M) = 1, this implies that M = I
or M = −I .

We can turn this homomorphism into an isomorphism by factoring out the kernel {±I} and consid-
ering the quotient group

PSL(2,C) := SL(2,C)/{±I},
where the P stands for projective. By the first isomorphism theorem for groups we obtain:

Lemma 2.7. The map from PSL(2,C) to the group of Möbius transformations induced by (2.4.1) is
a group isomorphism.

We will take a closer look at this in Section 2.10.

2.5 Decomposition of Möbius transformations

VIDEO: Decomposition of Möbius transformations

Minor mistake at 27:30 in the video. I got the 2 lines the wrong way round: the top half circle goes to
the bottom line, and the bottom half circle to the top line.

There are several special classes of Möbius transformations from which all others can be derived, as
we claim in Lemma 2.9.

Definition 2.8. We will call the following Möbius transformations elementary:

(i) Translations: For b ∈ C, these are maps of the form f(z) = z + b.
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2.5 Decomposition of Möbius transformations

(ii) Rotations: For θ ∈ R, these are maps of the form f(z) = eiθz. Their effect is to rotate anti-
clockwise about the origin by an angle θ.

(iii) Dilations: For λ > 0 these are maps of the form f(z) = λz. They act as an expansion if λ > 1
or a contraction if λ < 1.

(iv) Complex inversion: This is the map f(z) = 1
z
. Its effect is most easily understood as a map from

S2 to S2 using the stereographic projection. In that viewpoint it is a rotation by 180 ◦ about the
x1-axis in R3. In other words, the map (x1, x2, x3) 7→ (x1,−x2,−x3).

Beware: the use of term ‘inversion’ is potentially misleading. For many purposes, inversion would
refer to the map z 7→ 1/z̄, which fixes the unit circle, sending reiθ to 1

r
eiθ. The complex inversion is

thus an inversion followed by a reflection given by complex conjugation.

The interpretations of translations, rotations and dilations that we have given are obvious. To verify
the interpretation of the complex inversion as the rotation by 180 ◦ , we can compute directly using
the formula (2.2.1) for π in Section 2.2. To see this, first, note that the map z 7→ 1/z, in coordinates,
is x + iy 7→ x−iy

x2+y2
. Also note that because (x1, x2, x3) lies in the unit sphere, we have x21 + x22 =

1− x23 = (1− x3)(1 + x3). Then as a map on S2 we get

(x1, x2, x3)
π7−→ x1 + ix2

1− x3

z 7→1/z7−−−−→ (1−x3)
x1 − ix2
x21 + x22

=
x1 − ix2
1 + x3

π−1

7−−−→ (x1,−x2,−x3),

Lemma 2.9. Every Möbius transformation can be written as the composition of elementary Möbius
transformations.

Proof. First recall that given an arbitrary nonzero complex number, written as reiθ, with r > 0, θ ∈ R,
the transformation z 7→ reiθz is a composition of a rotation by θ and a dilation by a factor r, both of
which are elementary.

For c = 0, the Möbius transformation would be z 7→ az+b
d

. This arises by composing the elementary
transformations

z 7−→ a

d
z 7−→ a

d
z +

b

d
.

For c ̸= 0 we can write
az + b

cz + d
=
a

c
+
b− ad

c

cz + d
.

Then this Möbius transformation is obtained by composing the elementary transformations

z 7−→ cz 7−→ cz + d 7−→ 1

cz + d
7−→

b− ad
c

cz + d
7−→ a

c
+
b− ad

c

cz + d
. (2.5.1)

We can often use this decomposition into elementary Möbius transformations in order to prove that
certain properties are preserved under general Möbius transformations: The proof is then reduced to
checking that the property is preserved for elementary Möbius transformations, as in the following
theorem. Keeping in mind our definition of ‘circles’ in C∞ from Definition 2.3, we have
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2.6 Three points determine a Möbius transformation

Theorem 2.10. The image of every circle in C∞ under any Möbius transformation is also a circle in
C∞.

Proof. We only need check this property for each type of elementary Möbius transformation. The
property is obvious for translations, rotations and dilations. The property for the complex inversion
follows from its interpretation as a 180 ◦ rotation, together with the preservation of circles/lines by
stereographic projection given in Remark 2.2.

2.6 Three points determine a Möbius transformation

VIDEO: Three points determine a Möbius transformation

In this section we will see the fundamental (and very useful) property that if we ask for three specific
distinct points in C∞ to be mapped to another three specific distinct points in C∞, then we determine
a unique Möbius transformation. Precisely, we have:

Theorem 2.11. Given three distinct points z1, z2, z3 ∈ C∞ and three distinct points w1, w2, w3 ∈ C∞,
there exists a unique Möbius transformation f such that f(zi) = wi for i = 1, 2, 3.

Thus the group of Möbius transformations has three complex degrees of freedom. This illustrates
very clearly how it is a six real-parameter family.

The proof of Theorem 2.11 will be supported by a couple of sub-results. We start with an observation
about the fixed points of Möbius transformations.

Lemma 2.12. Every Möbius transformation f : C∞ → C∞ other than the identity f(z) = z has at
least one, but at most two, fixed points. In particular, if f is a Möbius transformation and z1, z2, z3 ∈
C∞ are distinct points such that f(zi) = zi, then f is the identity.

Note that a Möbius transformation such as f(z) = z + 1 has no fixed points in C. But ∞ is a fixed
point in this case.

Proof. As usual, we write

f(z) =
az + b

cz + d
.

Observe that f being the identity corresponds to the case a = d ̸= 0 and b = c = 0, so if we assume
that this is not the case then we need to show that there can be at most two fixed points.

We split the proof into two cases: First, if c = 0, then f is just a linear transformation f(z) = a
d
z+ b

d
,

where a, d ̸= 0 by nondegeneracy of Möbius transformations. Such a linear transformation has a
fixed point at infinity, plus at most one further fixed point at z = b

d−a
if a ̸= d.
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2.6 Three points determine a Möbius transformation

In the remaining case that c ̸= 0, we have

f(z) =
az + b

cz + d
= z ⇐⇒ (az + b) = (cz + d)z

⇐⇒ 0 = cz2 + (d− a)z − b .

The quadratic formula gives us two solutions, which might coincide.

Next, we give a special case of the desired Theorem 2.11 in which the points wi are explicit. In this
special case we also give formulae for the Möbius transformation, which will be useful later.

Proposition 2.13. Given three distinct points z1, z2, z3 ∈ C∞, there exists a Möbius transformation
f that maps z1, z2, z3 to 1, 0,∞ respectively. In the case that zi ̸= ∞ for i = 1, 2, 3, then it is

f(z) :=
(z − z2)(z1 − z3)

(z − z3)(z1 − z2)
. (2.6.1)

In the case that z1 = ∞ we set

f(z) =
z − z2
z − z3

, (2.6.2)

in the case that z2 = ∞ we set

f(z) =
z1 − z3
z − z3

, (2.6.3)

and in the case that z3 = ∞ we set

f(z) =
z − z2
z1 − z2

. (2.6.4)

Proof. Clearly each of these functions f are Möbius transformations. By inspection, they send the
points zi to the required image points.

In the final three cases (2.6.2) to (2.6.4) in which one of the zi is ∞, the formulae for f arise from
(2.6.1) by dropping the factor on the numerator and the factor on the denominator containing that zi.
These two factors would cancel in the limit zi → ∞, so this makes sense.

We are finally in a position to prove the main result of this section.

Proof of Theorem 2.11.
Existence: Let f1 be the function from Proposition 2.13 that sends z1, z2, z3 to 1, 0,∞ respectively.
Let f2 be the function from Proposition 2.13 that sendsw1, w2, w3 to 1, 0,∞ respectively. The Möbius
transformation f we seek is simply f−1

2 ◦ f1.

Uniqueness: Suppose that we have two Möbius transformations f and g, both of which send the
points zi to wi respectively. Then g−1 ◦ f is a Möbius transformation that has all three distinct points
zi as fixed points. Lemma 2.12 then tells us that g−1 ◦ f is the identity, i.e. f ≡ g.
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2.7 The cross ratio

2.7 The cross ratio

Definition 2.14. The cross-ratio of pairwise distinct z0, z1, z2, z3 ∈ C∞, is the point in C that is the
image of z0 under the unique Möbius transformation that sends z1, z2, z3 to 1, 0,∞ respectively.

Remark 2.15. Formulae for the Möbius transformation f , and hence for f(z0), are given by Propos-
ition 2.13.

Theorem 2.16. The cross-ratio is invariant under Möbius transformations.

Proof. If f is any Möbius transformation, we have to show that the cross-ratio of (z0, z1, z2, z3) is
the same as that of (f(z0), f(z1), f(z2), f(z3)). If we denote by g the unique Möbius transformation
that sends z1, z2, z3 to 1, 0,∞ respectively, then this cross ratio is g(z0) by definition. But then the
unique Möbius transformation that sends f(z1), f(z2), f(z3) to 1, 0,∞ respectively is g ◦ f−1, and so
the cross-ratio of (f(z0), f(z1), f(z2), f(z3)) is g ◦ f−1(f(z0)) = g(z0), which is the same.

Theorem 2.17. The cross ratio of (z0, z1, z2, z3) is real-valued if and only if z0, z1, z2, z3 all lie on a
common circle in C∞.

Recall from Definition 2.3 that circles in C∞ restrict to circles and lines in C.

Proof. Since both the cross-ratio and the property of lying on a circle are invariant under Möbius
transformations, we may assume that z1, z2, z3 equal 1, 0,∞ respectively. The cross ratio of (z0, 1, 0,∞)
is z0 by definition. But the circle passing through 1, 0 and ∞ is the real line.

Let’s digest a consequence of what we have proved. If z0, z1, z2, z3 ∈ C, then they all lie on a common
line or circle in the plane if and only if

(z0 − z2)(z1 − z3)

(z0 − z3)(z1 − z2)
∈ R.

Amazing! Try it out on a few examples.

Remark 2.18. If you can remember the formula for the cross-ratio then you can use it to compute the
Möbius transformation from Theorem 2.11 (let’s call it h) sending three distinct points z1, z2, z3 to
distinct points w1, w2, w3. This is because the invariance of cross-ratio under Möbius transformations
from Theorem 2.16 tells us that

(z, z1, z2, z3) = (h(z), w1, w2, w3),

so we can expand out both sides using the formula for cross-ratio from Proposition 2.13 (recall Re-
mark 2.15) and solve for h(z).

The alternative is to consider a general Möbius transformation h(z) = az+b
cz+d

, plug in h(zi) = wi for
i = 1, 2, 3, and solve for a, b, c, d (up to a factor).
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2.8 Examples and special classes of Möbius transformations

2.8 Examples and special classes of Möbius transformations

VIDEO: Examples of Möbius transformations

Around 23:10 when I said ‘reflection’, I meant ‘rotation’. I’ll explain more in the live lecture.

There are numerous distinguished examples and subclasses of Möbius transformations, of which we
give a few prominent examples. Many of them will map a specific region bijectively to the unit disc

D := {z ∈ C : |z| < 1}.

Example 2.19 (The Cayley transform: A Möbius transformation that gives a bijection from the upper
half-space to the disc). Consider the Möbius transformation

f(z) =
z − i

z + i
.

Then
f(z) ∈ D ⇐⇒ |f(z)| < 1 ⇐⇒ |z − i| < |z + i| ⇐⇒ ℑ(z) > 0,

because such z ∈ C satisfying |z − i| < |z + i| would be closer to i than −i. Thus f is a bijection
from the upper half-space Hℑ>0 := {z ∈ C : ℑ(z) > 0} to the unit disc D.

Example 2.20 (Möbius transformation that gives a bijection from a disc to a half-space, constructed
by picking 3 points). It’s easy enough to find a Möbius transformation that is a bijection from D to
Hℑ>0 by inverting the Cayley transform of Example 2.19. Here is a direct way of constructing such
functions f . Since Möbius transformations are homeomorphisms from C∞ to itself, f will map the
boundary of D, i.e. the unit circle, to the boundary of Hℑ>0, i.e. the real axis plus ∞. There are many
maps with this property. By Theorem 2.11 we can pick any three distinct points on the unit circle and
map them to 1, 0 and ∞ respectively. For example, we could pick 1, −i and i on the unit circle, in
which case the map is given by (2.6.1) as

f(z) =
(z − (−i))(1− i)

(z − i)(1− (−i))
=

z + i

iz + 1
.

By Theorem 2.10, this Möbius transformation will map the entire unit circle ∂D to the entire real axis
plus ∞. Because f is a homeomorphism, this map must send the disc D either to the upper half-plane
Hℑ>0, or the lower half-plane. But since it sends 0 to i, it must be the former case, as required.

Example 2.21 (Möbius transformations that give bijections from the disc to itself). Consider the
Möbius transformations of the form

f(z) =
z − w

w̄z − 1
for w ∈ C, with |w| < 1. (2.8.1)

We claim that Möbius transformations of this form map D onto itself, and map the boundary of D to
itself. To see this, we use the easily-checked identity

|z − w|2 = |w̄z − 1|2 − (1− |z|2)(1− |w|2)
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2.8 Examples and special classes of Möbius transformations

to compute

|f(z)|2 = |z − w|2

|w̄z − 1|2
= 1− (1− |z|2)(1− |w|2)

|w̄z − 1|2
.

Because we are assuming that 1 − |w|2 > 0, we see that |f(z)| < 1 if and only if |z| < 1, and
|f(z)| = 1 if and only if |z| = 1.

This argument also implies that f maps ontoD, since f is a bijection from C∞ to itself. An alternative
argument to obtain the surjectivity would be to observe that the inverse of f is f itself!

Remark 2.22. We can slightly generalise the class of Möbius transformations from Example 2.21
that map the disc D to itself, by composing with a rotation about the origin, giving maps of the form

f(z) = eiθ
(
z − w

w̄z − 1

)
, (2.8.2)

still with w ∈ D, and now with θ ∈ (−π, π]. A stunning fact that will follow from the so-called
Schwarz lemma, Theorem 7.15, is that every holomorphic map D 7→ D that is a bijection is of the
form (2.8.2). We are not starting with the assumption that the map is a Möbius transformation here.
This is true in far greater generality! Think how different this is to what you have seen before. Just
imagine if there were only a finite-dimensional family of real differentiable bijective functions from
(−1, 1) to itself!

Example 2.23 (Möbius transformations that give bijections from Hℑ>0 to itself). A Möbius trans-
formation g(z) from D to itself can be converted into a Möbius transformation h := f−1 ◦ g ◦ f from
Hℑ>0 to itself, where f : Hℑ>0 → D is the Cayley transform from Example 2.19. One can also con-
jugate in the other direction to give g = f ◦h◦f−1. Because of this, it may seem pointless to consider
Möbius transformations from Hℑ>0 to itself after already considering Möbius transformations from
D to itself in Example 2.21.

However, working in the Hℑ>0 viewpoint has some significant advantages in certain situations. To
see one, we return to the isomorphism between the group of Möbius transformations and the group
PSL(2,C) from Section 2.4. The key observation is that the subgroup

PSL(2,R) := SL(2,R)/{±I},

essentially restricting from complex matrices in SL(2,C) to real matrices in SL(2,R), but as before
identifying each pair A and −A, corresponds to an interesting subgroup of Möbius transformations.
Indeed, we claim that they send the upper half plane Hℑ>0 to itself. To see this, we rewrite

f(z) =
az + b

cz + d
=

(az + b)(cz̄ + d)

(cz + d)(cz̄ + d)
=
ac|z|2 + ad z + bc z̄ + bd

|cz + d|2
.

Therefore, keeping in mind that ℑ(z̄) = −ℑ(z) and ad− bc = 1, we have

ℑ(f(z)) = ℑ(ad z + bc z̄)

|cz + d|2
=

(ad− bc)ℑ(z)
|cz + d|2

=
ℑ(z)

|cz + d|2

In particular, if z ∈ Hℑ>0, equivalently ℑ(z) > 0, if and only if ℑ(f(z)) > 0, equivalently f(z) ∈
Hℑ>0. Thus f maps Hℑ>0 to itself.
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2.9 Conformal maps

Similarly to before, we see that f also maps Hℑ>0 onto itself. For example, one can observe that the
inverse of f is another Möbius transformation of the same form, and thus maps Hℑ>0 to itself.

One can check that every Möbius transformation that maps Hℑ>0 bijectively to itself arises in this
way. To see this, consider the circle C in C∞ consisting of the real line plus ∞. This is the boundary
of Hℑ>0 in C∞. Any Möbius transformation mapping Hℑ>0 bijectively to itself must then map C
bijectively to itself (since f is a homeomorphism). If we now take the points x1, x2, x3 ∈ C that
map to the points 1, 0,∞ respectively, then we can construct a Möbius transformation in PSL(2,R)
using Proposition 2.13 that has the same effect on these three points. By Theorem 2.11 itself, the two
Möbius transformations must then coincide.

Example 2.24. The rotations of the unit sphere S2 ↪→ R3 are Möbius transformations when we
identify S2 and C∞ as above. By rotations, we mean elements of SO(3). Since the group of Möbius
transformations is isomorphic to PSL(2,C), by Lemma 2.7, it is natural to ask to which subgroup of
PSL(2,C) these rotations correspond. It turns out that it is the subgroup PSU(2). The corresponding
Möbius transformations can be written

z 7→ az − c̄

cz + ā
,

for a, c ∈ C with |a|2 + |c|2 = 1.

2.9 Conformal maps

VIDEO: Conformal maps

Around 37:50 for a couple of minutes I keep saying omega when I mean gamma. It should be clear
because I am writing γ and occasionally I correct myself!

A general principle in mathematics is that one defines an object with some structure, for example a
vector space with its linear structure, and then one considers bijective maps between different objects
that preserve this structure, for example a bijection between vector spaces that preserves the linear
structure. Such bijections are typically called isomorphisms, and intuitively we view two objects that
are isomorphic as being the same. You will have seen many other examples of this viewpoint, for ex-
ample isometries between metric spaces, isomorphisms between groups, homeomorphisms between
topological spaces or maybe diffeomorphisms between manifolds (if you have studied manifolds).

What is the right notion of equivalence for domains in C?

(By domain here we mean a nonempty, open and connected subset. Beware that sometimes domain
means this, and sometimes it simply means the space that a function maps from. You have got to
work out which from context.)

In order to work towards a sensible answer to this question, we need to define what it means for a
map/function f to be conformal and what it means to be biholomorphic.

Definition 2.25. Given an open set Ω ⊂ C, a function f : Ω → C is said to be a conformal map, if f
is holomorphic and f ′(z) ̸= 0 for all z ∈ Ω.
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2.9 Conformal maps

The point to keep in mind here is that such a function preserves angles in the sense discussed in
Section 1.1. For example, an anticlockwise rotation of ∂f

∂x
by 90 degrees gives ∂f

∂y
. The word conformal

is used in several slightly different ways, even in this precise subject, but the idea of preserving angles
is always present.

A conformal map as we have defined it is not necessarily injective. Consider the function f(z) = z2

defined on the domain C \ {0} for example.

Definition 2.26. A function f : Ω1 → Ω2 between open sets Ω1,Ω2 ⊂ C is said to be biholomorphic
if it is a bijection such that both f and f−1 are conformal maps.

We will see later the remarkable fact that every bijective holomorphic function f is automatically
biholomorphic. Thus the facts that the inverse f−1 is holomorphic and the derivatives of both f and
f−1 don’t vanish will come for free. Let’s not worry about why right now, but later you will be able
to refer to Theorem 7.14.

We can now give an answer to our earlier question.

Definition 2.27. Two domains Ω1 and Ω2 in C are said to be conformally equivalent if there exists a
biholomorphic function φ : Ω1 → Ω2.

This notion of equivalence gives us an equivalence relation. In particular, if Ω1 and Ω2 are conformally
equivalent via the biholomorphic map φ : Ω1 → Ω2, and Ω2 and Ω3 are conformally equivalent via the
biholomorphic map ψ : Ω2 → Ω3, then Ω1 and Ω3 are conformally equivalent via the biholomorphic
map ψ ◦ φ : Ω1 → Ω3. We are implicitly using the chain rule to be sure that the composition of these
biholomorphic maps is biholomorphic.

The key property that is preserved by this notion of equivalence is the concept of a function being
holomorphic. More precisely, by the chain rule, a function f : Ω2 → C is holomorphic if and only if
the composition f ◦ φ : Ω1 → C is holomorphic.

For the rest of this section we try to get a feeling for which domains are conformally equivalent to
which other domains. Our knowledge of Möbius transformations will help. Throughout the discus-
sion we continue to write the unit disc as D := {z ∈ C : |z| < 1}.

Before we begin, let’s recall that by writing down the Cayley transform in Example 2.19 we already
showed that the upper half-space is conformally equivalent to the disc D. Let’s find some more such
domains.

Come to the lectures (or watch the video) for pictures!

Example 2.28. We claim that the upper right quarter of the complex plane

Q := {z ∈ C | ℜ(z) > 0 and ℑ(z) > 0}

is conformally equivalent to the disc D.

To see this, we first observe that Q is conformally equivalent to the upper half plane Hℑ>0 by virtue
of the map z 7→ z2 which is biholomorphic from Q to the upper half plane.

24



2.9 Conformal maps

The upper half plane is then conformally equivalent to D via the Cayley transform of Example 2.19.

Example 2.29. We claim that the upper half disc

Dℑ>0 := {z ∈ C : |z| < 1 and ℑ(z) > 0}

is conformally equivalent to the whole disc D.

Danger: It is very tempting to try to use the conformal map z 7→ z2 to do this job, but this actually
shows the quite different fact that Dℑ>0 is conformally equivalent to the disc D with the real interval
[0, 1) removed!

Instead, we notice that Dℑ>0 is conformally equivalent to Q via the unique Möbius transformation
that sends −1, 0 and 1 to 0, 1 and ∞ respectively. One could compute this explicitly, but we can argue
more geometrically as follows: First, we know from Theorem 2.11 that this Möbius transformation
exists. Second, by the preservation of circles in C∞ from Theorem 2.10 it sends the interval [−1, 1]
to the interval [0,∞]. Third, by Theorem 2.10 again it must send the semicircle {z ∈ C : |z| =
1 and ℑ(z) ≥ 0} to a half line starting at 0 and going in some direction off to infinity. Finally, the
right-angle in the boundary of Dℑ>0 at −1 must induce a right angle in the boundary of the image of
Dℑ>0 under this Möbius transformation, because the Möbius transformation preserves angles, and so
the half line must be the positive imaginary axis.

Now we have shown that Dℑ>0 is conformally equivalent to Q, the claim follows by Example 2.28.

By this point you may be getting the false impression that every domain is conformally equivalent to
D. But this is not true. One type of counterexample would be to take the domain that is the whole of
C. If we could find a biholomorphic function from C to D then this would be a bounded holomorphic
function on C, and therefore constant by Liouville’s theorem that we will see later in Corollary 6.7
once we have rigorously proved Cauchy’s theorem. In this case it could not be surjective onto D.

Another sort of domain that would certainly fail to be conformal to the disc D would be a domain
‘with holes’ such as an annulus {z ∈ C : a < |z| < b}, where 0 < a < b < ∞. This domain is not
even homeomorphic to D so it is a bit much to ask for it to be homeomorphic via a homeomorphism
that is additionally a conformal map! To see that they are not homeomorphic, it suffices to notice that
one is simply connected while the other is not, as will be easy to prove rigorously later – see Q. 4.5.
The notion of being simply connected has been briefly mentioned in Analysis 3. Informally it means
that every loop in the space can be deformed to a point. In order to make this precise we need to
define the notion of homotopy.

Definition 2.30 (Homotopic). Let Ω ⊂ C be open and let γ1, γ2 : [a, b] → Ω be two continuous paths,
i.e. continuous maps from an interval [a, b], with the same endpoints γ1(a) = γ2(a) and γ1(b) = γ2(b).
Then γ1 and γ2 are said to be homotopic if there exists a continuous map h : [0, 1]× [a, b] → Ω such
that for all s ∈ [0, 1] we have

h(s, a) = γ1(a), and h(s, b) = γ1(b),

i.e. the paths t 7→ h(s, t) have the same endpoints also, and for all t ∈ [a, b] we have

h(0, t) = γ1(t), and h(1, t) = γ2(t),
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2.10 Complex projective space CP 1

i.e. the paths t 7→ h(s, t) interpolate between γ1 and γ2 as s increases from 0 to 1. Such a map h is
called a homotopy from γ1 to γ2.

The notion of Ω being simply connected is intuitively that it does not contain any holes. To make this
precise, we recall:

Definition 2.31. A continuous path γ : [a, b] → C is said to be closed if γ(a) = γ(b), i.e. the path
closes up.

Definition 2.32 (Simply connected). An open set Ω ⊂ C is said to be simply connected if it is
connected and every closed continuous path γ : [a, b] → Ω is homotopic to the constant path γ̃ :
[a, b] → Ω defined by γ̃(t) = γ(a) = γ(b).

In more general situations the definition of simply connected would ask for path connectedness, but
path connectedness is equivalent to connectedness when considering an open set. In this very special
situation of open sets Ω in C, the notion of being simply connected is equivalent to both Ω being
connected, and its complement in the Riemann sphere C∞ being connected. We will not explicitly
use this formulation, so will not prove the equivalence.

At this point we can look forward to the end of the course when we prove one of the greatest theorems
in the subject, namely the Riemann mapping theorem. That theorem will tell us that every simply
connected domain Ω ⊂ C other than Ω = C is conformally equivalent to the disc D. See Theorem
11.1.

2.10 Complex projective space CP 1

Whenever you find some magic correspondence as in the link between PSL(2,C) and the group of
Möbius transformations in Section 2.4, you can be sure there is an underlying picture that can explain
it. Here this arises by considering complex projective space

CP 1 := C2 \ {(0, 0)}/ ∼,

where the equivalence relation ∼ is defined by (z1, w1) ∼ (z2, w2) if there exists λ ∈ C \ {0} such
that z2 = λz1 and w2 = λw1.

It turns out that CP 1 is another way of viewing the Riemann sphere.

With the exception of the one point [(1, 0)] whenw = 0, we can represent every point in CP 1 uniquely
by (z, 1) for some z ∈ C. Thus once we’ve removed this one point [(1, 0)], we are left with something
that can be viewed as a complex plane (parametrised by z). This is directly analogous to removing
the north pole N of S2 and using stereographic projection to view the remainder as a complex plane.

Similarly, with the exception of the one point [(0, 1)] when z = 0, we can represent every point in
CP 1 uniquely by (1, w) for some w ∈ C. Now we have a plane parametrised by w. Away from the
two points [(1, 0)] and [(0, 1)], a general point can be represented by either (1, w) or (z, 1) ∼ (1, 1/z).
That is, z and w are related by w = 1/z. Recall from Section 2.5 that the transformation z 7→ 1/z
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2.10 Complex projective space CP 1

corresponds to a rotation of the Riemann sphere S2 by 180 ◦ about the x1 axis. Thus to go from the
z coordinate to the w coordinate, we can use (inverse) stereographic projection to map to S2, then do
this rotation by 180 ◦ , and then map back to the complex plane using stereographic projection. Note
how w gives a nice complex coordinate around the point z = ∞ in the Riemann sphere. This means
we can make sense of being holomorphic to and/or from the whole Riemann sphere: We just work
with respect to z or w as is convenient.

Don’t fret if this is a bit quick or vague. I am just trying to smooth your transition to understanding
the basics of Riemann surfaces.

Meanwhile, the group GL(2,C) acts on CP 1 as follows: If we represent points [(z, w)] in CP 1

as column vectors ( z
w ) then we can simply left-multiply by the matrix (checking that this is well-

defined). In particular, a general matrix

M =

(
a b
c d

)
∈ GL(2,C)

maps a general point [(z, 1)] in CP 1 \ [(1, 0)] to the point represented by(
a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
,

which can be represented by (az + b, cz + d) ∼ (az+b
cz+d

, 1).

To conclude, M maps [(z, 1)] to [(az+b
cz+d

, 1)], and we realise where the formula for Möbius transform-
ations came from.
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Figure 2: Stereographic projection, cross-section

2.11 Exercises

2.1. By considering a triangle similar to the red triangle in Figure 2, prove that r = a
1−b

. Deduce the
formula (2.2.1) for stereographic projection.

Think of Figure 2 as a cross-section in the picture describing stereographic projection.

2.2. Invert formula (2.2.1) to give (2.2.2).

Hint: Solve first for x3. Then get x1 and x2.

2.3. We claimed in Remark 2.2 that straight lines in C are in one-to-one correspondence with circles
in S2 that pass through the north pole N , with the correspondence being given by stereographic
projection π. By considering appropriate planes in R3 that pass through N , give a geometric
justification of this fact.

You could also check this correspondence by solving equations as in the next question.

2.4. We claimed in Remark 2.2 that circles in C are in one-to-one correspondence with circles in S2

that don’t pass through the north pole N , with the correspondence being given by stereographic
projection π. Verify this by writing down the equations of the appropriate circles.

You might also try to give a geometric proof of this, but it’s trickier than the previous question!

Hint: Let’s remember some basic geometric facts from school mathematics. If n := (a, b, c) is
a unit vector, then the plane through the origin with normal vector n is given by (x1, x2, x3).n =
0. More generally if we shift that plane in the direction n by a distance d ∈ (−1, 1), then the
equation is (x1, x2, x3).n = d, i.e.

ax1 + bx2 + cx3 = d. (2.11.1)

The case that N = (0, 0, 1) lies within this plane is then precisely that (0, 0, 1).n = d, i.e.
c = d. The intersection of any such plane with S2 is a circle in S2. All such circles arise in this
way.

Now plug in the values (x1, x2, x3) given by the formula (2.2.2) into the formula (2.11.1), to
give a formula for the image of this circle under π.



2.11 Exercises

In the case c = d you should end up with an equation of a line in the plane. This is the case of
the last question.

In the case c ̸= d, you should get the equation of a circle. By completing the square, you should
find that the centre is ( a

d−c
, b
d−c

). The radius should be
√
1−d2

|d−c| .

One then needs to check the other direction, i.e., that a circle in C is mapped to a circle in S2.
You can try to give a geometric argument for this (exploiting what we have already proved) or
show it by direct computation.

2.5. The points 0 and ∞ in C∞, when viewed as points in S2 by applying π−1, are the south and
north poles respectively. They are therefore antipodal points. Given any other point z ∈ C∞,
i.e. z ∈ C that is nonzero, show that −1/z̄ ∈ C corresponds to the antipodal point. More
precisely, show that π−1(z) and π−1(−1/z̄) are antipodal.

Hint: This is equivalent to showing that π(x1, x2, x3)π(−x1,−x2,−x3) = −1.

2.6. In Example 2.20 we mapped the unit disc to the upper half plane with a Möbius transformation.
Viewed as a transformation of the Riemann sphere, seen as a 2-sphere in R3, what is this
transformation?

What is the square of this transformation? That is, what do we get if we apply the transformation
twice? Give the formula for the resulting Möbius transformation, and describe what it looks
like as a transformation of the Riemann sphere seen as a 2-sphere in R3?

2.7. Where does the map

f(z) =
1 + z

1− z

send the unit disc? What is the inverse of this map? What is it as a transformation of the
Riemann sphere S2?

2.8. Show that the quarter disc

Q̂ := {z ∈ C : |z| < 1 and ℑ(z) > 0 and ℜ(z) > 0}

is conformally equivalent to the unit disc D.

2.9. Show that the slit plane
S := C \ [0,∞)

is conformally equivalent to the unit disc D.

2.10. Construct explicitly the Möbius transformation mapping the upper half disc to the upper right
quarter Q that was determined geometrically during Example 2.29.

2.11. Construct explicitly the unique Möbius transformation f that sends D to the half space Hℜ>0,
while sending 0 to 1

2
and sending −1 to 0. By composing f with the map z 7→ z2 and then

z 7→ z − 1
4
, show that the map

K(z) :=
z

(1− z)2

is a conformal map from D to the slit plane C \ (−∞,−1
4
].
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This function is known as the Koebe function, and we will revisit it once we know a little more
theory. Amongst all the conformal maps fromD to C\(−∞,−1

4
], it is the unique one satisfying

the normalisation K(0) = 0 and K ′(0) = 1.
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3 Review of basic complex analysis II

3.1 Power series

VIDEO: Power Series

We will consider power series, i.e. expressions of the form
∞∑
n=0

anz
n,

where an is a complex-valued sequence. By convention, z0 = 1 above, even if z = 0.

Theorem 3.1. Given a complex-valued sequence (an), define the so-called radius of convergence by

R :=
1

lim sup |an|1/n
∈ [0,∞].

Then the power series
∞∑
n=0

anz
n

converges for all |z| < R and diverges for all |z| > R.

Nothing is claimed in this theorem about z for which |z| = R. That question can be somewhat
delicate. The cases considered in the theorem follow easily from the root test.

Power series can be differentiated term-by-term within their radius of convergence:

Theorem 3.2. If the radius of convergence R of the power series

f(z) =
∞∑
n=0

anz
n

is positive (or ∞), then within the disc BR := {z ∈ C : |z| < R}, the function f is holomorphic,
and

f ′(z) =
∞∑
n=1

nanz
n−1,

with this new power series having the same radius of convergence R.

A function that can be written as a power series over some ball about each point in its domain is
called analytic. We see now that analytic implies holomorphic. Later we will see that holomorphic
implies analytic. Indeed, Taylor’s theorem will tell us that every holomorphic function can be written
as a power series locally. For this reason, many people use the terms analytic and holomorphic
interchangeably. But not us.

By repeatedly applying Theorem 3.2, we obtain
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3.2 Definitions of ez, sin(z), cos(z) etc.

Corollary 3.3. If the radius of convergence R of the power series

f(z) =
∞∑
n=0

anz
n

is positive (or ∞), then within the disc BR := {z ∈ C : |z| < R}, the function f is infinitely
differentiable, and the n-th derivative of f at 0 ∈ C is given by

f (n)(0) = ann!. (3.1.1)

Although the convergence of a power series is a bit delicate near the circle {z ∈ C : |z| = R}, if we
restrict to compact subsets of BR then we have uniform convergence:

Theorem 3.4. If the radius of convergence R of the power series

f(z) =
∞∑
n=0

anz
n

is positive (or ∞), then for all r ∈ (0, R), the convergence

k∑
n=0

anz
n →

∞∑
n=0

anz
n

is uniform within the disc Br as k → ∞.

3.2 Definitions of ez, sin(z), cos(z), sinh(z) and cosh(z)

VIDEO: Exponentials, sine, cosine etc.

You will already be familiar with the idea of writing a complex number as reiθ; we used that earlier.
At school you probably took Euler’s formula

eiθ = cos θ + i sin θ (3.2.1)

as a definition of eiθ and then defined eα+iθ = eαeiθ in order to make sense of a general complex
exponential ez, and gave ad hoc proofs that this gave something with the expected behaviour, with a
promise that you would see a better motivated definition later on.

The theory of power series described in the previous section allows us to give this better motivated
definition of exp : C → C, and also define other familiar functions such as sin and cos etc. as
functions from C rather than R. It does this by using the familiar Taylor series expansions of these
functions on R and using them instead on C.
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3.2 Definitions of ez, sin(z), cos(z) etc.

Definition 3.5. We define exp : C → C, also written as z 7→ ez by

ez :=
∞∑
n=0

zn

n!
.

From the theory we have described, for this definition to make sense we have to verify that the radius
of convergence is R = ∞. From the definition of R, it suffices to establish that (n!)1/n → ∞, which
is a mini analysis exercise. (You can also use the ratio test to establish this without doing any exercise,
but we did not mention that.)

By differentiating term by term using Theorem 3.2, we find that the derivative of ez is ez itself:

(ez)′ = ez. (3.2.2)

The familiar property of the exponential function that ex+y = exey extends to the complex case:

Lemma 3.6. For all a, b ∈ C we have
ea+b = eaeb. (3.2.3)

Proof. Consider the function f(z) := ea+b−zez. By the product and chain rules, f is entire and

f ′(z) = ea+b−z(ez)′ + (ea+b−z)′ ez

= ea+b−zez − ea+b−zez = 0.
(3.2.4)

Therefore f is constant, as we saw in Q. 1.11, giving f(z) = f(0) = ea+b for all z ∈ C, and in
particular for z = b. But f(b) = eaeb, yielding (3.2.3).

The definitions of sinh and cosh extend immediately to entire functions from C rather than just R:

sinh(z) :=
ez − e−z

2
, cosh(z) :=

ez + e−z

2
,

and by (3.2.2) we have sinh′(z) = cosh(z) and cosh′(z) = sinh(z).

Moreover, if we define entire functions

sin(z) :=
eiz − e−iz

2i
, cos(z) :=

eiz + e−iz

2
, (3.2.5)

then these are the familiar sin and cos functions when restricted to R; one can see this by comparing
the power series, for example.

By adding the formulae (3.2.5) for sin and cos, and setting z = θ ∈ R, we obtain Euler’s formula
(3.2.1) and we see that our new definitions are consistent with what you were told at the beginning
about exponentiating complex numbers.
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3.3 Argument and logarithm

3.3 Argument and logarithm

VIDEO: Argument and logarithm

Euler’s formula (3.2.1) shows that eiθ represents a point on the unit circle, an angle θ anticlockwise
from the positive real axis (i.e. the x-axis) and we confirm the familiar fact that z ∈ C can be written
in the form |z|eiθ, where θ is determined up to the addition of 2π if z ̸= 0 (and θ is arbitrary if z = 0).

This is essentially viewing z in polar coordinates (r, θ) with r = |z|.

For z ̸= 0, this value θ, determined up to the addition of 2π, is known as the argument arg(z). Strictly
speaking it should be viewed as a function taking values in R/(2πZ).

If you understand the picture here, then you can read off properties of arg(z) at will. For example, if
z and w are nonzero complex numbers then

|zw|ei arg(zw) = zw = (|z|ei arg(z))(|w|ei arg(w)) = |zw|ei(arg(z)+arg(w)),

and so
arg(zw) = arg(z) + arg(w) modulo 2π. (3.3.1)

The multi-valued nature of arg can be annoying. There are several ways we can avoid it, and the best
strategy depends on the context. A simple idea would be to ask that it takes values in (−π, π], say,
yielding the principal value. This has a major disadvantage that it makes arg discontinuous along the
negative real axis. It does, however, give a nice continuous1 function on C− {x ∈ R : x < 0}.

This idea can be generalised. If we remove any ray {reiθ : r > 0} from C, for some θ ∈ R, then we
can define a single valued choice of arg(z) on the slit plane that remains, although different people
may make a choice of arg(z) that differs by a fixed constant multiple of 2π. The ray here is known as
a branch cut.

A particularly useful resolution of this 2π ambiguity in one specific situation will be given in Lemma
4.1.

The (complex) logarithm can be defined for z ̸= 0 by

log(z) := log |z|+ i arg(z).

Here the logarithm on the right-hand side is taking real values, so it is uniquely defined. But the
argument is only defined up to the addition of an integer multiple of 2π, so log(z) is only defined
up to the addition of an integer multiple of 2πi. As for the argument arg(z), we are sometimes
content with this state of affairs, and sometimes we ask arg(z) to take its principal value in (−π, π],
in which case log(z) is a well defined function that extends the usual logarithm. Unfortunately it is
discontinuous across the negative real axis {x < 0} ⊂ C, and we sometimes make a branch cut by
removing the half-line {x ≤ 0} ⊂ C. As soon as we can view the logarithm as a function, it can

1even smooth, i.e. infinity real differentiable
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3.4 Complex integration

be seen to be holomorphic. You could check that with bare hands now, e.g. by verifying that the
Cauchy-Riemann equations hold, but we will put the issue aside because it will come for free later
on.

The complex logarithm inherits many of the useful properties of the real logarithm. For example, it is
the inverse of the exponential function in the sense that

elog z = elog |z|+i arg(z) = |z|ei arg(z) = z, (3.3.2)

and
log(ez) = log |ez|+ i arg(ez)

= log ex + i arg(eiy)

= x+ iy

= z,

(3.3.3)

where the latter computation is carried out modulo 2πi.

By (3.3.1) we have the familiar identity

log(zw) = log |zw|+ i arg(zw) = log |z|+ log |w|+ i(arg(z) + arg(w))

= log z + logw,
(3.3.4)

again modulo 2πi. Beware that identities that are claimed modulo 2πi should not be expected to work
if we take the principal values of the functions log or arg.

The function log(z) allows us to define what it means to raise a complex number to a complex power,
albeit with complications arising from log(z) only being defined up to a multiple of 2πi. We will
revisit this later.

3.4 Complex integration

VIDEO: Complex integration

You have probably seen that to integrate a suitable (e.g. continuous) function f : [a, b] → C, we
define ∫ b

a

f(t)dt :=

∫ b

a

ℜ[f(t)]dt+ i

∫ b

a

ℑ[f(t)]dt. (3.4.1)

A basic property is that ∣∣∣∣ ∫ b

a

f(t)dt

∣∣∣∣ ≤ ∫ b

a

|f(t)|dt, (3.4.2)

which follows by setting ∫ b

a

f(t)dt = Reiθ,
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3.4 Complex integration

and computing ∣∣∣∣ ∫ b

a

f(t)dt

∣∣∣∣ = R =

∫ b

a

ℜ[e−iθf(t)]dt ≤
∫ b

a

|f(t)|dt.

The definition in (3.4.1) allows us to define what it means to integrate a suitable function f : Ω → C,
where Ω ⊂ C is open, along some ‘curve’ within Ω.

Definition 3.7. We say that γ : [a, b] → C is a C1 curve if not only is it continuous on [a, b] but the
derivative γ′ exists on (a, b) and extends to a continuous function γ′ : [a, b] → C.

Note that our convention is generally to use the word path when γ : [a, b] → C is merely continuous,
and use the word curve when γ is more regular.

This definition allows us to make sense of a one-sided derivative of γ at both endpoints a and b.

Definition 3.8. Given a continuous function f : Ω → C, and a C1 curve γ : [a, b] → Ω, we define∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

Definition 3.8 does not require the full strength of f being continuous, but this is a simple way of
stopping us from encountering integrals of nonintegrable functions, and will be fine for our purposes.

One can check that if you take a different parametrisation of γ, e.g. you take a new C1 curve γ̃ :
[ã, b̃] → Ω such that γ̃(t) = γ(ϕ(t)) for some C1 bijection ϕ : [ã, b̃] → [a, b] with2 ϕ′ : [ã, b̃] → R
positive then ∫

γ

f(z)dz =

∫
γ̃

f(z)dz.

If we reverse the parametrisation by asking for ϕ′ < 0, i.e. for the bijection ϕ to be decreasing, then
we have ∫

γ

f(z)dz = −
∫
γ̃

f(z)dz.

Later we will often need that if |f(z)| ≤M then from Definition 3.8 and (3.4.2) we have∣∣∣∣ ∫
γ

f(z)dz

∣∣∣∣ ≤M

∫ b

a

|γ′(t)|dt =ML(γ), (3.4.3)

where

L(γ) :=

∫ b

a

|γ′(t)|dt (3.4.4)

is the length of the image of γ, which is also invariant under reparametrisations of γ.

The definitions and observations above extend in an obvious way to curves γ that can have some
corners in the following sense:

2as before, ϕ′ is defined initially on (ã, b̃) and is assumed to extend continuously to [ã, b̃]
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3.4 Complex integration

Definition 3.9. We say that γ : [a, b] → C is a piecewise C1 curve if it is continuous on [a, b] and
there exist finitely many intermediate points a = c0 < c1 < c2 < · · · cn = b such that the restriction
of γ to each interval [ci, ci+1] is a C1 curve.

An example would be a curve tracing out a rectangle or a triangle. For example, if T is a closed
triangle in C with vertices z1, z2, z3 ∈ C (distinct points that are not colinear) then we can define a
closed piecewise C1 curve γ : [0, 3] → C connecting the vertices, e.g. for t ∈ [0, 1] we can take
γ(t) = z1 + t(z2 − z1) connecting z1 to z2. For t ∈ [1, 2] we can take γ(t) = z2 + (t − 1)(z3 − z2)
connecting z2 to z3. For t ∈ [2, 3] we can take γ(t) = z3 + (t− 2)(z1 − z3) connecting z3 back to z1.

We can arrange that this path γ moves round the boundary in an anticlockwise direction by switching
two of the points zi to achieve this if necessary. The essential intuitive point is that this ensures that
as we move around the boundary, we have the triangle always on the left-hand side rather than the
right-hand side. Then we can write ∫

∂T

f(z)dz :=

∫
γ

f(z)dz.

As we have mentioned above, the exact parametrisation of ∂T is not important, but the direction we
travel determines the sign of the integral.

We can use similar notation for integration around the boundaries of regions other than triangles,
but we don’t try to make any general definitions. We only ever consider explicit situations in which
the boundary is sufficiently nice to be unambiguously parametrised by a piecewise C1 curve γ with
γ′(t) ̸= 0 away from the corners, i.e. for each t in any of the intervals (ci, ci+1), and then we integrate
around the boundary curve keeping the region itself on the left-hand side, as above. For example, for
a ∈ C and r > 0 we could consider the ball

Br(a) := {z ∈ C : |z − a| < r} (3.4.5)

and write ∫
∂Br(a)

f(z)dz :=

∫
γ

f(z)dz,

where γ : [0, 2π] → C is defined by γ(θ) = a+ reiθ. Alternatively, if

A := {z ∈ C : R1 < |z| < R2}

is an annulus, then we have two boundary components that are parametrised by curves γ1, γ2 :
[0, 2π] → C defined by γ2(θ) = R2e

iθ and γ1(θ) = R1e
−iθ, and we analogously define∫

∂A

f(z)dz :=

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

We also need notation for the integral along straight line intervals in the plane. If z1, z2 ∈ C, then we
write [z1, z2] for the straight line connecting z1 to z2. If we parametrise this line by γ : [0, 1] → C
defined by γ(t) = tz2 + (1− t)z1, then we write∫

[z1,z2]

f(z)dz :=

∫
γ

f(z)dz.
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3.5 Anti-derivatives, and a baby version of Cauchy’s theorem

Returning to consider the triangle T with vertices z1, z2, z3 ∈ C as above, we could then alternatively
write ∫

∂T

f(z)dz =

∫
[z1,z2]

f(z)dz +

∫
[z2,z3]

f(z)dz +

∫
[z3,z1]

f(z)dz.

3.5 Anti-derivatives, and a baby version of Cauchy’s theorem

VIDEO: Anti-derivatives; a baby version of Cauchy’s theorem

Around 2:30 I missed out the hypothesis that γ should be closed. See the lecture notes below.

Later, in Section 5, we will turn our attention to a theorem that is at the heart of complex analysis,
namely Cauchy’s theorem. Loosely speaking it will tell us that in certain situations when we integrate
holomorphic functions around closed curves we obtain zero. In this section we see a baby version of
this theory in which our holomorphic function f is the derivative of some other holomorphic function
F . In fact, in this result we only need assume that f : Ω → C is continuous rather than holomorphic,
provided it is the derivative of a holomorphic function F : Ω → C, although this will turn out to imply
that f is necessarily holomorphic anyway.

Lemma 3.10. Suppose Ω ⊂ C is open. Suppose further that f : Ω → C is continuous and F : Ω → C
is holomorphic with F ′(z) = f(z). If γ is a piecewise C1 closed curve in Ω. Then∫

γ

f(z)dz = 0.

This lemma follows immediately from the following type of fundamental theorem of calculus.

Lemma 3.11. Suppose that F : Ω → C is holomorphic, with F ′ continuous. Suppose further that
γ : [a, b] → Ω is a piecewise C1 curve. Then∫

γ

F ′(z) dz = F (γ(b))− F (γ(a)). (3.5.1)

In particular, if γ is a closed curve (i.e. γ(b) = γ(a)) then we have
∫
γ
F ′(z) dz = 0.

Proof. By the definition of contour integration and the chain rule of Lemma 1.5, we have∫
γ

F ′(z) dz =

∫ b

a

F ′(γ(t)) γ′(t) dt =

∫ b

a

d

dt
F (γ(t)) dt = F (γ(b))− F (γ(a)).

Note that to be able to apply the usual fundamental theorem of calculus in the last equality, we
need some regularity on the integrand such as continuity, which is why we are assuming that F ′ is
continuous.
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3.5 Anti-derivatives, and a baby version of Cauchy’s theorem

The result assumes that the derivative F ′ of the holomorphic function F is continuous. Later we will
see that this is always true, but we can’t assume that now or our arguments will be circular.

Corollary 3.12. Suppose n ∈ Z does not equal −1. Then for γ : [a, b] → C \ {0} any piecewise C1

closed curve, we have ∫
γ

zndz = 0.

Proof. If we define F (z) := zn+1/(n + 1), then F ′(z) = zn, so the result follows from Lemma
3.10.

This corollary fails in a very important way if n = −1! In Q. 3.8 you will compute:

Example 3.13. For r > 0 and k ∈ Z let γ : [0, 2π] → C be the closed C1 curve γ(θ) = reikθ that
travels anticlockwise k times around the circle of radius r. Then∫

γ

dz

z
= 2πi k.

As we will learn in Section 4, what is important about γ here is not that it traces out a circle k times
but that it winds around the origin k times. Our first task in that section will be to make the idea of
winding around precise.
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3.6 Exercises

3.1. Suppose we have a power series
∑∞

n=0 anz
n with radius of convergence R1 > 0, and a second

power series
∑∞

n=0 bnz
n with radius of convergence R2 ≥ R1. Suppose we are told that these

power series give the same function on the ball BR1(0) where they are both converging. Prove
that an = bn for every n ∈ N0 := {0, 1, 2, . . .}, i.e., the power series and their radii of conver-
gence agree.

3.2. Write the function z 7→ 1
1−z

as a power series
∑∞

k=0 akz
k and give its radius of convergence.

3.3. By using the previous question and a theorem from Section 3.1, write down the power series of
the function z 7→ 1

(1−z)2
and its radius of convergence.

We will use this exercise when we take a closer look at the Koebe function.

3.4. Suppose w ∈ C \ {0}. Write the function z 7→ 1
w−z

as a power series
∑∞

k=0 akz
k and give its

radius of convergence.

We will use this fact when we review the proof of Taylor’s theorem.

3.5. Suppose that n ∈ N, and that the power series
∑∞

k=n akz
k, which omits the first n terms of a

general power series, has radius of convergence R > 0 and thus defines a holomorphic function
f : BR(0) → C. Prove that there exists a holomorphic function g : BR(0) → C such that

f(z) = zng(z) for all z ∈ BR(0),

and that g can be written as a power series with radius of convergence R.

We’ll use this fact when we study the zeros of holomorphic functions.

3.6. Consider the function f : C \ {0} → C defined by

f(z) =
sin z

z
.

Prove that we can extend f to a function on the whole of C (by defining f(0) to be a suitable
value in C) that is entire, i.e. holomorphic on the whole of C.

The ‘singularity’ of f at 0 in this example will be known as a ‘removable singularity’.

3.7. (a) For R > 0, Compute
1

2i

∫
∂BR(0)

z̄ dz,

and show that it agrees with the area of the ball BR(0).

(b) For R := {z ∈ C : ℜ(z) ∈ [0, a],ℑ(z) ∈ [0, b]}, a rectangle of side-lengths a, b > 0,
compute

1

2i

∫
∂R
z̄ dz,

and show that it agrees with the area of R.

This is not a fluke. We are seeing a couple of instances of a general fact that could be derived
from an appropriate form of Stokes’ theorem.



3.6 Exercises

3.8. For r > 0 and k ∈ Z let γ : [0, 2π] → C be the closed C1 curve γ(θ) = reikθ that travels
anticlockwise k times around the circle of radius r. Prove that∫

γ

dz

z
= 2πi k.
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4 Winding numbers

4.1 Winding numbers of continuous closed paths

VIDEO: Winding numbers of continuous closed paths

See the lectures/video for an instant explanation-by-pictures of what the winding number is!

In Section 3.3 we have discussed the function arg(z), and the issue that it is only defined modulo an
integer multiple of 2π. The following lemma will tell us that if we decide on a choice of arg(z) at one
point z, and then move along a continuous path/curve that stays away from 0, then this determines a
unique continuously varying choice of the argument along this path.

Lemma 4.1 (Lifting lemma). Suppose γ : [a, b] → C \ {0} is continuous, and fix θ0 ∈ R such that
γ(a) = |γ(a)|eiθ0 . Then there exists a unique continuous function θ : [a, b] → R such that θ(a) = θ0
and γ(t) = |γ(t)|eiθ(t) for all t ∈ [a, b].

For example, for a curve γ : [0, 2π] → C given by γ(t) = eit, if we choose θ0 = 0 rather than any
other value in 2πZ then θ(t) = t. In particular, even though the start and end points are the same, the
argument differs by 2π.

Those of you who are studying topology may learn one way to prove this lemma. There is an obvious
‘covering map’ R 7→ R/(2πZ) given by θ 7→ θ + 2πZ, and we are taking a lift of the function
arg ◦ γ : [a, b] → R/(2πZ).

For those who are not studying topology, here is a self-contained proof.

The lectures/video could be useful in order to understand this proof!

Proof of Lemma 4.1. First observe that if γ avoids a slit {−reiθ0 : r ≥ 0} on the opposite side of the
starting point, then the existence of θ(t) is clear: In this case we can make a global continuous choice
of arg on the slit plane by asking that it takes values within the interval (θ0 − π, θ0 + π), and can then
define θ(t) to be arg(γ(t)).

In the general case, we are free to replace γ(t) by the curve γ̃(t) := γ(t)/|γ(t)| without changing the
argument. Since γ̃ is a continuous function from a closed interval, it is uniformly continuous, and by
dividing up [a, b] into a large enough number of equal intervals, we can be sure that γ̃ does not move
too far when restricted to each of these sub-intervals. More precisely, by taking n ∈ N large enough,
we can be sure that for each k ∈ {0, 1, . . . , n− 1} and each t ∈ [ck, ck+1], where ck := a+ k

n
(b− a),

we have |γ̃(t)− γ̃(ck)| < 1.

The idea then is to do the lifting on each of these sub-intervals in turn. Indeed, the restriction of γ̃
to [c0, c1] must avoid a slit {−reiθ0 : r ≥ 0} on the opposite side of the starting point, so by the
comment at the start of the proof we can find our function θ(t) at least for t ∈ [c0, c1], with θ(c0) = θ0.
At this point we can use θ(c1) as a new starting argument analogous to θ0, and do our lifting on the
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4.1 Winding numbers of continuous closed paths

next interval [c1, c2], where γ̃(t) avoids the new opposite slit {−reiθ(c1) : r ≥ 0}. This extends
θ(t) to the interval [c0, c2]. By repeating this process a total of n times, we obtain a lift to the whole
interval [c0, cn−1] = [a, b].

To establish uniqueness of θ(t), suppose we have a second continuous lift θ̂(t) also with θ̂(a) = θ0.
Then t 7→ θ(t)− θ̂(t) is a continuous function that vanishes at t = a, and takes values in 2πZ because
both θ(t) and θ̂(t) represent the argument, modulo 2π. Thus θ(t) − θ̂(t) = 0 for all t ∈ [a, b], as
required.

Lemma 4.1 allows us to unambiguously define the total change in argument as we move all the way
along a continuous path.

Definition 4.2. Suppose γ : [a, b] → C \ {0} is continuous, and let θ : [a, b] → R be a function
arising in Lemma 4.1. We define

∡(γ) := θ(b)− θ(a).

The function θ was only defined up to a constant multiple of 2π that was determined by θ0. However,
when we subtract θ(a) from θ(b) this unknown multiple of 2π will disappear, making ∡(γ) well-
defined.

Definition 4.3. Suppose γ : [a, b] → C \ {0} is a closed continuous path. Then we define the index
or winding number of γ around 0 to be

I(γ, 0) :=
1

2π
∡(γ) ∈ Z.

More generally, if w ∈ C and γ : [a, b] → C \ {w} is a closed continuous path then we define the
index or winding number of γ around w to be

I(γ, w) :=
1

2π
∡(γw),

where γw : [a, b] → C \ {0} is the path γ translated to send w to the origin, i.e. γw(t) := γ(t)− w.

Example 4.4. For n ∈ Z, consider the curve γ : [0, 2π] → C defined by γ(θ) = reinθ, for some
r > 0, which winds around the origin n times in an anticlockwise direction. Then

I(γ, 0) = n.

Remark 4.5. Suppose that γ : [a, b] → C \ {0} is a closed continuous path taking values within a
region on which we can make a global continuous choice of arg(z). For example, for some α ∈ R,
γ might map into the slit plane C \ {−reiα : r ≥ 0}, in which case we could decide to insist that
arg(z) ∈ (α−π, α+π). Then one possibility for the function θ(t) of Lemma 4.1 would be arg(γ(t)),
and hence θ(a) = arg(γ(a)) = arg(γ(b)) = θ(b) and we deduce that I(γ, 0) = 0. The branch cut
{−reiα : r ≥ 0} prevents γ from winding around the origin. By translation of this picture we see
that if γ : [a, b] → C is a closed continuous path that avoids a radial line from some point w ∈ C out
to infinity then I(γ, w) = 0.
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4.2 Nearby closed paths have the same winding number

4.2 Nearby closed paths have the same winding number

VIDEO: Nearby closed paths have the same winding number

In this section we prove that if we have a closed path γ : [a, b] → C \ {0}, then a small-enough
perturbation of γ will wind round 0 the same number of times as γ itself.

In the lectures/video I will attempt to make this completely self evident!

However, a little care is required. If γ goes very close to 0 then we must ensure that we perturb very
little so the path does not jump to the other side of 0.

Lemma 4.6 (Dog walking lemma). Suppose γ : [a, b] → C \ {0} and γ̃ : [a, b] → C \ {0} are
continuous closed paths, with |γ(t)− γ̃(t)| < |γ(t)| for every t ∈ [a, b]. Then

I(γ, 0) = I(γ̃, 0).

The dog-walking analogy is as follows. Picture γ as your path, and γ̃ as your dog’s path. There is
a tree at the origin, but we are assuming from the outset that your paths lie in C \ {0} so neither of
you hit the tree. The hypothesis says that the length of your flexi-lead3, |γ(t) − γ̃(t)|, is always kept
below the distance |γ(t)| from you to the tree. Then both you and the dog go round the tree the same
number of times. It’s pretty obvious at an intuitive level, but the slickest proof may not be instantly
clear.

Proof. Let θ(t) and θ̃(t) be lifts of the arguments of γ(t) and γ̃(t), respectively, as given by Lemma
4.1. Define a continuous function α : [a, b] → R by α(t) := θ̃(t) − θ(t). If we consider a new
continuous closed path σ : [a, b] → C \ {0} defined by

σ(t) :=
γ̃(t)

γ(t)

then σ(t) = |σ(t)|eiα(t), so α(t) is a lift of the argument of σ(t). By definition of winding number, we
have

I(γ̃, 0)− I(γ, 0) =
1

2π
[θ̃(b)− θ̃(a)]− 1

2π
[θ(b)− θ(a)]

=
1

2π
(α(b)− α(a))

= I(σ, 0),

(4.2.1)

so we are reduced to proving that I(σ, 0) = 0. But

|1− σ(t)| =
∣∣∣∣γ(t)− γ̃(t)

γ(t)

∣∣∣∣ < 1

by hypothesis, and so σ(t) remains in a ball B1(1) of radius 1 centred at the point 1 ∈ C. Therefore
I(σ, 0) = 0 by Remark 4.5.

3i.e. your variable-length dog leash
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4.3 Winding number under homotopies

Given our definition of the winding number I(γ, w) as the number of times a curve γ winds around a
point w, it is intuitively obvious that it will be constant as we vary w continuously without touching
the image of γ. A precise version of this statement arises as a special case of Lemma 4.6.

Lemma 4.7. Suppose γ : [a, b] → C is a continuous closed path. Then on each connected component
of C \ γ([a, b]), the function w 7→ I(γ, w) is constant.

Remark 4.8. Note that as the continuous image of a compact set, we know that γ([a, b]) is compact,
and therefore (being a subset of C) it is closed. We deduce that C \ γ([a, b]) is open.

Proof. By Q. 1.10, it suffices to prove that each point in C \ γ([a, b]) has a neighbourhood in which
I(γ, ·) is constant. By translation, it suffices to assume that 0 is not in the image of γ, and hence
also some nonempty open ball Bε(0) does not intersect the image of γ, and to show that I(γ, w) is
constant as we vary w within Bε(0). For a given such w we can define a new path γ̃ : [a, b] →
C \ {0} by γ̃(t) = γ(t) − w, and by definition we have I(γ, w) = I(γ̃, 0). By construction we have
|γ(t)− γ̃(t)| = |w| < ε ≤ |γ(t)| for every t ∈ [a, b], and so Lemma 4.6 applies giving

I(γ, 0) = I(γ̃, 0) = I(γ, w),

as required.

Remark 4.9. The previous proof used a claim that because 0 is not in the image of γ, a whole ball
Bε(0) is also not in the image of γ. A more general fact is that given a continuous map h : X →
C \ {0} from a compact topological space X , there exists ε > 0 such that the image of h omits not
just 0 but also the entire ball Bε(0). To see this, note that |h| is a continuous function on a compact
space. It therefore achieves its infimum ε ≥ 0, which must then be positive, rather than zero, since
the image omits 0.

4.3 Winding number under homotopies

VIDEO: Winding number under homotopies

During the recording of the video I realised that my notation γ1, γ2 would be better as γ0, γ1. I
changed it below. It is now more logical in these notes, but slightly different to the video.

We saw in the previous section that if we move a path a little then its winding number will not
change. If now we consider a homotopy4 of closed paths then this can be broken up into a possibly
large number of small adjustments to the path, none of which will change the winding number by
the previous section. Homotopic closed paths will then, under reasonable conditions, have the same
winding number.

Theorem 4.10. Let w ∈ C. If γ0, γ1 : [a, b] → C \ {w} are homotopic continuous closed paths,
then I(γ0, w) = I(γ1, w). In particular, if γ : [a, b] → C \ {w} is a continuous closed path that is
homotopic to a constant path, then I(γ, w) = 0.

4recall Definition 2.30
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4.4 The winding number as an integral

It may be worth stressing that the convention is that the homotopy must remain within the image,
which in this case is C \ {w}.

Before proving this theorem, let’s notice the following consequence that is immediate from the defin-
ition of simply connected, i.e. Definition 2.32.

Corollary 4.11. If an open set Ω ⊂ C is simply connected then for every w ∈ C \ Ω and every
continuous closed path γ : [a, b] → Ω, we have I(γ, w) = 0.

In the lectures/video we will draw some pictures.

Proof of Theorem 4.10. By translation of w and the paths γ0, γ1, we may assume that w = 0.

The fact that γ0 and γ1 are homotopic continuous closed paths means that there exists a continuous
map h : [0, 1]× [a, b] → C \ {0} such that

h(0, t) = γ0(t) and h(1, t) = γ1(t) for all t ∈ [a, b], (4.3.1)

i.e. the homotopy starts at γ0 and ends at γ1, and such that

h(s, a) = z0, and h(s, b) = z0 for all s ∈ [0, 1], (4.3.2)

where z0 := γ0(a) = γ1(a) = γ0(b) = γ1(b) is the fixed end point. In particular, for each s ∈ [0, 1],
we have a continuous closed curve γs : [a, b] → C \ {0} defined by γs(t) := h(s, t). The theorem
will be proved if we can show that the winding number I(γs, 0) is the same for each s ∈ [0, 1].

By Remark 4.9, and the compactness of [0, 1] × [a, b], not only does h omit 0, it also omits an entire
open ball Bε(0) for some ε > 0.

Because h is continuous on its compact domain, it is also uniformly continuous. In particular, we can
pick δ > 0 so that whenever t ∈ [a, b] and s1, s2 ∈ [0, 1] with |s1 − s2| < δ, we must have

|h(s1, t)− h(s2, t)| < ε,

and therefore
|γs1(t)− γs2(t)| = |h(s1, t)− h(s2, t)| < ε ≤ |γs1(t)|.

By Lemma 4.6, we then have I(γs1 , 0) = I(γs2 , 0) for our arbitrary s1, s2 ∈ [0, 1] with |s1 − s2| < δ.
This implies that s 7→ I(γs, 0) is locally constant, and then constant for all s ∈ [0, 1].

4.4 The winding number as an integral

VIDEO: The winding number as an integral

If we have a closed path that is not just continuous but also piecewise C1, then we can characterise the
winding number as an integral:
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4.4 The winding number as an integral

Lemma 4.12. If w ∈ C and γ : [a, b] → C \ {w} is a closed piecewise C1 curve, then

I(γ, w) =
1

2πi

∫
γ

dz

z − w
.

This expression for the winding number is often used as the definition. It is often easier to use in
rigorous proofs, but the definition we gave is more immediately visual, more general, and is better
adapted to considering homotopies.

In Example 3.13 and Q. 3.8 we showed that for r > 0, n ∈ Z, and γ : [0, 2π] → C defined by
γ(θ) = reinθ, which winds around the origin n times in an anticlockwise direction, we have

1

2πi

∫
γ

dz

z
= n.

Meanwhile, in Example 4.4 we found that I(γ, 0) = n in this case. Thus the formula claimed in
Lemma 4.12 for I(γ, 0) at least works in this case.

Proof of Lemma 4.12. By translation, we may assume that w = 0. We give the proof assuming that γ
is C1. The modifications to handle piecewise C1 curves are straightforward. We must control∫

γ

dz

z
=

∫ b

a

γ′(t)

γ(t)
dt.

Taking any function θ(t) from the Lifting lemma 4.1, so γ(t) = |γ(t)|eiθ(t), we notice that because γ
is C1 and keeps away from 0, the function θ(t) is also C1 and we can compute

γ′(t) = eiθ(t)
d

dt
|γ(t)|+ |γ(t)|iθ′(t)eiθ(t),

and so
γ′(t)

γ(t)
=

d

dt
log |γ(t)|+ iθ′(t).

Integrating gives∫
γ

dz

z
=

∫ b

a

[
d

dt
log |γ(t)|+ iθ′(t)

]
dt = 0 + i[θ(b)− θ(a)] = i∡(γ) = 2πiI(γ, 0)

because γ is closed.

Remark 4.13. Now that we are considering piecewise C1 curves γ rather than just continuous paths,
one could give an alternative proof of Lemma 4.7, which states that the function w 7→ I(γ, w) is
constant on each connected component of C \ γ([a, b]). Once one has verified real differentiability of
this function, and justified differentiating under the integral sign, one can compute

∂

∂w̄
I(γ, w) =

1

2πi

∫
γ

∂

∂w̄

(
1

z − w

)
dz = 0,
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4.4 The winding number as an integral

to establish that I(γ, ·) is holomorphic, and then

∂

∂w
I(γ, w) =

1

2πi

∫
γ

∂

∂w

(
1

z − w

)
dz =

1

2πi

∫
γ

1

(z − w)2
dz = 0

by Corollary 3.12, to deduce that the derivative of I(γ, ·) is zero. By Q. 1.11 we deduce that I(γ, ·)
is constant on each connected component of C \ γ([a, b]). Alternatively, we could appeal to the
fact that I(γ, w) takes discrete values, in which case we only need to use Lemma 4.12 to show that
w 7→ I(γ, w) is continuous.
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4.5 Exercises

4.1. Given a continuous path γ : [a, b] → C\{0}, write −γ for the continuous path [a, b] 7→ C\{0}
defined by t 7→ γ(a + b − t), which reverses the direction of the parametrisation (and not for
the reflection of γ through the origin, i.e., not for t 7→ −γ(t)).

(a) Verify that ∡(−γ) = −∡(γ).

(b) Now suppose additionally that γ is closed. What is I(−γ, w) in terms of I(γ, w)?

4.2. Suppose that Ω ⊂ C contains the closure of the ball Br(a) of radius r > 0 centred at a ∈ Ω.
Prove that for all z0 ∈ Br(a) we have

I(∂Br(a), z0) = 1

by showing that we may as well take z0 = a and computing.

Recall that ∂Br(a) refers to a curve γ passing once around ∂Br(a) in an anticlockwise direc-
tion.

4.3. Prove that if γ : [a, b] → C is a closed continuous path then the set of points w ∈ C \ γ([a, b])
for which I(γ, w) ̸= 0 is bounded.

Remark: You might like to think of an alternative proof in the special case that γ is a piecewise
C1 curve, by using the integral formulation of winding number.

4.4. In Q. 3.4, hopefully you wrote (for w ∈ C \ {0}) the function z 7→ 1
w−z

as a power series∑∞
k=0w

−k−1zk, valid for |z| < |w|. By replacing z by 1/z and setting w = 1/z0, where
z0 ∈ Br(0) for some r > 0, obtain an expansion for 1

z−z0
in terms of negative powers of z, that

is valid for |z| > |z0| and converges uniformly for z in ∂Br. By integrating around ∂Br(0),
prove that

I(∂Br(0), z0) = 1

thus reproving Q. 4.2.

The expansion considered here is an example of a Laurent series, as discussed in Section 8.

4.5. Use winding numbers to prove the intuitively obvious statement that an annulus A := {z ∈ C :
a < |z| < b}, for 0 ≤ a < b, is not simply connected.



5 Cauchy’s Theorem

Baron Augustin-Louis Cauchy (1789 - 1857).

5.1 Preamble

VIDEO: Cauchy’s theorem: Analysis 3 reminder

This section is about the iconic theorem(s) of Cauchy from which a spectacular amount of wonderful
theory gushes forth. The following version needs the notion of simply connected from Definition
2.32.

Theorem 5.1 (Cauchy’s theorem on simply connected domains). Suppose Ω ⊂ C is open and simply
connected. Suppose further that f : Ω → C is holomorphic and γ is a piecewise C1 closed curve in
Ω. Then ∫

γ

f(z)dz = 0.

Cauchy’s theorem has a huge number of applications. For example, it eventually implies that a func-
tion f : Ω → C that is holomorphic is necessarily infinitely differentiable. Amazing. This is nothing
like what happens for real differentiable functions. Just think of the function f : R → R that is zero
for x < 0 and equal to x2 for x ≥ 0.

If you make additional hypotheses on γ, and add an additional hypothesis on f that its derivative is
continuous, then there is a relatively simple proof of Theorem 5.1 using Green’s theorem. This is
how Cauchy originally viewed the result. It will turn out that the derivative of f is automatically
continuous since a holomorphic f will be infinitely differentiable, but we will need Cauchy’s theorem
on star-shaped domains along the way to proving this!

In contrast, we will adopt a fully rigorous approach. In Theorem 5.7 we will prove the result above
in the special case of so-called star-shaped domains. In due course (Theorem 9.3) we will also see a
much more general form of Cauchy’s theorem that includes Theorem 5.1 as a special case.

Before doing that, we recall the following special case of Example 3.13 and Q. 3.8, which shows that
Cauchy’s theorem fails on C \ {0}, so the requirement that Ω is simply connected cannot simply be
dropped.

Example 5.2. Consider the holomorphic function f(z) = 1
z

on Ω := C\{0}, and for r > 0 let
γ : [0, 2π] → C be the closed C1 curve γ(θ) = reiθ that travels anticlockwise around the circle of
radius r. Then ∫

γ

f(z)dz = 2πi.
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5.2 Goursat’s theorem - Cauchy’s theorem on triangles

Although you have already done a more complicated computation in Q. 3.8, let’s redo it in this special
case. Note that f(γ(θ)) = f(reiθ) = r−1e−iθ, and γ′(θ) = ireiθ, and so∫

γ

f(z)dz =

∫ 2π

0

r−1e−iθireiθdθ = i

∫ 2π

0

dθ = 2πi.

5.2 Goursat’s theorem - Cauchy’s theorem on triangles

VIDEO: Goursat’s theorem: Cauchy’s theorem on triangles

Édouard Jean-Baptiste Goursat (1858 - 1936).

A first situation in which one rigorously proves Cauchy’s theorem for general holomorphic f is when
one heavily restricts the curves γ one allows and integrates around the boundary of a triangle. This
will then later be used as a tool in order to prove more general results such as Theorem 5.1. This
special case is named after Goursat, who came long after Cauchy.

Theorem 5.3 (Goursat’s theorem). Suppose Ω ⊂ C is open and contains a closed triangle T . Suppose
further that f : Ω → C is holomorphic. Then∫

∂T

f(z)dz = 0.

Recall that the notation
∫
∂T

was introduced in Section 3.4.

The proof will be given in the lecture/video with pictures, which will make it far easier to understand!

Proof. The triangle T can be divided into four congruent triangles T0, T1, T2 and T3. Each vertex
of these smaller triangles is either a vertex of T , or a midpoint of one of its sides. Keeping in mind
cancellation along the inner edges, we can expand∫

∂T

f(z)dz =
3∑

i=0

∫
∂Ti

f(z)dz,

and the triangle inequality then tells us that∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ ≤ 3∑
i=0

∣∣∣∣∫
∂Ti

f(z)dz

∣∣∣∣ .
Thus we can pick one of the four smaller triangles T0, T1, T2 and T3, denoted T 1 (now with a super-
script), such that ∣∣∣∣∫

∂T

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T 1

f(z)dz

∣∣∣∣ .
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5.3 Goursat’s conclusion gives us an anti-derivative

Now we can repeat this whole procedure starting with T 1 instead of T . We obtain an even smaller
triangle T 2 ⊂ T 1 with the property that∣∣∣∣∫

∂T 1

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂T 2

f(z)dz

∣∣∣∣ .
Iterating gives a nested sequence T n of triangles whose diameters and boundary lengths decay geo-
metrically in that diam(T n) = 2−n diam(T ) and L(∂T n) = 2−nL(∂T ), while∣∣∣∣∫

∂T

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Tn

f(z)dz

∣∣∣∣ . (5.2.1)

Now pick, for each n ∈ N, a point zn ∈ T n. Because the triangles are nested, with diameter conver-
ging to zero, zn is a Cauchy sequence and thus has a limit z∞ ∈ T ⊂ Ω. Indeed, zn ∈ T n for every n.
By definition of the complex differentiability of f at z∞, for all ε > 0 there exists δ > 0 such that for
all z ∈ Bδ(z∞) we have

f(z) = f(z∞) + f ′(z∞)(z − z∞) +R(z),

where the remainder is controlled by |R(z)| ≤ ε|z − z∞|.

For sufficiently large n, we have T n ⊂ Bδ(z∞) because the diameter of T n is converging to zero, and
therefore∫

∂Tn

f(z)dz =

∫
∂Tn

[f(z∞) + f ′(z∞)(z − z∞) +R(z)] dz

=
(
f(z∞)− f ′(z∞)z∞

) ∫
∂Tn

dz + f ′(z∞)

∫
∂Tn

z dz +

∫
∂Tn

R(z)dz

=

∫
∂Tn

R(z)dz,

(5.2.2)

where we have used that that ∫
∂Tn

dz = 0 and
∫
∂Tn

z dz = 0

by Corollary 3.12. Therefore, by (3.4.3), we have∣∣∣∣∫
∂Tn

f(z)dz

∣∣∣∣ ≤ L(∂T n)ε sup
∂Tn

|z − z∞| ≤ 2−nL(∂T )ε diam(T n) ≤ 4−nεL(∂T ) diam(T ).

Combining with (5.2.1) gives ∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ ≤ εL(∂T ) diam(T ),

and because ε > 0 was arbitrary, this completes the proof.

5.3 Goursat’s conclusion gives us an anti-derivative
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5.3 Goursat’s conclusion gives us an anti-derivative

VIDEO: Goursat’s conclusion gives us an anti-derivative

Goursat’s theorem may seem a rather feeble special case of Cauchy’s theorem as stated in Theorem
5.1, and even more so of the generalised version of Cauchy’s theorem that we’ll see later. However,
it is the engine that makes the general theory work. The conclusion of Goursat’s theorem allows us
to construct anti-derivatives for continuous functions on sufficiently nice domains, as described in the
following definition.

Definition 5.4. An open set Ω ⊂ C is called a star-shaped domain if there exists z0 ∈ Ω such that for
all z ∈ Ω, the line segment [z0, z] connecting z0 to z also lies in Ω. We call such a point z0 a central
point.

We’ll draw some pictures of star-shaped domains in the lectures/video!

If Ω is convex then it is certainly a star-shaped domain, but we will need this more general class of
sets in practice in order to rigorously prove the so-called Cauchy integral formula.

Theorem 5.5 (The output of Goursat’s theorem implies the existence of an anti-derivative). Suppose
that Ω is a star-shaped domain, and f : Ω → C is a continuous function. Suppose that for every
closed triangle T ⊂ Ω we have ∫

∂T

f(z)dz = 0.

Then there exists a holomorphic function F : Ω → C such that F ′(z) = f(z). Indeed, if z0 is a
central point of the star-shaped domain then we can take F defined by

F (z) =

∫
[z0,z]

f(w)dw. (5.3.1)

Recall that we defined the integral on the right-hand side of (5.3.1) to be the integral of f over the C1

curve γ : [0, 1] → Ω given by γ(t) = z0 + t(z − z0).

Proof. Although the theorem defines F (z) at a general point z ∈ Ω, for the remainder of the proof
we fix z to be an arbitrary point in Ω at which we want to prove that F is complex differentiable, with
F ′(z) = f(z). Let r > 0 be sufficiently small so that Br(z) ⊂ Ω. For each h ∈ Br(0), the point
z+h, and indeed the whole segment [z, z+h], lies in Ω. Because Ω is star-shaped with respect to z0,
the entire closed triangle T with vertices z0, z and z + h must lie in Ω. By hypothesis,∫

∂T

f(w)dw = 0,

and hence
F (z + h)−

∫
[z,z+h]

f(w)dw − F (z) = 0.
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5.4 Cauchy’s theorem on star-shaped domains

Keeping in mind that∫
[z,z+h]

dw =

∫ 1

0

γ′(t)dt = γ(1)− γ(0) = (z + h)− z = h,

where γ(t) = z + t((z + h)− z) = z + th, we can use (3.4.3) to compute∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ = ∣∣∣∣1h
∫
[z,z+h]

(f(w)− f(z))dw

∣∣∣∣ ≤ max
w∈[z,z+h]

|f(w)− f(z)| → 0

as h→ 0 since f is continuous at z. Thus F is complex differentiable at z and F ′(z) = f(z)

5.4 Cauchy’s theorem on star-shaped domains

VIDEO: Cauchy’s theorem on star-shaped domains

Theorem 5.5 will be useful later in order to prove the so-called Morera theorem 6.9. However, for now
we are most interested in combining it with Goursat’s theorem 5.3, immediately giving the following.

Corollary 5.6. Suppose that Ω is a star-shaped domain, and f : Ω → C is a holomorphic function.
Then there exists a holomorphic function F : Ω → C such that F ′(z) = f(z).

If z0 is a central point of the star-shaped domain then we can take F defined by

F (z) =

∫
[z0,z]

f(w)dw.

This corollary will be useful later in order to construct so-called conjugate harmonic functions, but
for now we are most interested in combining it with Lemma 3.10, immediately yielding an accurate
proof of Cauchy’s theorem 5.1 in the special case that Ω is star-shaped.

Theorem 5.7 (Cauchy’s theorem on a star-shaped domain). Suppose that Ω is a star-shaped domain,
f : Ω → C is holomorphic and γ is a piecewise C1 closed curve in Ω. Then∫

γ

f(z)dz = 0.

At the risk of repetition, we emphasise that although this theorem will be valid for somewhat more
general Ω, e.g. simply connected, it will fail on completely general Ω as we know by considering
Ω = C \ {0} in Example 5.2.

At this point we’re itching to use Cauchy’s theorem on star-shaped domains to give a rigorous proof
of Cauchy’s integral formula, but let’s first record how it implies Cauchy’s theorem on annuli.
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5.5 Cauchy’s theorem on annuli

A1

Figure 3: Annulus AR1,R2 divided into quarters, and a star-shaped domain containing A1

5.5 Cauchy’s theorem on annuli

VIDEO: Cauchy’s theorem on annuli

The following form of Cauchy’s theorem will be used repeatedly while building the theory, although
it will eventually be subsumed into a far more general Theorem 9.3. Recall that integrals around
boundaries such as ∂A were discussed in Section 3.4.

Corollary 5.8. Suppose that 0 ≤ r1 < R1 < R2 < r2, and that f is a holomorphic function on the
annulus Ar1,r2 := {z ∈ C : r1 < |z| < r2}. Then writing A := {z ∈ C : R1 < |z| < R2}, we have∫

∂A

f(z)dz = 0, (5.5.1)

or equivalently that ∫
∂BR2

(0)

f(z)dz =

∫
∂BR1

(0)

f(z)dz. (5.5.2)

See the lecture/video for a proper explanation of the following proof, with pictures!

Proof. Let’s work out the idea in the case that r1 = 0. We can divide the annulus AR1,R2 up into four
quarters. We call their interiors A1, A2, A3, A4. See Figure 3. We can write∫

∂A

f(z)dz =
4∑

j=1

∫
∂Aj

f(z)dz, (5.5.3)

since the four ‘spokes’ (i.e. interior lines) are integrated over once in each direction on the right-hand
side, leaving only the integrals around the circles of radius R1 and R2 (in appropriate directions).
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5.6 Cauchy’s integral formula

Each of the quarters Aj is contained in a half disc (rotated at 45 degrees) where f is holomorphic, as
in Figure 3. Since each half-disc is star-shaped, we can apply Cauchy’s theorem 5.7 to deduce that
each of the four terms on the right-hand side of (5.5.3) are zero, as required to complete the proof in
the r1 = 0 case.

Note that A itself does not lie within a star-shaped domain on which f is holomorphic. That is why
we chopped it up into pieces Aj . Each of those does lie within a star-shaped domain (even a convex
domain) on which f is holomorphic.

If instead r1 > 0, essentially the same proof works, but we have to be more careful in working out
which star-shaped domains to take. You should convince yourself that for every annulus Ar1,r2 , when
we intersect with a narrow enough sector {z ∈ C : arg(z) ∈ (0, δ)}, we obtain a star-shaped domain.
The closer r2/r1 > 1 is to 1 (we’re assuming r1 ̸= 0) the smaller we will have to take δ. We then just
have to choose spokes separated by an angle less than δ.

I will explain this general case in the lectures/video.

5.6 Cauchy’s integral formula

VIDEO: Cauchy’s integral formula

We can use Cauchy’s theorem on star-shaped domains (Theorem 5.7) to prove the so-called Cauchy
integral formula. Later this will be used to prove Taylor’s theorem.

Theorem 5.9 (Cauchy integral formula on a disc). Suppose Ω ⊂ C is open and f : Ω → C is
holomorphic. Suppose that the closed disc/ball Br(a) of radius r > 0, centred at a ∈ Ω, lies within
Ω. Then for every z0 ∈ Br(a) we have

f(z0) =
1

2πi

∫
∂Br(a)

f(z)

z − z0
dz. (5.6.1)

Proof. For the given z0 ∈ Br(a), suppose δ > 0 is small enough to ensure that Bδ(z0) ⊂ Br(a). The
function f(z)−f(z0)

z−z0
is defined and holomorphic on Ω \ {z0}, and by Cauchy’s theorem for star-shaped

domains, Theorem 5.7, we have ∫
γ1

f(z)− f(z0)

z − z0
dz = 0,

where γ1 is as in Figure 4.

I will explain what star-shaped domain to take (and why it’s star-shaped) in the lectures/video if it’s
not clear to you. The point z0 is not allowed in this domain because the function being integrated is
not defined there! And removing z0 does break the star-shapedness of many of the domains you might
have wanted to consider.5

5Although we used the notation z0 for the central point of a star-shaped domain, the z0 here is something different!
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5.6 Cauchy’s integral formula

a

z0

γ1

a

z0

γ2

Figure 4: Curves γ1 and γ2 in two copies of Br(a)

We can repeat this for γ2, and add to give∫
∂Br(a)

f(z)− f(z0)

z − z0
dz =

∫
∂Bδ(z0)

f(z)− f(z0)

z − z0
dz. (5.6.2)

Note the cancellation of the integrals along the straight line portions.

Because limz→z0
f(z)−f(z0)

z−z0
= f ′(z0), and the length of ∂Bδ(z0) is 2πδ, we see that the right-hand side

of (5.6.2) converges to zero as δ ↓ 0, by (3.4.3). Therefore∫
∂Br(a)

f(z)

z − z0
dz =

∫
∂Br(a)

f(z0)

z − z0
dz = f(z0)2πiI(∂Br(a), z0) = f(z0)2πi,

by the integral characterisation of winding number given in Lemma 4.12, and the formula for the
winding number derived in Q. 4.2.
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5.7 Exercises

5.1. For given θ ∈ R, consider the slit domain

Ω := C \ {reiθ : r ≥ 0}.

Is Ω convex? Is it star-shaped?

5.2. Suppose Ω ⊂ C is a star-shaped open set and z0 is a central point for Ω. Prove that every
closed continuous path γ : [a, b] → Ω with γ(a) = γ(b) = z0 is homotopic to the constant path
γ̃ : [a, b] → Ω defined by γ̃(t) ≡ z0.

Show that a star-shaped domain is necessarily simply connected. In particular, convex subsets
of C are simply connected.

You need to homotop a general closed path in Ω to a constant path. In particular, this closed
path now needn’t start/end at z0. Although the statement of this question is important, the proof
could be left to those studying ‘Introduction to Topology.’ The idea is simple but it is a bit
tedious to write down.

5.3. In Theorem 5.9 you saw Cauchy’s integral formula on a disc. In this question you are asked to
adapt the proof to prove an analogous integral formula on a square. More precisely, prove the
following theorem:

Theorem 5.10. Suppose Ω ⊂ C is open and f : Ω → C is holomorphic. Suppose that Q ⊂ Ω
is a closed square, i.e. Q = {x + iy : x ∈ [x0, x0 + d], y ∈ [y0, y0 + d]} for some x0, y0 ∈ R
and d > 0. Then for every z0 lying in the interior of Q we have

f(z0) =
1

2πi

∫
∂Q

f(z)

z − z0
dz. (5.7.1)

This exercise gives you a chance to work through the proof of Cauchy’s integral formula, in-
cluding subtleties like how the star-shaped condition affects our choice of curves. But it will
also be useful when we prove the so-called homology version of Cauchy’s theorem. If you have
already fully understood the proof of the usual Cauchy integral formula then this exercise will
be an easy adaptation. In particular, no answer will be provided!

5.4. By integrating the function f(z) = e−z2 around a large piece of cake, i.e. the contour in Figure
5, prove that ∫ ∞

0

sin(x2)dx =

√
π

2
√
2
.

You may assume the standard integral
∫∞
−∞ e−x2

dx =
√
π. Compute also∫ ∞

0

cos(x2)dx.

Hint: The integral over the circular arc part of the contour will converge to zero as R → ∞.
I am happy if you simply assume that for the purposes of this question. If you are feeling



5.7 Exercises

π
4

R

Figure 5: A useful contour for Fresnel integrals

ambitious and want to prove that part also then you may find the following simple inequality
useful: If t ∈ [0, π/2] then sin t ≥ 2t/π. And similarly for cosine. Just draw the graphs to see
what is going on...

Integrals of sin(x2) and cos(x2) are called Fresnel integrals, and arise in the study of optics
and elsewhere. Later, the so-called Residue theorem 9.10 will give a much more sophisticated
technique for computing integrals.

5.5. Suppose u : B → R is a harmonic function on some ball B = Br(a) in C ≃ R2. That is,
u is C2 and ∆u ≡ 0. Prove that there exists a holomorphic function F : B → C such that
u = ℜ(F ).
The imaginary part ℑ(F ) is often called a conjugate harmonic function, and is unique up to
the addition of a constant.

Hint: To get an idea of where to go, suppose we manage to find holomorphic F = u + iv for
some real function v. Then 0 = Fz̄ = uz̄ + ivz̄, and conjugating gives ivz = uz. On the other
hand we have Fz = uz + ivz = 2uz. This suggests we should consider the function 2uz and try
to use Corollary 5.6.
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6 Taylor series and applications

6.1 Taylor series - main result

VIDEO: Taylor series - main result

Brook Taylor (1685 - 1731).

Cauchy’s integral formula allows one to write any holomorphic function as a power series.

Theorem 6.1 (Taylor’s theorem). Let Ω ⊂ C be open, and let f : Ω → C be holomorphic. Suppose
z0 ∈ Ω and r > 0 such that Br(z0) ⊂ Ω. Then for all z ∈ Br(z0) we have

f(z) =
∞∑
k=0

ak(z − z0)
k, (6.1.1)

where

ak =
1

2πi

∫
∂Br(z0)

f(w)

(w − z0)k+1
dw. (6.1.2)

We will give the (short) proof in the next section.

In contrast to this theorem, to be able to write a differentiable function from R to R as a power series
is very rare! Such functions are called real analytic. Most infinitely differentiable real functions fail
to have this property. For example,

f(x) =

{
exp(−1/x) x > 0

0 x ≤ 0

has all its derivatives at x = 0 equal to zero, and this is enough to force every term in any Taylor
series about x = 0 to vanish, as we will review in a moment. Yet the function is not zero in any
neighbourhood of x = 0.

Remark 6.2. By Cauchy’s theorem on annuli, Corollary 5.8, we could also reduce the radius of the
circle over which we are integrating in (6.1.2) to give

ak =
1

2πi

∫
∂Bs(z0)

f(w)

(w − z0)k+1
dw

for any s ∈ (0, r]. In particular, as we already know from Q. 3.1, the Taylor coefficients ak do not
depend on r.

Remark 6.3 (Holomorphic/analytic terminology). Taylor’s theorem tells us that if f : Ω → C is
holomorphic (i.e. complex differentiable at each point in Ω) then it is analytic (i.e. we can expand
it as a power series in some ball about each point z0 ∈ Ω). Conversely, if a function f : Ω → C
is analytic, then Theorem 3.2 from Section 3.1 tells us that f is holomorphic. For this reason, many
people use the terms holomorphic and analytic interchangeably. But for us, their equivalence is a
triumph of the theory.
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6.2 Taylor’s theorem - proof

A holomorphic function is only assumed to be differentiable at each point, and that derivative is not
assumed to be continuous. That is, the function is not even assumed to be C1. But now that we
know our holomorphic function is analytic, we can appeal to the theory of power series, in particular
Corollary 3.3, to deduce the following dramatic consequence.

Corollary 6.4. If f : Ω → C is a holomorphic function on an open set Ω ⊂ C then it is infinitely
complex differentiable.

In fact, Corollary 3.3 also gives us a formula f (n)(z0) = ann! for the nth derivative of a power series,
and combining with the formula for the Taylor coefficients in Theorem 6.1, we deduce (cf. Q. 6.5):

Corollary 6.5 (cf. Cauchy’s integral formula). If f : Ω → C is a holomorphic function on an open
set Ω ⊂ C, and Br(z0) ⊂ Ω for some z0 ∈ Ω and r > 0, then for each n ∈ N we have

f (n)(z0) =
n!

2πi

∫
∂Br(z0)

f(w)

(w − z0)n+1
dw.

This formula will be useful later to prove smooth local convergence of any sequence of holomorphic
functions that is known to converge locally uniformly (see Theorem 10.1).

6.2 Taylor’s theorem - proof

VIDEO: Taylor’s theorem - proof

In the lectures/video we will reduce to the case z0 = 0 first to make everything cleaner

Proof. Cauchy’s integral formula tells us that for all z ∈ Br(z0) we have

f(z) =
1

2πi

∫
∂Br(z0)

f(w)

(w − z)
dw. (6.2.1)

We can rewrite
1

w − z
=

1

w − z0

[
1

1− z−z0
w−z0

]
(6.2.2)

and using the assumption |z− z0| < r = |w− z0|, the part in square brackets in (6.2.2) can be written
as a geometric series

1

1− z−z0
w−z0

=
∞∑
k=0

(
z − z0
w − z0

)k

. (6.2.3)
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6.3 Basic consequences of Taylor’s theorem. Liouville’s theorem.

Combining (6.2.1), (6.2.2) and (6.2.3) gives

f(z) =
1

2πi

∫
∂Br(z0)

f(w)

(w − z0)

∞∑
k=0

(
z − z0
w − z0

)k

dw

=
1

2πi

∞∑
k=0

(∫
∂Br(z0)

f(w)

(w − z0)k+1
dw
)
(z − z0)

k

=
∞∑
k=0

ak(z − z0)
k.

(6.2.4)

The interchange of the summation and the integration is justified because the sum converges uniformly
in the integration variable w.

6.3 Basic consequences of Taylor’s theorem. Liouville’s theorem.

VIDEO: Basic consequences of Taylor’s theorem

We’ve already started describing applications of Taylor’s theorem, e.g. Corollary 6.4 tells us that a
holomorphic function is infinitely differentiable. It turns out that much of the subject is based, one
way or another, on Taylor’s theorem. In the remainder of Section 6 we focus on some of the other
basic applications.

Corollary 6.6. Suppose that f(z) =
∑∞

k=0 akz
k is holomorphic on BR(0), for some R > 0, and that

for all z ∈ BR(0) we have |f(z)| ≤M <∞. Then

|ak| ≤
M

Rk
(6.3.1)

for all k.

Proof. Although we are given f(z) already as a power series, by appealing to Taylor’s theorem 6.1
we obtain a formula for the coefficients ak. More precisely, for each r ∈ (0, R), Taylor’s theorem 6.1
applied on Br(0) gives f(z) as a power series, and by Q. 3.1 the coefficients ak in the statement of
the corollary must agree with the Taylor coefficients ak in Taylor’s theorem. According to (6.1.2) we
have

|ak| ≤
1

2π

∣∣∣∣ ∫
∂Br(0)

f(w)

wk+1
dw

∣∣∣∣ ≤ 1

2π
2πr

M

rk+1
=
M

rk
, (6.3.2)

by (3.4.3). Then let r ↑ R.

Corollary 6.7 (Liouville’s theorem). Any bounded entire function is constant.

Proof. By applying Taylor’s theorem 6.1 with z0 = 0 and arbitrarily large R (keeping in mind that
changing R does not change the Taylor coefficients) we can write our entire function f : C → C as a
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6.4 Morera’s theorem

Taylor series

f(z) =
∞∑
k=0

akz
k. (6.3.3)

We are assuming that f is bounded, i.e. |f(z)| ≤M for all z ∈ C, so by Corollary 6.6 we have

|ak| ≤
M

Rk
, (6.3.4)

for every k ∈ N and every R > 0. By taking R → ∞ we deduce that ak = 0 for each k ≥ 1.

Liouville’s theorem implies the following fundamental fact.

Corollary 6.8 (Fundamental theorem of Algebra). Every non-constant polynomial has at least one
zero in C.

Essentially the idea is that if a polynomial p(z) does not have a zero then one can show that 1/p is a
bounded entire function, and must therefore be constant by Liouville’s theorem, Corollary 6.7.

Proof. For some n ∈ N we can write our polynomial as p(z) = anz
n + an−1z

n−1 + · · · a1z+ a0 with
an ̸= 0. Suppose that p does not have a zero. Then 1/p(z) is an entire function. By rewriting∣∣∣∣p(z)zn

− an

∣∣∣∣ = ∣∣an−1z
−1 + · · · a1z1−n + a0z

−n
∣∣ ≤ n−1∑

k=0

|ak|.|z|k−n,

and observing that the right-hand side converges to zero as z → ∞, we can pick a large R > 0 so that
for all z ∈ C with |z| ≥ R the right-hand side is less than |an|/2, and thus∣∣∣∣p(z)zn

∣∣∣∣ ≥ |an| −
|an|
2

=
|an|
2
,

and so ∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 2

|an|
|z|−n ≤ 2

|an|
R−n.

We deduce that 1/p(z) is bounded over C\BR(0). But being a continuous function, it is also bounded
over the compact set BR(0). By Liouville’s theorem, the boundedness of 1/p(z) implies that it is
constant, giving a contradiction.

6.4 Morera’s theorem

VIDEO: Morera’s theorem

Giacinto Morera (1856 - 1909).

The following is an inverse to Goursat’s theorem.
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6.5 Local invertibility of holomorphic functions

Theorem 6.9 (Morera’s theorem). Suppose Ω ⊂ C is open and f : Ω → C is a continuous function.
Suppose that for all closed triangles T ⊂ Ω we have∫

∂T

f(z) dz = 0. (6.4.1)

Then f is holomorphic on Ω.

Note that initially we don’t know that f is differentiable. Simply the condition (6.4.1) implies that it
is infinitely differentiable! Amazing!

Remark 6.10. If you have studied some PDE theory then you might have seen some results that
are related to this. For example, a real-valued function u on some open set U ⊂ Rn such that for all
x ∈ U , u(x) agrees with the average of u over every ballBr(x) ⊂ U , must be harmonic. In both cases
we are assuming something not involving any derivatives, and deducing infinite differentiability.

Proof. We need to show that f is complex differentiable at an arbitrary point a ∈ Ω. Pick r > 0
sufficiently small so that Br(a) ⊂ Ω. By Theorem 5.5, we can construct a holomorphic function
F : Br(a) → C with F ′(z) = f(z) for all z ∈ Br(a). Because F is holomorphic, Corollary 6.4 tells
us that it is infinitely complex differentiable. In particular, f = F ′ is complex differentiable at a.

6.5 Local invertibility of holomorphic functions

VIDEO: Local invertibility of holomorphic functions

Now we have the extra regularity for holomorphic functions given by Corollary 6.4, we can locally
invert them where their derivative is nonzero.

Lemma 6.11. Suppose Ω ⊂ C is open and f : Ω → C is holomorphic with f ′(z0) ̸= 0 at some
z0 ∈ Ω. Then there exists a neighbourhood V0 ⊂ Ω of z0 and a neighbourhood V1 ⊂ C of f(z0) such
that the restriction of f to V0 is a biholomorphic map from V0 to V1.

Without the hypothesis that f ′(z0) ̸= 0 we could have some ridiculous example like f ≡ 0, or a
subtler example like f(z) = z2 with z0 = 0. The latter example here maps Br(0) twice onto Br2(0),
away from 0, so is certainly not invertible.

Proof. The essential point is that by virtue of Corollary 6.4 we now know that f is a C1 function
when viewed as a real-differentiable function. That is, we now know that the derivative at z varies
continuously in z. Moreover, the hypothesis f ′(z0) ̸= 0, together with the fact that f is holomorphic,
implies that the real derivative at z0 is invertible. (As discussed in Remark 1.3, it is just a rotation
and scaling by a positive factor.) Consequently we may now apply the Inverse Function Theorem to
deduce the existence of V0 and V1, and the invertibility of the restriction of f to V0. We also learn that
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6.5 Local invertibility of holomorphic functions

f−1 : V1 → V0 is C1. By shrinking the neighbourhoods V0 and V1 if necessary, we may assume that
f ′(z) ̸= 0 for all z ∈ V0, because f ′(z0) ̸= 0 and f ′ is continuous.

We need to show that the inverse of f is holomorphic, i.e. that the Cauchy-Riemann equation(s)
(f−1)z̄ = 0 are satisfied, and also that the derivative of the inverse does not vanish. The chain
rule (1.2.6) of Lemma 1.6 tells us that, because f : V0 → V1 is holomorphic, for any C1 function
g : V1 → V0 we have

(f ◦ g)z̄(z) = f ′(g(z))gz̄(z)

for all z ∈ V1. Applying this with g = f−1, we deduce that

0 = zz̄ = f ′(f−1(z))(f−1)z̄(z),

and hence (f−1)z̄ ≡ 0 because f ′ ̸= 0. Meanwhile, to prove that (f−1)′(z) ̸= 0 at any point z ∈ V1,
we apply now the chain rule (1.2.7), i.e. (f ◦ g)′(z) = f ′(g(z))g′(z), again with g = f−1, but this
time knowing that g is holomorphic, to deduce that

1 = (z)′(z) = f ′(f−1(z))(f−1)′(z).

In particular, because f ′ ̸= 0 throughout V1 we have

(f−1)′(z) =
1

f ′(f−1(z))
̸= 0,

for all z ∈ V1.

Remark 6.12. The eagle-eyed may spot that it was not really necessary to shrink the sets V0 and V1
in the proof above. For each z ∈ V0, the real derivative of f−1 at f(z) can be seen to be the inverse
of the real derivative of f at z. In particular, the real derivative of f at each z is invertible. If we had
any point z ∈ V0 with f ′(z) = 0 then the real derivative of f at z would be the linear map that sent all
vectors to zero, and in particular it would not be invertible.
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6.6 Exercises

We could have done the first few questions below formally a long time ago, e.g. in the exercises from
Section 1.3. But only now, thanks to Corollary 6.4, can we be sure that a holomorphic function f
admits enough derivatives to justify the calculations.

6.1. Suppose that Ω ⊂ C is open and f : Ω → C is holomorphic. Prove that the real and imaginary
parts of f are harmonic functions.

6.2. Suppose that Ω ⊂ C is open and f : Ω → C is holomorphic. Prove that ∆|f(z)|2 = 4|f ′(z)|2.

6.3. Suppose Ω ⊂ C and f : Ω → C \ {0} is holomorphic. Prove that log |f(z)| is harmonic.

6.4. (Important exercise.) Consider the function f : R → R defined by f(x) = 1
1+x2 . We can write

this as a Taylor series

f(x) =
∞∑
k=0

(−1)kx2k,

and despite f being infinitely differentiable on the whole of R, the power series only converges
for |x| < 1.

By considering f as the restriction to R of the function f : C\{±i} → C, given by f(z) = 1
1+z2

,
explain geometrically why the radius of convergence is precisely R = 1.

What would the radius of convergence be if we wrote f(x) as a power series
∑∞

k=0 ak(x− 1)k?

6.5. Verify the following slight modification of Theorem 6.1 in which we allow the ball BR(z0) to
go right up to the boundary of Ω.

Theorem 6.13 (Variant of Taylor’s theorem). Let Ω ⊂ C be open, and let f : Ω → C be
holomorphic. Suppose z0 ∈ Ω and R > 0 such that BR(z0) ⊂ Ω. Then for all z ∈ BR(z0) we
can write

f(z) =
∞∑
k=0

ak(z − z0)
k, (6.6.1)

where

ak =
1

2πi

∫
∂Br(z0)

f(w)

(w − z0)k+1
dw (6.6.2)

for all r ∈ (0, R).



7 Zeros of holomorphic functions

Taylor’s theorem is going to give us a detailed, and very useful, theory describing the structure of a
holomorphic function near points where it vanishes.

7.1 Zeros of holomorphic functions - basic structure

VIDEO: Zeros of holomorphic functions - basic structure

Consider the holomorphic function f : C → C defined by f(z) = zn, for some n ∈ N. This function
is zero precisely at z = 0. The order of the zero, as will be defined in a moment in general, will be n.

Definition 7.1. Let Ω ⊂ C be open and let f : Ω → C be a holomorphic function with f(z0) = 0 for
some z0 ∈ Ω. We define the order of the zero of f at z0 to be

ord(f, z0) :=

{
∞ if f (k)(z0) = 0 for all k ∈ N,
min{k ∈ N : f (k)(z0) ̸= 0} otherwise.

(7.1.1)

Example 7.2. If g : Ω → C is a holomorphic function for which g(z0) ̸= 0, and we define the
holomorphic function f(z) := (z−z0)ng(z), then the order of the zero of f at z0 is n. This is because
as we differentiate k < n times, using the product rule, each of the resulting terms will have at least
a factor (z − z0)

n−k within it, so will vanish at z0. But if we differentiate n times, and evaluate at z0,
then there will be one nonzero term n!g(z0).

As it turns out, Example 7.2 gives a full description of zeros of finite order:

Theorem 7.3. Suppose that Ω ⊂ C is open and f : Ω → C is a holomorphic function that has a zero
of finite order n ∈ N at z0 ∈ Ω. Then there exists a holomorphic function g : Ω → C such that

f(z) = (z − z0)
ng(z),

and g is nonzero in a neighbourhood of z0. In particular, each zero of finite order is an isolated point
of the set of zeros.

To clarify, if z0 is a zero of finite order, then saying it is isolated in the set of zeros is saying that there
is no other zero (of finite or infinite order) in some small neighbourhood of z0.

Proof. Starting with any r > 0 such that Br(z0) ⊂ Ω, we can use Taylor’s theorem 6.1 to write

f(z) =
∞∑
k=0

ak(z − z0)
k.
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7.2 The identity theorem

Now we have f as a power series, Corollary 3.3 tells us that ak =
f (k)(z0)

k!
, and because f has a zero of

order n at z0, we must then have ak = 0 for k < n, and an ̸= 0, and we can write, for all z ∈ Br(z0),

f(z) =
∞∑
k=n

ak(z − z0)
k = (z − z0)

n

∞∑
k=0

ak+n(z − z0)
k = (z − z0)

ng(z), (7.1.2)

where g(z) :=
∑∞

k=0 ak+n(z − z0)
k is defined on Br(z0), and g(z0) ̸= 0. Note that the power

series defining g must converge pointwise for each z ∈ Br(z0), by construction, and so its radius of
convergence must be at least r by Theorem 3.1. By Theorem 3.2, g is holomorphic on Br(z0). You
may recognise this argument from doing Q. 3.5.

We can extend g to the rest of Ω by setting g(z) = f(z)(z − z0)
−n, which agrees with what we

already have for g on Br(z0) \ {z0}, and is holomorphic elsewhere by the product rule. Because g is
continuous and g(z0) ̸= 0, it is nonzero in some neighbourhood of z0.

Theorem 7.4. Suppose that Ω ⊂ C is open and connected, and f : Ω → C is a holomorphic function
that has a zero of infinite order at some point z0 ∈ Ω. Then f ≡ 0.

Proof. Consider the set Ω0 := {z ∈ Ω : f has a zero of order infinity at z}. Our aim is to prove that
Ω0 = Ω. First, we know that Ω0 is nonempty, since z0 ∈ Ω0. Because Ω is connected, it therefore
suffices to prove that Ω0 is both open and closed.

Suppose we pick an arbitrary point w0 ∈ Ω0. If we write out the Taylor series of f at z = w0 using
Theorem 6.1 and the fact, from Corollary 3.3, that ak =

f (k)(w0)
k!

= 0, we find that f is identically zero
in any ball Br(w0) ⊂ Ω. Therefore Br(w0) ⊂ Ω0 and we find that Ω0 must be open.

On the other hand, if we take a sequence zi ∈ Ω0 that converges to some z∞ ∈ Ω, then f(z∞) = 0 by
continuity of f . But z∞ cannot be a zero of finite order since we have seen that such zeros are isolated
within the set of all zeros. Therefore z∞ ∈ Ω0, and we can deduce that Ω0 is (relatively) closed.

7.2 The identity theorem

VIDEO: The identity theorem

A simple consequence of the previous section is:

Theorem 7.5 (Identity theorem). Let Ω ⊂ C be open and connected and let f1 and f2 be holomorphic
functions Ω 7→ C. If the set Σ := {z ∈ Ω : f1(z) = f2(z)} has at least one accumulation point in Ω
then f1 ≡ f2 throughout Ω.

To clarify, z∞ ∈ Ω is an accumulation point of Σ if there exists a sequence zi ∈ Σ \ {z∞} such
that zi → z∞. We are not assuming that z∞ lies in Σ in the definition of accumulation point, but by
continuity of the functions f1 and f2, it will have to in this case. Thus an equivalent formulation of the
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7.3 Zeros of holomorphic functions - refined structure

Identity theorem is that two holomorphic functions on an open and connected set are either identical
or agree only at isolated points.

It’s important that the limit point z∞ is asked to lie within Ω, and not on the boundary ∂Ω. See Q. 7.3.

Proof. By hypothesis, the function g := f1 − f2 is holomorphic and has a non-isolated zero. By
Theorem 7.3, this zero must be of infinite order, and then by Theorem 7.4 we must have g ≡ 0
throughout the connected open set Ω, i.e. f1 ≡ f2.

Example 7.6. An explicit example to which we can apply the Identity theorem 7.5: Suppose f is a
holomorphic function on the ball B2(0) ⊂ C, and suppose we know that f( 1

n
) = 0 for all n ∈ N.

Then we can deduce that f is identically zero on B2(0).

Example 7.7. Related to the example above, consider the function z 7→ z2 sin(π
z
) on C. You might

mistake this for a holomorphic function. But certainly it has zeros at all points z = 1
n

, for n ∈ N, so
by the previous example it would have to be identically zero, which it isn’t. Indeed, on more careful
analysis, this function behaves horribly at iy, for real y converging to zero. Put another way, the
function sin behaves very badly at the point ∞ ∈ C∞. In fact, it could be viewed as an essential
singularity, which we will define later.

7.3 Zeros of holomorphic functions - refined structure

VIDEO: Zeros of holomorphic functions - refined structure

We now want to improve our description of a holomorphic function near a zero.

Theorem 7.8. Let Ω ⊂ C be open and f : Ω → C holomorphic. If f has a zero of finite order k ≥ 1
at z0 ∈ Ω then there exist a neighbourhood V0 ⊂ Ω of z0, a radius r > 0 and a biholomorphic
function h : V0 → Br(0) such that for every z ∈ V0 we have

f(z) =
(
h(z)

)k
. (7.3.1)

In particular, f is locally k-to-one near z0. More precisely, f takes every value inBrk(0)\{0} exactly
k times in V0.

A simple case to keep in mind is when f(z) = (z − z0)
k, in which case h(z) = z − z0 would work.

Other cases can essentially be reduced to perturbations of this basic picture.

The map h in Theorem 7.8 is not unique if k ≥ 1 because we could also have taken ξjh(z), j ∈
{1, . . . , k − 1}, where ξ = e

2πi
k .

The proof of Theorem 7.8 will essentially involve taking a kth root of a suitable function. Intuitively,
we can take a kth root of a function g(z) by considering e

1
k
log g(z), but to make this work we need

to make unambiguous sense of the logarithm in this context. One way of doing this is to work
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7.3 Zeros of holomorphic functions - refined structure

‘bare hands’ and define log locally to some g(z0) ̸= 0 by taking a suitable branch cut. This is fine,
although we did not spell out yet that log is holomorphic. Alternatively one could construct a local
holomorphic log by inverting the function z 7→ ez locally using Lemma 6.11. Instead we use a more
elaborate method that will be reusable later on.

Lemma 7.9. Suppose Ω ⊂ C is open and connected, and g : Ω → C \ {0} is a holomorphic function
such that the ‘logarithmic derivative’ g′(z)

g(z)
admits an anti-derivative. That is, we assume that there

exists a holomorphic F : Ω → C such that F ′(z) = g′(z)
g(z)

. Then there exists w0 ∈ C so that when we
define a holomorphic function ℓ : Ω → C by

ℓ(z) := F (z) + w0, (7.3.2)

we have
g(z) = eℓ(z) for all z ∈ Ω. (7.3.3)

The function ℓ is unique up to an additive constant 2πin for n ∈ Z.

You can think of ℓ(z) as a choice of log g(z).

Later on, in Lemma 11.4, we will be able to apply this lemma for simply connected domains Ω. For
now, we exploit the existence of an anti-derivative of the function f(z) = g′(z)

g(z)
given by Corollary 5.6

to immediately give:

Corollary 7.10. Suppose Ω ⊂ C is star-shaped and g : Ω → C \ {0} is holomorphic. Then there
exists a holomorphic function ℓ : Ω → C, unique up to an integer multiple of 2πi, such that

g(z) = eℓ(z).

In particular, for k ∈ N, the function z 7→ e
1
k
ℓ(z) gives a holomorphic function on Ω whose kth power

is g(z).

Proof of Lemma 7.9. Fix an arbitrary z0 ∈ Ω. As g(z0) ̸= 0 by assumption, we can pick w0 ∈ C
such that ew0 = g(z0)e

−F (z0). This w0 is uniquely determined up to a multiple of 2πi, cf. Section
3.3. The corresponding function ℓ(z) defined by (7.3.2) induces a holomorphic function g(z)e−ℓ(z)

that has derivative(
g(z)e−ℓ(z)

)′
= g′(z)e−ℓ(z) − g(z)e−ℓ(z)ℓ′(z) = e−ℓ(z)

(
g′(z)− g(z)F ′(z)

)
= 0, (7.3.4)

and is thus equal to some constant c ∈ C throughout the connected open set Ω by Q. 1.11. Evaluating
at z0 gives

c = g(z0)e
−ℓ(z0) = g(z0)e

−F (z0)e−w0 = 1,

and so g(z) = eℓ(z) throughout Ω as required.

Proof of Theorem 7.8. We have seen in Theorem 7.3 that we can write

f(z) = (z − z0)
kg(z), (7.3.5)
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7.4 Open mapping theorem; Maximum modulus principle; Mean value property

where g is holomorphic on Ω and g does not attain the value 0 on a whole neighbourhood Bs(z0) ⊂ Ω

of z0, for some s > 0. Intuitively we want to define h(z) = (z− z0)[g(z)]
1
k . We do this rigorously by

applying Corollary 7.10 with Ω there equal to Bs(z0) here, to obtain a function ℓ : Bs(z0) → C such
that g(z) = eℓ(z), and then defining

h(z) = (z − z0)e
1
k
ℓ(z).

We have now found a holomorphic function h on Bs(z0) such that h(z)k = f(z), and we notice that
h′(z0) = e

1
k
ℓ(z0) ̸= 0. By the local invertibility lemma 6.11, we can find neighbourhoods V0 ⊂ Bs(z0)

of z0 and V1 of h(z0) = 0, so that the restriction h : V0 → V1 is biholomorphic. By shrinking these
neighbourhoods, we may assume that V1 = Br(0) for some small r > 0. More precisely, we take
r > 0 small enough so that Br(0) ⊂ V1, and then redefine V1 = Br(0) and V0 = h−1(Br(0)).

This completes the construction of h. To see the k-to-one property, pick an arbitrary point w ∈
Brk(0) \ {0}. Then there are precisely k points ξ1, . . . , ξk, all lying in Br(0), such that ξkj = w for
each j ∈ {1, . . . , k}. Thus we see that within V0, precisely the k points h−1(ξj) are mapped to w by
f .

7.4 Open mapping theorem; Maximum modulus principle; Mean value prop-
erty

VIDEO: Open mapping theorem; Maximum modulus principle;
Mean value property

Theorem 7.11 (Open mapping theorem). Suppose Ω ⊂ C is open and connected, and f : Ω → C is
holomorphic but not constant. Then the image f(Ω) of Ω under f is also open and connected.

By definition, the pre-image of every continuous function on any topological space is open. But the
statement for forward images is not true for continuous, or even C1, functions in general. For example,
the function z 7→ ℜ(z) on C has the real line as image, which is not open in C.

Proof. It is a general fact from topology that the image of every connected set under a continuous
map is connected. In order to see that the image is open, pick an arbitrary point w0 = f(z0) ∈ f(Ω).
We need to show that f(Ω) contains a whole neighbourhood of w0.

The function g(z) := f(z) − w0 has a zero at z0. This zero must be of finite order, say of order
k ∈ N, because otherwise Theorem 7.4 would tell us that g would be identically zero throughout the
(connected) domain Ω and then f would be a constant function f ≡ w0 contrary to our assumptions.
By Theorem 7.8, locally we have that f(z) = w0 + (h(z))k, where h is a biholomorphic map from
some neighbourhood V0 of z0 to a ballBr(0). Therefore the image of f contains the ballBrk(w0).

Corollary 7.12 (Maximum modulus principle). Suppose Ω ⊂ C is open and connected, and f : Ω →
C is holomorphic but not constant. Then |f | does not have any local maxima.

71

https://echo360.org.uk/media/41b11f2d-dd3a-4109-b865-9a022afcc210/public
https://echo360.org.uk/media/41b11f2d-dd3a-4109-b865-9a022afcc210/public


7.5 Injective holomorphic functions are biholomorphic onto their image

Proof. Suppose that |f | attains a local maximum at z0 ∈ Ω. By the Open mapping theorem 7.11,
the image of any neighbourhood of z0 is a neighbourhood of f(z0), and therefore must contain points
with larger absolute value, contradicting our assumption.

In Q. 7.5 you will give an alternative proof of this maximum modulus principle using the following
mean value property.

Lemma 7.13 (Mean value property). Suppose Ω ⊂ C is open with Br(z0) ⊂ Ω, for some r > 0 and
z0 ∈ Ω. Suppose that f : Ω → C is holomorphic. Then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ, (7.4.1)

that is, f(z0) equals the average of f over the circle of radius r centred at z0.

Proof. By Cauchy’s integral formula (5.6.1), we have

f(z0) =
1

2πi

∫
∂Br(z0)

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + reiθ)ireiθ

reiθ
dθ

=
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

(7.4.2)

If you have studied harmonic functions, then you may be familiar with the mean value property
already, and we know that the real and imaginary parts of f are harmonic functions.

7.5 Injective holomorphic functions are biholomorphic onto their image

VIDEO: Injective holomorphic functions are biholomorphic onto
their image

As discussed before, in this section we are using the word domain to refer to a nonempty open and
connected set within C.

Back in Section 2.9 we defined a function f : Ω1 → Ω2 between domains Ω1 and Ω2 to be biholo-
morphic if it is a holomorphic bijection whose inverse is also holomorphic, and so that the derivatives
of both f and f−1 are nowhere vanishing.

Now we have learned more about the zeros of holomorphic functions, we find that very mild hypo-
theses lead to a function being biholomorphic.

Theorem 7.14. Suppose Ω ⊂ C is a domain and f : Ω → C is both injective and holomorphic. Then
f(Ω) is a domain and f : Ω → f(Ω) is a biholomorphic map.
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7.6 The Schwarz lemma

Proof. Since Ω is connected and f is continuous, the image f(Ω) is connected. By the open mapping
theorem 7.11, f(Ω) is an open subset of C. (Note that f cannot be constant since it is injective.)
Therefore f(Ω) is a domain in C.

Suppose there exists z0 ∈ Ω such that f ′(z0) = 0. Then the function F (z) = f(z) − f(z0) satisfies
F (z0) = F ′(z0) = 0. The zero of F at z0 cannot be of infinite order because Theorem 7.4 would then
force F , and hence also f , to be constant, which would contradict the injectivity of f . Therefore F
has a zero of order k ≥ 2 at z0, and Theorem 7.8 then implies that the function F , and hence also f ,
is not injective, giving a contradiction.

Now we have established that f ′(z) ̸= 0 for all z ∈ Ω, Lemma 6.11 tells us that f is locally biholo-
morphic. Because f is bijective, we see that it must then be (globally) biholomorphic.

7.6 The Schwarz lemma

VIDEO: The Schwarz lemma

Karl Hermann Amandus Schwarz (1843 - 1921).

The Schwarz lemma restricts how extreme a holomorphic function from the disc to itself can be. In a
moment it will be useful for classifying biholomorphic functions from the disc to itself. We will also
need it in the proof of the Riemann mapping theorem.

Theorem 7.15 (Schwarz lemma). Let f : D → D be holomorphic on D with f(0) = 0. Then

(i) |f ′(0)| ≤ 1, and
(ii) |f(z)| ≤ |z| for all z ∈ D.

If equality holds in (i), or in (ii) even for a single value z ∈ D \ {0}, then f is a rotation in the sense
that f(z) = eiθz for some θ ∈ R.

Proof. The zero of f at z = 0 can be assumed to be of finite order because otherwise Theorem 7.4
would imply f ≡ 0, in which case the theorem is trivial. By Theorem 7.3 there exists a holomorphic
function g : D → C such that for all z ∈ D we have f(z) = zg(z).

Suppose r ∈ (0, 1). By assumption, for all z with |z| = r we have

1 > |f(z)| = |z| |g(z)| = r |g(z)|, (7.6.1)

and hence |g(z)| < 1
r
. By the Maximum modulus principle, Corollary 7.12, |g| must attain its max-

imum over the ball Br(0) on the boundary {|z| = r}, and thus we have |g(z)| < 1
r

for all |z| ≤ r. By
taking the limit r ↑ 1, we obtain |g(z)| ≤ 1 throughout D. This implies part (i) because f ′(0) = g(0),
and implies (ii) because |f(z)| = |z| |g(z)|.

Now we need to consider the equality cases in (i) and (ii). But equality in (i) is equivalent to
|g(0)| = 1, while equality in (ii) at a point z ∈ D \ {0} is equivalent to |g(z)| = 1. Either way, we
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7.6 The Schwarz lemma

need to consider the case that |g(z0)| = 1 for some z0 ∈ D. In this case, |g| attains a local maximum
at z0. Appealing to the Maximum modulus principle again, we find that g must be constant, and of
magnitude 1, i.e. we can write g(z) = eiθ for some fixed θ ∈ R, and so f(z) = zeiθ.

In Remark 2.22 we saw that every Möbius transformation of the form

f(z) = eiθ
(
z − a

āz − 1

)
for |a| < 1 and θ ∈ [−π, π), (7.6.2)

is a biholomorphic function from the unit disc to itself. At the time we did not emphasise that they
were the only Möbius transformations that were biholomorphic from D to itself because we knew
that at this precise point of the course we would have the technology to prove a spectacularly more
general result: These maps are the only biholomorphic functions from D to itself whether or not we
restrict to considering Möbius transformations.

Corollary 7.16 (Classification of biholomorphic maps of the disc). Every biholomorphic function
f : D → D is a Möbius transformation of the form (7.6.2).

Proof. Suppose for the moment that our biholomorphic function f : D → D satisfies f(0) = 0. We
can then apply the Schwarz lemma, Theorem 7.15, to f to deduce that |f(z)| ≤ |z| for all z ∈ D. But
we can also apply it to f−1 to deduce that |z| = |f−1(f(z))| ≤ |f(z)|. Thus |f(z)| = |z| throughout.
The final part of the Schwarz lemma implies that merely knowing that |f(z)| = |z| at a single point
in D \ {0}, let alone at all points, is enough to deduce that f is a rotation.

In the general case, i.e. not assuming f(0) = 0, we set a = f−1(0) and define φ(z) = z−a
āz−1

. As
in Example 2.21, φ is a biholomorphic map from D to itself that maps 0 to a. Therefore f ◦ φ is a
biholomorphic map from D to itself that maps 0 to 0, and by the first part of the proof we know that
f ◦ φ is a rotation z 7→ eiθz. As remarked after Example 2.21, φ is its own inverse, i.e. φ ◦ φ(z) = z.
Therefore

f(z) = f ◦ φ ◦ φ(z) = eiθ
z − a

āz − 1
,

i.e. a Möbius transformation of the form (7.6.2).

Remark 7.17. The natural home of the Schwarz lemma is, in fact, that of hyperbolic geometry. When
you equip the unit disc not with the Euclidean distance but with the so-called hyperbolic distance, then
the Möbius transformations that map the disc bijectively to itself (as discussed in Example 2.21) turn
out to be isometries. The Schwarz lemma, in a marginally more general form known as the Schwarz-
Pick lemma, says that if you take any holomorphic function f from the disc to itself (not necessarily
surjective) then the hyperbolic distance between any two points can only decrease after applying f .
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7.7 Exercises

7.1. For each of the following parts, write down the complete list of holomorphic functions from D
to C with the given infinitely many points prescribed. (There may be no such functions.)

(a) f( 1
n
) = 1

n3 for all n ∈ {2, 3, . . .};

(b) f( 1
n3 ) =

1
n

for all n ∈ {2, 3, . . .};

(c) f( 1
n
) = (−1)n

n2 for all n ∈ {2, 3, . . .};

(d) f (n)( 1
n
) = 3nn!, where f (n) is the nth derivative, as before.

7.2. Given a function f : R → C, prove that there can be at most one extension to a holomorphic
function C 7→ C.

Follow-up: can you think of any other proofs?

Remark: The function f would have to be extremely regular (real analytic) in order to have
even one extension.

7.3. Suppose Ω ⊂ C is an open and connected set, f : Ω → C is holomorphic and there exists a
sequence of points zn in Ω with f(zn) = 0 for each n and such that zn → z∞ ∈ C, but with
zn ̸= z∞ for each n ∈ N. Is it necessarily true that f ≡ 0?

This is a little bit subtler than it may seem at first glance!

7.4. Suppose that Ω ⊂ C is open and connected, and f : Ω → C is holomorphic.

(a) Prove, using the Open mapping theorem 7.11, that if any of the functions u = ℜ(f),
v = ℑ(f), or |f | are constant on Ω, then f itself is constant.
You could have proved this by bare-hands sometime ago, using the Cauchy-Riemann equa-
tions, but now that you have the open mapping theorem 7.11, it is much easier!

(b) Give an alternative proof of the previous statement that |f | being constant implies f is
constant, by differentiating |f |2 with respect to z.

7.5. Use the mean value property of Lemma 7.13 to give a proof of the maximum modulus principle
that doesn’t use the open mapping theorem.

You may find Q. 7.4b useful.

7.6. Preamble: Given an injective holomorphic function fromD to C, we can always add a constant
so that 0 is mapped to itself. By the theory in Section 7.5, we know that the derivative at
zero cannot be zero (or the function would fail to be injective) so we can further normalise by
multiplying by a nonzero constant so that the derivative at zero is 1.

Suppose that f : D → C is an injective holomorphic map such that f(0) = 0 and f ′(0) = 1.
De Branges’s theorem, previously known as the Bieberbach conjecture, says that the Taylor
coefficients of f (expanding about 0) must satisfy |an| ≤ n. By considering the Koebe function
K : D → C \ (−∞,−1

4
], mentioned in Q. 2.11 and Q. 3.3, show that this bound is sharp (i.e.

can’t be improved).

Optional extra reading: Look up the Koebe quarter theorem.



7.7 Exercises

7.7. For r, s > 0, suppose we have a holomorphic function f : Br → Bs from the ball of radius r to
the ball of radius s, such that f(0) = 0. Prove that

(a) |f ′(0)| ≤ s
r
, and

(b) |f(z)| ≤ s
r
|z| for all z ∈ Br.

Hint: If your proof is more than a few lines long then you are probably working too hard, and
might want to reduce the problem to something you already know.

7.8. Prove Liouville’s theorem, Corollary 6.7, from Q. 7.7.
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8 Isolated singularities

8.1 Riemann’s removable singularity theorem

VIDEO: Riemann’s removable singularity theorem

The function x 7→ |x| illustrates that you can have a continuous function R 7→ R that fails to be
differentiable at a single point. In complex analysis this is impossible!

For example, a consequence of the removable singularity theorem that we are about to meet is that if a
continuous function f : D → C is holomorphic on D \ {0}, then it is in fact holomorphic throughout
D!

More generally, the theorem will not even require f to be defined at the centre. The standard termin-
ology for this is:

Definition 8.1. A function f that is holomorphic on Br(a) \ {a} ⊂ C, for some r > 0 and a ∈ C, is
said to have an isolated singularity at a.

Theorem 8.2 (Riemann’s removable singularity theorem). Let f : Br(a)\{a} → C be a holomorphic
function from a ball of radius r > 0 centred at a ∈ C. Suppose that

|f(z)| ≤M for some M <∞ and every z ∈ Br(a) \ {a}, (8.1.1)

or more generally that
lim
z→a

(z − a)f(z) = 0. (8.1.2)

Then we can extend f to a holomorphic function f : Br(a) → C.

In other words, we can assign a suitable value for f(a) to make f not only continuous but even
holomorphic throughout the ball!

Proof. Define a function g : Br(a) → C by g(z) = (z − a)2f(z) for all z ∈ Br(a) \ {a}, and
g(a) = 0. By the product rule, g is holomorphic when restricted to Br(a) \ {a}. For z ∈ Br(a) \ {a},
by computing

g(z)− g(a)

z − a
= (z − a)f(z) → 0

as z → a, using (8.1.2), we find that g is complex differentiable also at z = a, with g′(a) = 0, and
hence holomorphic throughout Br(a) with a zero of order at least 2 at z = a.

If the zero of g at z = a is of infinite order then both g and then f must be identically zero by Theorem
7.4, and the result is obvious by setting f(a) = 0.

If, instead, the zero of g at z = a is of finite order n ≥ 2 then we can apply Theorem 7.3 to g to
deduce that we can write

g(z) = (z − a)nh(z),

77

https://echo360.org.uk/media/8cb6cfbd-bc54-4f9f-8479-765dfff54811/public


8.2 Classification of isolated singularities; description of poles

for holomorphic h : Br(a) → C with h(a) ̸= 0. But then (z − a)n−2h(z) is a holomorphic function
on the whole of Br(a) that agrees with f on Br(a) \ {a}, and so we can use it as an extension of
f .

Magic! If you read the proof in slow-motion you may spot that I had Taylor’s theorem up my sleeve.

8.2 Classification of isolated singularities; description of poles

VIDEO: Classification of isolated singularities; description of poles

Isolated singularities of a holomorphic function f : Br(z0) \ {z0} → C can be classified into three
types.

Of course, one possible situation is that we can just make a definition for f at z0 and end up with a
holomorphic function on the whole of Br(z0). According to Riemann’s removable singularity the-
orem 8.2, this corresponds to the first case of the following trichotomy, and justifies its name.

Definition 8.3. The function f is said to have a

(1) removable singularity at z0 if f(z) has a limit in C as z → z0;

(2) pole at z0 if f(z) → ∞ as z → z0;

(3) essential singularity at z0 if neither of the two cases above hold.

The function f(z) = 1/z on D \ {0} has a pole at 0.

The function f(z) = exp(1/z) has an essential singularity at 0. In fact, if g is any entire function that
is not just a polynomial (i.e. its Taylor series has infinitely many terms) then the function g(1/z) has
an essential singularity at 0.

Essential singularities are very wild, as we will see in Section 8.3. Poles are actually rather nice.
Indeed, if we are happy with ∞ being just another point in the extended complex plane C∞, then
poles are rather similar to removable singularities. Our analysis stems from the following simple
observation:

If f : Br(z0) \ {z0} → C is holomorphic and has a pole at z0, as defined above, then after reducing
r > 0 if necessary so that |f(z)| ≥ 1 for all z ∈ Br(z0) \ {z0}, we find that 1/f(z) is bounded
and holomorphic on Br(z0) \ {z0}, and so by Riemann’s removable singularity theorem 8.2, it is the
restriction of some holomorphic function F : Br(z0) → C with F (z0) = 0.

To clarify, F is zero at z0 otherwise f(z) = 1/F (z) would be bounded near z0, and z0 would not have
been a pole.
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8.2 Classification of isolated singularities; description of poles

The zero of F at z0 cannot be of infinite order, or Theorem 7.4 would tell us that F would have to
be identically zero in Br(z0), but F (z) = 1/f(z) so that F is not zero anywhere in Br(z0) \ {z0}.
Therefore F has a zero of some finite order n ∈ N

At this point we can apply Theorem 7.3 to argue that we can write F (z) = (z − z0)
nG(z), where

G is holomorphic and nonzero on Br(z0). Defining g(z) = 1/G(z) gives another holomorphic and
nonzero function on Br(z0), and we see that we have proved the following analogue of Theorem 7.3:

Theorem 8.4. Suppose that a holomorphic function f : Br(z0) \ {z0} → C has a pole at z0. Then
there exist n ∈ N and a holomorphic function g : Br(z0) → C that is nonzero in a neighbourhood of
z0, such that

f(z) = (z − z0)
−ng(z).

The pole in this theorem is said to be of order n. If n = 1 then we also refer to it as a simple pole.

A meromorphic functions is, loosely speaking, one that does not have essential singularities. We give
the following slightly unorthodox definition.

Definition 8.5. Suppose Ω ⊂ C is open and connected, and f : Ω → C∞ is a continuous function
that is not identically equal to ∞. We say that f is meromorphic if f is complex differentiable at
every point z0 ∈ Ω with f(z0) ̸= ∞, and 1/f is complex differentiable at every point z0 ∈ Ω with
f(z0) = ∞.

As usual, we adopt the convention that 1/∞ = 0.

Given a meromorphic function f as above, define Z := f−1(0) to be the set of zeros of f in Ω, and
define P := f−1(∞) to be the set of points that f sends to infinity. Because f is continuous, both Z
and P are closed in Ω.

Unravelling Definition 8.5 a little we see that f will be holomorphic on Ω \ P , while 1/f will be
holomorphic on Ω \ Z . If f is not identically zero then, being a holomorphic function on Ω \ P , its
zeros are isolated, that is, Z is a discrete6 subset of Ω \ P and thus a discrete subset of the connected
set Ω. A little topology exercise then confirms that Ω \ Z is connected.

How big is the set P?

If z0 ∈ P , then 1/f has a zero of finite order at z0 since otherwise we would have 1/f ≡ 0, i.e. f
would be identically equal to ∞. Therefore, in some small ball Bε(z0) ⊂ Ω, the function 1/f is zero
only at z0 and thus f(z) ̸= ∞ for all z ∈ Bε(z0) \ {z0}.

Thus the set P is a discrete subset of Ω.

We see that we could have defined a meromorphic function as a holomorphic function f : Ω\P → C,
where P is some closed discrete set in Ω, such that f has a pole at each z0 ∈ P .

6Z being discrete means that every element of Z is isolated, i.e. admits a neighbourhood within which there are no
other elements of Z .

79



8.3 Essential singularities; The Casorati-Weierstrass theorem

8.3 Essential singularities; The Casorati-Weierstrass theorem

VIDEO: Essential singularities; The Casorati-Weierstrass theorem

Karl Theodor Wilhelm Weierstrass (1815 - 1897). Father of modern analysis.

Felice Casorati (1835 - 1890). Best known for this theorem.

If a holomorphic function f : Br(z0) \ {z0} → C has an isolated singularity at z0 that is neither a
removable singularity nor a pole, then by definition it cannot be extended to a continuous function
f : Br(z0) → C∞. The following theorem shows that such essential singularities are much wilder
than even that would suggest.

Theorem 8.6 (Casorati-Weierstrass theorem). Suppose that a holomorphic function f : Br(z0) \
{z0} → C has an essential singularity at z0. Then however small we take δ ∈ (0, r), the image
of the set Bδ(z0) \ {z0} under f is dense in C.

Proof. We prove the contrapositive: Suppose that it is not true that for every δ the image of f is dense.
That is, there exist δ ∈ (0, r), ε > 0 and a point w ∈ C such that

|f(z)− w| ≥ ε for all z ∈ Bδ(z0) \ {z0}. (8.3.1)

Our objective is to show that f has either a removable singularity or a pole at z0. Consider the
holomorphic function

h(z) =
1

f(z)− w
. (8.3.2)

By assumption, h is bounded (|h| ≤ 1
ε
) and is nonzero throughout Bδ(z0) \ {z0}. By Riemann’s

removable singularity theorem 8.2, h can be extended to a holomorphic function on all of Bδ(z0). If
h(z0) ̸= 0, then we can rewrite

f(z) =
1

h(z)
+ w, (8.3.3)

to give a holomorphic extension of f to the whole of Bδ(z0), and we see that f has a removable
singularity at z0. If, instead, h(z0) = 0, then h must have a zero of finite order n ∈ N at z0 (otherwise
we would have h ≡ 0 by Theorem 7.4) and we can write

h(z) = (z − z0)
ng(z)

for some nonzero holomorphic function g : Bδ(z0) → C. In that case we can write

f(z) = (z − z0)
−n 1

g(z)
+ w,

and we see that f has a pole at z0.
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8.4 Laurent series I: Double-ended series

Remark 8.7. The Casorati-Weierstrass theorem is not the last word on essential singularities. The
Great Picard’s theorem states that however small a neighbourhood of an essential singularity you
take, your holomorphic function attains every value in C with at most one exception! You can’t do
better than that because (for example) however small you take δ > 0, the restriction of the function
f(z) = exp(1/z) to Bδ(0) \ {0} attains every value in C except for 0. This theorem is trickier to
prove.

8.4 Laurent series I: Double-ended series

VIDEO: Laurent series I: Double-ended series

Pierre Alphonse Laurent (1813 - 1854).

If we have a holomorphic function f : Br(0) → C, then Taylor’s theorem allows us to expand it
as a power series

∑∞
k=0 akz

k. But how can we expand a function as a power series at an isolated
singularity?

For example, one could consider the function f(z) = 1
z2

or the function f(z) = 1
sin z

, defined on (say)
D\{0}. There is no way we can write either function on the whole domain as a power series as above.
Laurent’s theorem will tell us that we can write such functions as what one might call a double-ended
power series ∑

k∈Z

akz
k, (8.4.1)

allowing k to be negative. When we have such a double-ended power series representing a function
on some annulus, then we call it a Laurent series.

In simple cases, the power series has terms with negative k, but not all the way down to −∞, for
example,

ez

z
=

∞∑
k=−1

zk

(k + 1)!
.

Let’s check that we can make rigorous sense of these expressions when k can go down to −∞.

Definition 8.8. A double-ended series
∑

k∈Z ak is said to converge to ℓ ∈ C if
∑∞

k=0 ak converges to
ℓ+,
∑∞

k=1 a−k converges to ℓ−, and ℓ = ℓ+ + ℓ−.

This allows us to make sense of a double-ended power series
∑

k∈Z akz
k. Moreover, it highlights that

we are really considering two normal power series here. The first is f+(z) =
∑∞

k=0 akz
k, and the

second is f−(w) =
∑∞

k=1 a−kw
k, where w = 1/z. In particular, we can invoke all the theory about

power series from Section 3.1. We find that the first power series defines a holomorphic function
for |z| < R+, where R+ is the first radius of convergence, and the second power series defines a
holomorphic function for |w| < R−, where R− is the second radius of convergence, i.e. for |z| >
1/R−. Provided 1/R− < R+, the double-sided power series defines a holomorphic function on the
annulus given by 1/R− < |z| < R+, where it can be differentiated term by term, and where it
converges locally uniformly.
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8.5 Cauchy’s integral formula for annuli

VIDEO: Cauchy’s integral formula for annuli

In order to find Laurent series, we need a generalisation of Cauchy’s integral formula.

Theorem 8.9 (Cauchy’s integral formula for annuli). Let Ω ⊂ C be open and let f : Ω → C be
holomorphic. Suppose that for some a ∈ C and radii 0 < R1 < R2 <∞, the closure of the annulus

A = {z ∈ C : R1 < |z − a| < R2} (8.5.1)

is contained in Ω. Then for any w ∈ A we have

f(w) =
1

2πi

∫
∂A

f(z)

z − w
dz. (8.5.2)

Remark 8.10. As discussed in Section 3.4, the integral over ∂A in (8.5.2) is an integral over two
boundary circles, taken in the appropriate direction. If f is holomorphic on the whole ball BR2(a),
then the inner integral vanishes and the formula reduces to the standard Cauchy integral formula
(5.6.1).

Now that we have Riemann’s removable singularity theorem 8.2 at our disposal, proving integral
formulae becomes a lot easier, by virtue of the following observation.

Corollary 8.11 (Corollary of Riemann’s removable singularity theorem 8.2). Suppose Ω ⊂ C is open,
w ∈ Ω and f : Ω → C is holomorphic. Then the function

z 7→ f(z)− f(w)

z − w
,

which is initially defined on Ω \ {w}, extends to a holomorphic function on the whole of Ω.

Proof. The given function is clearly holomorphic on Ω \ {w}, and by applying Riemann’s removable
singularity theorem 8.2 on a ball around w, we are done.

Since the extension here must be unique, we will implicitly refer to this extension to the whole of Ω
when we write f(z)−f(w)

z−w
.

Proof of Theorem 8.9. Fix w ∈ A. By Corollary 8.11, the function z 7→ f(z)−f(w)
z−w

is holomorphic
throughout Ω. Using this function in the Cauchy theorem for annuli, i.e. Corollary 5.8, we obtain∫

∂A

f(z)− f(w)

z − w
dz = 0,
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8.6 Laurent series II: Laurent’s theorem

and so ∫
∂A

f(z)

z − w
dz =

∫
∂A

f(w)

z − w
dz

= f(w)

(∫
∂BR2

(a)

dz

z − w
−
∫
∂BR1

(a)

dz

z − w

)
= 2πi f(w)

(
I(∂BR2(a), w)− I(∂BR1(a), w)

)
= 2πi f(w)(1− 0)

= 2πi f(w),

(8.5.3)

where we use the notation ∂BR(a) also to refer to the curve t 7→ a + Reit for t ∈ [0, 2π]. The given
values of the winding numbers are evident from a picture; we can justify that I(∂BR2(a), w) = 1
using Q. 4.2, while I(∂BR1(a), w) = 0 follows from Remark 4.5.

It is tempting to ask why the original proof of Cauchy’s integral formula was not as slick and quick
as this. Why did we not use a result like Corollary 8.11? The answer is that we need the original
Cauchy’s integral formula along the way to prove Corollary 8.11.

8.6 Laurent series II: Laurent’s theorem

VIDEO: Laurent series II: Laurent’s theorem

Minor mistake at 26:15: I write C \D when I mean C \D.

We are now ready to prove that every holomorphic function defined on an annulus can be developed
in a Laurent series.

Theorem 8.12 (Laurent’s theorem). Suppose 0 ≤ r1 < r2, a ∈ C and f is a holomorphic function on
the annulus

A = {z ∈ C : r1 < |z − a| < r2}.

Then, for every z ∈ A, we have
f(z) =

∑
k∈Z

ak(z − a)k, (8.6.1)

where for each k ∈ Z the coefficient ak is given by

ak =
1

2πi

∫
∂Bs(a)

f(w)

(w − a)k+1
dw, (8.6.2)

for every s ∈ (r1, r2).

The proof can be compared with that of Taylor’s theorem 6.1.
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8.6 Laurent series II: Laurent’s theorem

Proof. Without loss of generality we may assume that a = 0. After fixing z ∈ A, choose numbers
R1, R2 such that r1 < R1 < |z| < R2 < r2.

By Cauchy’s theorem for annuli, Theorem 5.8, the integral of a holomorphic function on A around
a circle ∂Bs(0) does not depend on s ∈ (r1, r2). In particular, the formula (8.6.2) given for ak is
independent of s, and indeed

ak =
1

2πi

∫
∂BR1

(0)

f(w)

wk+1
dw =

1

2πi

∫
∂BR2

(0)

f(w)

wk+1
dw. (8.6.3)

Cauchy’s integral formula for annuli, Theorem 8.9, implies

f(z) =
1

2πi

∫
∂BR2

(0)

f(w)

w − z
dw − 1

2πi

∫
∂BR1

(0)

f(w)

w − z
dw. (8.6.4)

The first term on the right-hand side can be handled as in the proof of Taylor’s theorem in Section
6.2, giving

1

2πi

∫
∂BR2

(0)

f(w)

w − z
dw =

∞∑
k=0

( 1

2πi

∫
∂BR2

(0)

f(w)

wk+1
dw
)
zk

=
∞∑
k=0

akz
k,

(8.6.5)

by (8.6.3). To handle the second term on the right-hand side of (8.6.4) we write, for anyw ∈ ∂BR1(0),

− 1

w − z
=

1

z

(
1

1− w
z

)
=

1

z

∞∑
k=0

(
w

z

)k

, (8.6.6)

where the power series converges because |z| > R1 = |w| and so |w
z
| < 1. Hence

− 1

2πi

∫
∂BR1

(0)

f(w)

w − z
dw =

1

2πi

∫
∂BR1

(0)

∞∑
k=0

f(w)

zk+1
wk dw

=
−1∑

k=−∞

( 1

2πi

∫
∂BR1

(0)

f(w)

wk+1
dw
)
zk

=
−1∑

k=−∞

akz
k.

(8.6.7)

The summation and the integration can be switched here because the series converges uniformly as
the integration variable w varies within ∂BR1(0).

Remark 8.13. Just as the Taylor coefficients are unique, the coefficients of Laurent series are uniquely
determined by the function. Indeed, if f : A→ C is known to have a Laurent expansion (8.6.1), then
one can divide by (z − a)n+1 and integrate around ∂Bs(a) to obtain (8.6.2).

Remark 8.14. Connecting with the discussion in Section 8.4, one can argue that the power series in
(8.6.5) converges on Br2(0), whereas the power series in (8.6.7) converges on C \Br1(0).
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Example 8.15. The function f(z) = 1
1−z

is holomorphic on the disc D and on the annulus C \D. On
D we have the usual Taylor series

f(z) =
∞∑
k=0

zk. (8.6.8)

Beyond the radius of convergence, i.e. on C \D, where 1
|z| < 1, we instead have the Laurent series

f(z) =
1

1− z
= −1

z

(
1

1− 1
z

)
= −1

z

∞∑
k=0

(
1

z

)k

=
−1∑

k=−∞

(−1) zk. (8.6.9)

Of course, the simplest Laurent series would be about the centre point a = 1, and would be valid
throughout C \ {1}. There is only one term and it is simply f(z) = −(z − 1)−1!

As before in Corollary 6.6, the boundedness of f implies bounds on all of the Laurent coefficients:

Corollary 8.16. Let f be as in the statement of Theorem 8.12. Suppose that for some s ∈ (r1, r2) we
have |f(z)| ≤M for all z ∈ ∂Bs(a). Then, for every k ∈ Z, we have

|ak| ≤
M

sk
. (8.6.10)

8.7 Classifying singularities in terms of Laurent series

VIDEO: Classifying singularities in terms of Laurent series

Suppose we have a function f that is holomorphic on Br(a) \ {a} ⊂ C, for some r > 0 and a ∈ C.
We would like to relate the type of the isolated singularity at a, as in Definition 8.3, to the Laurent
series

f(z) =
∑
k∈Z

ak(z − a)k, (8.7.1)

that is valid on Br(a) \ {a} by Laurent’s theorem 8.12.

We would also like to extend the definition of the order ord(f, a) of a zero at a, as given in Definition
7.1, so that it applies not just to a zero of a holomorphic function f , but also to a general isolated
singularity.

The first possibility is that f ≡ 0 in Br(a) \ {a}. In this case we have a removable singularity. All
the Laurent coefficients are zero, and we define the order ord(f, a) = ∞.

If not all of the Laurent coefficients are zero, then we define the order of f at a to be

ord(f, a) := inf{n ∈ Z : an ̸= 0}.

Here we adopt the convention that if the set is not bounded below then the infimum is taken to be
−∞. If this order is not −∞, then the Laurent series can be written

∑∞
k=n ak(z − a)k, where n ∈ Z

is the order.
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8.8 Classification of injective entire functions

If ord(f, a) ≥ 0, then the Laurent series is really a Taylor series. Indeed, we have a removable
singularity at a if and only if ord(f, a) ≥ 0 or ord(f, a) = ∞. If ord(f, a) ≥ 1 then we have a zero
of this order at a. Indeed, this coincides with the definition of ord given in Definition 7.1.

Similarly, ord(f, a) < 0 (but ord(f, a) ̸= −∞) if and only if f has a pole at a. This follows by
considering the description of poles given in Theorem 8.4. For example, if f has a pole at a, then we
can write f(z) = (z − a)−ng(z) with g(a) ̸= 0 and then Taylor expand g(z) =

∑∞
k=0 ak(z − a)k to

write

f(z) =
∞∑

k=−n

ak+n(z − a)k

where a0 ̸= 0. Rather confusingly, the order ord(f, a) is minus the order of the pole at a.

The case that ord(f, a) = −∞, i.e. the Laurent series does not start at some finite n, then corresponds,
by definition, to the case of an essential singularity.

8.8 Classification of injective entire functions

VIDEO: Classification of injective entire functions

There are many entire functions, but not so many injective entire functions.

Theorem 8.17 (Injective entire functions). If f is an injective entire function, then

f(z) = αz + β (8.8.1)

for some α ∈ C \ {0} and β ∈ C.

Proof. The function g : C \ {0} → C defined by g(z) = f(1/z) is clearly holomorphic and injective
since both the functions z 7→ 1/z and f(z) are holomorphic and injective.

What sort of isolated singularity does g have at 0? We would like to show that it is a pole, and we will
do that by ruling out the other two possibilities, i.e. showing that it is neither removable nor essential.

If it were removable, then g would be bounded in, say, D \ {0}, and therefore f would be bounded
in C \ D. But f is continuous and thus bounded on D, so f would be bounded on the whole of C.
By Liouville’s theorem (Corollary 6.7) f would then be constant, which is impossible for an injective
function!

Suppose instead that 0 is an essential singularity for g. The Casorati-Weierstrass theorem 8.6 tells us
that the image g(D\{0}) would be dense, equivalently that the image f(C\D) would be dense, in C.
But f(D) is an open set by the open mapping theorem 7.11, and so there must be some intersection
of f(C \D) and f(D), which is impossible for an injective function f . Contradiction!
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8.9 Line singularities

We have shown that 0 is a pole for g. If we make a Taylor expansion

f(z) =
∞∑
k=0

akz
k (8.8.2)

then the (unique) Laurent expansion for g on C \ {0} must be

g(z) = f
(
1/z
)
=

0∑
k=−∞

a−kz
k, (8.8.3)

and because g has a pole, let’s say of order n, we must have ak = 0 for all k > n. This forces f to be
a polynomial.

We conclude by observing that by the Fundamental theorem of Algebra, Corollary 6.8, or rather
by its consequence that any polynomial of order at least one can be factorised, the only injective
polynomials are of the form claimed in the theorem. Indeed, by injectivity only one point (say z = a)
can be mapped to zero so the factorisation of the polynomial must be of the form f(z) = α(z − a)n

for α ̸= 0. But this polynomial is only injective for n = 1, so we have

f(z) = αz − αa.

We conclude by setting β = −αa.

Remark 8.18. In Section 2.2 we mentioned briefly how to make sense of what it means for a continu-
ous function f : C∞ → C∞ to be holomorphic. We are now in a position to classify all such functions
that are bijections. Pick any Möbius transformation φ with the property that φ(f(∞)) = ∞. For ex-
ample we could define

φ(z) =
1

z − f(∞)
.

Then φ ◦ f will also be a holomorphic bijection from C∞ to itself, this time sending ∞ to itself.
Therefore the restriction of φ ◦ f to C will be a injective entire function, so Theorem 8.17 tells us that
it must be of the form z 7→ αz+β for some α ∈ C \ {0} and β ∈ C. In particular φ ◦ f is necessarily
a Möbius transformation. We deduce that f also must be a Möbius transformation. We conclude that
the holomorphic bijections from C∞ to itself are precisely the Möbius transformations.

8.9 Line singularities

Most of Section 8 has concerned isolated singularities. Particularly relevant to this section was
Riemann’s removable singularity theorem 8.2 that told us (for example) that any bounded holo-
morphic function on D \ {0} can be extended to a holomorphic function on the whole of D.

We would now like to imagine what happens if our function is holomorphic on a domain minus a
line rather than on a domain minus a point. For example, we might have a holomorphic function
f : C \ R → C. When can we deduce that f extends to an entire function? The direct analogue of
Riemann’s removable singularity theorem 8.2 fails. We could have f ≡ 1 on the upper half plane and
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8.10 The Schwarz reflection principle

f ≡ 0 on the lower half plane. Such a function is bounded and holomorphic but does not extend to a
holomorphic function on the whole of C!

The point of this section is to establish that if we additionally assume that f extends to a continuous
function, then this extension is indeed necessarily holomorphic.

Theorem 8.19. Suppose Ω ⊂ C is open with Ω ∩ R ̸= ∅. Suppose f : Ω → C is continuous and the
restriction of f to Ω \ R is holomorphic. Then f is holomorphic throughout Ω.

The gain of regularity in this theorem will be powered by Morera’s theorem 6.9.

In the proof below we will reuse the shorthandHℑ>0 := {z ∈ C : ℑ(z) > 0} for the upper half-plane,
and also write Hℑ≥0 for its closure and write Hℑ<0 and Hℑ≤0 for the lower half-plane analogues.

Proof. We need to show that f is complex differentiable at each point in Ω ∩ R. It is not even
immediately clear that any partial derivatives of f exist there.

To solve this problem it suffices to pick an arbitrary z0 ∈ Ω ∩ R, and r > 0 sufficiently small so that
Br(z0) ⊂ Ω, and prove that f is holomorphic on Br(z0). By Morera’s theorem 6.9, it suffices to show
that for every closed triangle T ⊂ Br(z0) we have∫

∂T

f(z)dz = 0. (8.9.1)

If T lies within the half ball Br(z0) ∩ Hℑ>0 then Goursat’s theorem 5.3 does the job. Moreover, if
T lies within the slightly larger set Br(z0) ∩Hℑ≥0 then we can consider the slightly shifted upwards
triangle Tε := T + iε with ε > 0 small, and use uniform continuity of f on Br(z0) to compute∫

∂T

f(z)dz = lim
ε↓0

∫
∂Tε

f(z)dz = 0.

In exactly the same way, we also have (8.9.1) for every triangle T within the lower half-ball Br(z0)∩
Hℑ≤0.

For a completely general triangle T ⊂ Br(z0) we can divide T up into no more than three sub-
triangles Ti, each of which lies in either Br(z0) ∩Hℑ≥0 or Br(z0) ∩Hℑ≤0, as in Figure 6, and write∫

∂T

f(z)dz =
∑
i

∫
∂Ti

f(z)dz = 0.

8.10 The Schwarz reflection principle

One situation in which a line singularity arises is when we reflect a holomorphic function across a
line.
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R

Figure 6: Triangles T1, T2 and T3 making up triangle T

Theorem 8.20 (Schwarz reflection principle). Let Ω ⊂ C be open and assume that Ω is invariant
under complex conjugation (i.e. z ∈ Ω ⇔ z̄ ∈ Ω). Suppose that f : Ω ∩Hℑ≥0 → C is a continuous
function such that

• f is holomorphic on Ω ∩Hℑ>0

• f only attains real values on Ω ∩ R.

If we extend f to a function on the whole of Ω by setting

f(z) = f(z̄) for all z ∈ Ω ∩Hℑ<0,

then f is holomorphic on the whole of Ω.

You will want to pause for a moment to check that this extension actually makes sense!

Proof. Observe first that the extension as defined is continuous on the whole of Ω. In particular it is
continuous even on Ω ∩ R, because f only attains real values there.

To see that f is holomorphic on Ω∩Hℑ<0, observe first that it is real differentiable (being the compos-
ition of real differentiable functions z 7→ z̄, z 7→ f(z) and z 7→ z̄ again). We then just have to check
that the Cauchy-Riemann equations hold there, i.e. that ∂f

∂z̄
= 0. By definition, for z ∈ Ω ∩Hℑ<0 we

have
∂

∂z̄
(f(z)) =

∂

∂z̄
(f(z̄)) =

∂

∂z
(f(z̄))

(you should carefully unwind the definitions to verify this) while by the chain rule (1.2.5) (composing
f with the function g(z) = z̄) we know that

∂

∂z
(f(z̄)) = f ′(z̄)

∂z̄

∂z
= 0

because ∂z̄
∂z

= 0, as we saw in Q. 1.9.

We may as well assume that Ω ∩ R ̸= ∅ otherwise the proof is already complete. We are thus in the
situation of Theorem 8.19 so f must be holomorphic throughout Ω.
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8.11 Exercises

8.1. The following functions are holomorphic onD\{0}. In each case, identify whether the isolated
singularity at 0 is removable, a pole, or essential.

(a) f(z) = sin z
z

(b) f(z) = cos z
z

(c) f(z) = exp z
z

(d) f(z) = z exp 1
z

(e) f(z) = ez
2
exp 1

z

8.2. Suppose w ∈ C \ {0} and consider the meromorphic function f(z) = 1
z−w

.

(a) Give the Taylor series expansion of f centred at 0. What is the radius of convergence?

(b) Give the Laurent expansion of f , centred at 0, for |z| > |w|.

8.3. Consider the meromorphic function

f(z) =
1

(z − 1)(z − 2)
.

By decomposing via partial fractions, find the following series expansions for f about 0:

(a) Taylor series for |z| < 1;

(b) Laurent series for 1 < |z| < 2;

(c) Laurent series for |z| > 2.

8.4. Suppose g, h : Ω → C are two holomorphic functions on some open and connected subset
Ω ⊂ C such that h is not identically zero. Prove that f : Ω → C∞ defined by f(z) := g(z)

h(z)
is a

meromorphic function.

8.5. Suppose S is a finite subset of a domain Ω ⊂ C. Suppose that f : Ω \ S → C is holomorphic,
with a pole at each of the points in S, and hence extends to a meromorphic function Ω 7→ C∞.
Prove that there exist holomorphic functions g, h : Ω → C such that f(z) = g(z)

h(z)
for all

z ∈ Ω \ S .

8.6. Suppose f : B1(z0) \ {z0} → C is holomorphic with an essential singularity at z0. Show that
for every n ∈ Z, the limit of (z − z0)

nf(z) as z → z0 does not exist.

8.7. Does there exist a holomorphic function f : D \ {0} → C such that

|f(z)| ≥ 2
1
|z|

throughout?



8.11 Exercises

8.8. Optional question.

SupposeD+ is the upper half disc, i.e. all the points inD with positive imaginary part. Suppose
that f : D+ → C is holomorphic, and extends to a continuous function on D+ ∪ (−1, 1), with
f(x) = 0 for all x ∈ (−1, 1). Prove that f ≡ 0 throughout D+.

8.9. Optional question.

Suppose f : C → C is continuous, and the restriction of f to both D and C \D is holomorphic.
Prove that f is entire.
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9 The general form of Cauchy’s theorem

The form of Cauchy’s theorem that we proved in Theorem 5.7 was only able to handle individual
closed curves in star-shaped domains. This was ideal at the time since it allowed us to develop the
local theory of holomorphic functions and prove numerous amazing results. By now, however, we
have the technology to prove a much more general form of Cauchy’s theorem that will have the case
of individual curves in simply connected domains as a special case.

A key application of this theory will be the Residue theorem 9.10. Amongst other things, this will
give us a very powerful way of computing integrals.

9.1 Chains and cycles

VIDEO: Chains and cycles

In the last 90 seconds I mess up the sign of γ2. Either I should take γ2 going anticlockwise and
consider γ = γ1− γ2 (as in the lecture notes below) or I should take γ2 going clockwise and consider
γ = γ1 + γ2. Not a mixture of both!

Suppose Ω ⊂ C is open, and f : Ω → C is a continuous function. If we are given two piecewise C1

curves γ1 : [a, b] → Ω and γ2 : [a′, b′] → Ω, we can make a formal definition∫
γ1+γ2

f(z)dz :=

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

More generally, given finitely many piecewise C1 curves γ1, . . . , γn, and weights α1, . . . , αn ∈ Z, we
can consider a formal linear combination

γ := α1γ1 + · · ·+ αnγn, (9.1.1)

and define ∫
γ

f(z)dz :=
n∑

k=1

αk

∫
γk

f(z)dz. (9.1.2)

Loosely speaking, you can consider this sum γ as a chain. Strictly speaking a chain would be an
equivalence class of such things, where we say that two such formal linear combinations γ and γ̃ are
equivalent if (9.1.2) gives the same value whichever continuous function f we take. This equivalence
allows us to permute the curves (together with their weights!), it allows us to subdivide individual
curves into finitely many sub-curves (so if γ3 : [a, b] → C is a curve that is split into two curves
γ1 : [a, c] → Ω and γ2 : [c, b] → C, then γ3 = γ1 + γ2), it allows us to fuse pairs of individual curves
into one if the first one starts where the second one ends (the opposite of the previous operation), it
allows us to reparametrise individual curves, to combine multiple copies of the same γi by adding their
weights, and to reverse the direction of a curve, provided we change the sign of the corresponding
weight.
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9.2 The homology version of Cauchy’s theorem

A cycle is, strictly speaking, one of these chains that can be represented in terms of curves γ1, . . . , γn
that are each closed curves.

For the purposes of this course, there is no merit in setting this up precisely (as a free abelian group)
and the equivalence relation above is a bit of a technical distraction, so we simplify everything by
permitting ourselves to take a cycle in Ω to mean simply a formal linear combination as in (9.1.1)
with each γi a closed piecewise C1 curve within Ω, to define integration as in (9.1.2), and to define the
winding number as

I(γ, w) :=
n∑

k=1

αkI(γk, w).

See the lectures/video for some pictures!

As a small exception to this simplification, we will occasionally consider two piecewise C1 curves
γ1, γ2 : [a, b] → C with the same start points, γ1(a) = γ2(a), and the same end points, γ1(b) = γ2(b),
and it will be convenient to consider the cycle γ1 − γ2. Of course, this can be represented as a single
closed curve that passes first along γ1 and then returns along γ2.

So much of the theory we have seen for closed piecewise C1 curves extends to cycles in a completely
obvious way that we do not attempt to give a full list. Certainly, if Ω ⊂ C is a star-shaped domain,
and γ is a cycle in Ω then Theorem 5.7 will imply that for every holomorphic function f : Ω → C we
have ∫

γ

f(z)dz = 0. (9.1.3)

In the next section we would like to understand for which cycles γ in a general open set Ω ⊂ C do
we still have (9.1.3). In preparation for that we make the following definition.

Definition 9.1. Let Ω ⊂ C be open. A cycle γ in Ω is homologous to zero in Ω if for any a ∈ C \ Ω
we have

I(γ, a) = 0. (9.1.4)

Example 9.2. As an example, if γ1, γ2 : [0, 2π] → Ω := C \ {0} are the curves given by γ1(θ) = 2eiθ

and γ2(θ) = eiθ, then the cycle γ = γ1 − γ2, is homologous to zero in Ω. In other words, the cycle
that one might write as ∂A, where A is the annulus {z ∈ C : 1 < |z| < 2}, is homologous to zero.
Note that the individual curves γ1 and γ2 are not individually homologous to zero!

9.2 The homology version of Cauchy’s theorem

VIDEO: The homology version of Cauchy’s theorem

The pictures in the lectures/video are going to be particularly useful in this section.

Suppose Ω ⊂ C is open. In this section we ask for which cycles γ in Ω do we have∫
γ

f(z) dz = 0 for all holomorphic f : Ω → C?
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9.2 The homology version of Cauchy’s theorem

Theorem 9.3 (Cauchy’s theorem – homology version). Let Ω ⊂ C be open and f : Ω → C holo-
morphic. Then for any cycle γ that is homologous to zero in Ω we have∫

γ

f(z)dz = 0. (9.2.1)

The hypothesis that γ is homologous to zero is necessary since otherwise there exists some a ∈ C \Ω
with I(γ, a) ̸= 0, and we can define a holomorphic function f : Ω → C by f(z) = 1

z−a
, giving∫

γ

f(z)dz =

∫
γ

dz

z − a
= 2πiI(γ, a) ̸= 0.

Proof. We may assume without loss of generality that Ω is bounded. If it is not then we can replace Ω
by Ω∩BR(0), where R > 0 is chosen large enough to ensure that all curves making up γ map within
BR(0). By compactness, the distance of the image of γ to C \ Ω is strictly positive - let us denote it
by 2δ > 0.

Let’s put γ aside for a moment and try to find a representation formula for f akin to the Cauchy
integral formula, but where we write f(w) for w ∈ Ω in terms of the integral of f(z)

z−w
over something

more complicated than a circle or square surrounding w. Heuristically we would like to write it as
an integral over all boundary components of Ω, but this does not make sense in general because f
is only defined on Ω, and not on ∂Ω, and because the boundary ∂Ω is not necessarily the image of
a piecewise C1 curve. Instead we make a construction that will move the boundary components to
sensible curves a little inside Ω made up of finitely many horizontal and vertical line segments.

I’ll draw some pictures in the video!

Consider a grid of width δ on C made up of closed squares

{x+ iy : x ∈ [kδ, (k + 1)δ] and y ∈ [lδ, (l + 1)δ]}

for k, l ∈ Z. Denote by {Qj}Jj=1 the finitely many such closed squares that are fully contained in Ω.
They combine to make up an open set

Ωδ := interior(∪J
j=1Qj)

that is a slight shrinking of Ω.

Let w be an arbitrary point in the interior of some square Qj0 .

By the version of Cauchy’s integral formula in Theorem 5.10 that you proved in Q. 5.3, we have that

f(w) =
1

2πi

∫
∂Qj0

f(z)

z − w
dz. (9.2.2)

For any other square Qj for j ̸= j0 we have

1

2πi

∫
∂Qj

f(z)

z − w
dz = 0, (9.2.3)
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9.3 The general version of Cauchy’s integral formula

by Cauchy’s theorem 5.7 for star-shaped domains. (As star-shaped domain we can take an open
square just a little larger than Qj so that w lies outside its closure. Then z 7→ f(z)

z−w
is holomorphic

on this domain.) If we sum these identities over all squares making up Ωδ then all the integrals over
interior edges cancel because all interior edges are traversed twice with opposite directions, and we
obtain

f(w) =
1

2πi

J∑
j=1

∫
∂Qj

f(z)

z − w
dz =

1

2πi

∫
∂Ωδ

f(z)

z − w
dz. (9.2.4)

Although we have asked for w to lie in the interior of some square Qj0 , by continuity we see that this
formula holds for any w ∈ Ωδ (i.e. also on the interior edges). This is then the representation formula
that we sought.

Now let’s bring the cycle γ back into the picture. By definition of δ, the image of the cycle γ is fully
contained in Ωδ. Also, for every z ∈ C \ Ωδ, and in particular for every z ∈ ∂Ωδ, we have

I(γ, z) = 0, (9.2.5)

as follows from Lemma 4.7 and the assumption that γ is homologous to zero.

Integrating the representation formula (9.2.4) over the cycle γ we obtain∫
γ

f(w)dw =

∫
γ

1

2πi

(∫
∂Ωδ

f(z)

z − w
dz

)
dw =

∫
∂Ωδ

f(z)

(
1

2πi

∫
γ

1

z − w
dw

)
dz

=

∫
∂Ωδ

f(z) (−I(γ, z)) dz

= 0

(9.2.6)

by (9.2.5). Here the interchange of integrals is justified by Fubini’s theorem7 because all the integ-
rands involved are bounded and continuous.

9.3 The general version of Cauchy’s integral formula

VIDEO: The general version of Cauchy’s integral formula

Around 1:55 the video forgets to stress that w in Corollary 9.4 should not lie on the image of γ

Corollary 9.4 (Cauchy’s integral formula – general version). Let Ω ⊂ C be open and let γ be a cycle
(e.g. a closed piecewise C1 curve) in Ω that is homologous to zero in Ω. Then for any holomorphic
function f : Ω → C and for any w ∈ Ω not lying in the image of γ, we have

f(w) I(γ, w) =
1

2πi

∫
γ

f(z)

z − w
dz. (9.3.1)

7If you have not taken Measure Theory then you can take this fact on trust.
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9.4 The deformation theorem; Cauchy’s theorem on simply connected domains

The lectures/video may have some further context and justification

The proof is quite similar to the proof of Cauchy’s integral formula for annuli given in Theorem 8.9.

Proof. By Corollary 8.11, the function

g(z) =
f(z)− f(w)

z − w
,

which is holomorphic initially on Ω \ {w}, can be extended to a holomorphic function throughout Ω.
The homology form of Cauchy’s theorem, Theorem 9.3, then implies that∫

γ

g(z)dz = 0 (9.3.2)

and hence
1

2πi

∫
γ

f(z)

z − w
dz =

1

2πi

∫
γ

f(w)

z − w
dz = f(w) I(γ, w) (9.3.3)

as claimed.

9.4 The deformation theorem; Cauchy’s theorem on simply connected do-
mains

VIDEO: The deformation theorem; Cauchy’s theorem on simply
connected domains

In general open sets Ω ⊂ C, the homology version of Cauchy’s theorem will only apply to special
closed curves. However, when Ω is simply connected, it will apply to all closed curves, because by
Corollary 4.11, in this case every closed curve has zero winding number about every point w ∈ C\Ω,
and thus every closed curve is homologous to zero. This then allows us to finally deduce Cauchy’s
theorem on simply connected domains, as given in Theorem 5.1.

One way that such a closed curve γ arises is if we have two curves γ1, γ2 : [a, b] → Ω, with the same
start point and the same end point, in our simply connected domain Ω. We can then consider the cycle
γ1 − γ2, which in the minimally abstract presentation we are giving would be represented by a closed
curve that first follows γ1 from γ1(a) to γ1(b) = γ2(b), and then follows γ2 in the reverse direction
from γ2(b) back to γ2(a) = γ1(a). Cauchy’s theorem in this setting then immediately implies that
integrating a holomorphic function along γ1 gives the same value as integrating it along γ2:

Theorem 9.5 (Deformation theorem on simply connected domains). Let Ω ⊂ C be a simply connec-
ted open set, and let f : Ω → C be holomorphic. If γ1, γ2 : [a, b] → Ω are piecewise C1 curves that
start at the same point γ1(a) = γ2(a) and end at the same point γ1(b) = γ2(b), then∫

γ1

f(z) dz =

∫
γ2

f(z) dz. (9.4.1)
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9.5 The Residue theorem

Although this deformation result is the simplest result of this form, and is all we will need later on,
the full Deformation theorem is nothing to do with simply connected domains. That Ω is simply
connected is telling us that the closed curve we are writing γ1 − γ2 is homotopic to a constant curve,
at which point we can apply the following lemma whose proof is a simple but messy exercise that
belongs more in a topology course.

Lemma 9.6. If Ω ⊂ C is any open set and γ1, γ2 : [a, b] → Ω are paths that start at the same point
γ1(a) = γ2(a) and end at the same point γ1(b) = γ2(b), then γ1 − γ2, viewed as a closed curve, is
homotopic to a constant curve if and only if γ1 is homotopic to γ2.

Thus, under the hypotheses of Theorem 9.5 the curves γ1 and γ2 are homotopic, and that is the
essential point. Indeed, when Ω ⊂ C is a general open set, and γ1 and γ2 are homotopic, then Lemma
9.6 tells us that γ1 − γ2, viewed as a closed curve, will be homotopic to a constant path within Ω. The
second part of Theorem 4.10 then tells us that I(γ, w) = 0 for every w /∈ Ω, i.e. γ is homologous
to zero, and we deduce the following from the homology version of Cauchy’s theorem, i.e. Theorem
9.3.

Theorem 9.7 (Deformation theorem). Let Ω ⊂ C be open, and f : Ω → C holomorphic. If γ1, γ2 :
[a, b] → Ω are piecewise C1 curves that are homotopic in the sense of Definition 2.30, then∫

γ1

f(z) dz =

∫
γ2

f(z) dz. (9.4.2)

Remark 9.8. Note that intuitively as we homotop the curve γ1 to the curve γ2, the integral along
intermediate curves should remain constant. However, a homotopy does not retain the piecewise
C1 nature of the curves, so integration is not immediately possible. The way we have developed the
theory avoids all these technicalities by pushing everything we need about homotopies into statements
about winding numbers rather than integrals. Other sources handle this issue in a number of different
ways. It is possible to modify a homotopy so that it is more regular, so integration is possible, but this
is quite painful technically. Another way is to generalise the definition of integration to handle merely
continuous curves, which turns out to be possible as long as we’re integrating holomorphic functions
f .

9.5 The Residue theorem

VIDEO: The Residue theorem

The Residue theorem can be viewed as a generalisation of the homology version of Cauchy’s theorem.
It will give us a powerful method for computing integrals in terms of so-called residues.

Definition 9.9. Suppose that f : Bδ(z0) \ {z0} → C is holomorphic, for some δ > 0, z0 ∈ C. The
residue of f at z0 is defined to be

res(f, z0) :=
1

2πi

∫
∂Bε(z0)

f(z) dz, (9.5.1)

for any ε ∈ (0, δ).
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9.5 The Residue theorem

By Corollary 5.8, the integral in (9.5.1) is independent of the choice of ε ∈ (0, δ).

Theorem 9.10 (Residue theorem). Let Ω ⊂ C be open. Assume that f is holomorphic on Ω \ S,
where S ⊂ Ω is a discrete set that is closed in Ω. Let γ be a closed piecewise C1 curve in Ω \ S (or
more generally a cycle in Ω \ S) that is homologous to zero in Ω.

Then there are finitely many points a ∈ S such that I(γ, a) ̸= 0, and we have∫
γ

f(z) dz = 2πi
∑
a∈S

I(γ, a) res(f, a). (9.5.2)

Recall that S being a discrete set means that for all a ∈ S , there exists ε > 0 such that a is the only
point in both S and Bε(a). That is, each point in S is isolated. By asking for S to be closed in Ω we
rule out the possibility of an accumulation point within Ω.

In the case that S = ∅, the Residue theorem 9.10 recovers the homology version of Cauchy’s theorem,
i.e. Theorem 9.3.

Proof. We begin by showing that γ winds around at most finitely many points in S, that is,

A := {a ∈ S : I(γ, a) ̸= 0}

is finite. Suppose instead that is not the case. Then we can pick a sequence an within A with pairwise
distinct elements. By Q. 4.3, the set A is bounded and so we can pass to a subsequence so that
an → a∞ ∈ Ω. We cannot have a∞ ∈ Ω since then we would have a∞ ∈ S by closedness of S in
Ω, and then S would fail to be discrete since a∞ would be an accumulation point. Therefore we have
a∞ ∈ ∂Ω, and in particular a∞ ∈ C \ Ω and so I(γ, a∞) = 0 by definition of γ being homologous to
zero. By Lemma 4.7, I(γ, a) = 0 for all a in some neighbourhood of a∞, and hence I(γ, an) = 0 for
sufficiently large n, giving a contradiction.

At this point we can write A = {a1, . . . , aN}, and choose ε > 0 small so that B2ε(ak) \ {ak} ⊂ Ω \S
for every k ∈ {1, . . . , N}. Writing γk : [0, 1] → Ω \ S for the curve

γk(t) = ak + εei2πt, (9.5.3)

we notice that I(γk, ak) = 1, while I(γk, a) = 0 for all a ∈ S \ {ak}.

Define nk := I(γ, ak) and consider the cycle

Γ = γ − n1γ1 − n2γ2 . . .− nNγN . (9.5.4)

By construction, the cycle Γ does not wind around any point in S in the sense that I(Γ, a) = 0 for all
a ∈ S. Moreover, I(Γ, a) = 0 for all a ∈ C\Ω. Hence by the general Cauchy theorem, Theorem 9.3,
applied on Ω \ S , we have that

∫
Γ
f(z) dz = 0, i.e.∫

γ

f(z) dz =
N∑
k=1

nk

∫
γk

f(z) dz =
N∑
k=1

I(γ, ak)2πi res(f, ak). (9.5.5)
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9.6 Evaluation of residues

9.6 Evaluation of residues

VIDEO: Evaluation of residues

Now that the Residue theorem 9.10 gives us a way of evaluating integrals in terms of residues, we had
better be able to compute these residues!

Given an explicit function f with an isolated singularity at z0, it may be hard to compute the residue
directly from the definition, i.e. from the integral in (9.5.1). Luckily we have a collection of tricks up
our sleeves to make this easier in practice.

Removable singularities:

Let’s get one trivial case out of the way: If f has a removable singularity at z0 then we can remove it
and apply Cauchy’s theorem 5.7 to deduce that res(f, z0) = 0.

Example 9.11. The residue of sin z
z

at z0 = 0 is zero.

Simple poles:

The first nontrivial case to consider is when f has a simple pole (i.e. a pole of order 1) at z0. We know
from Theorem 8.4 that we can then write f(z) = g(z)

z−z0
for some holomorphic g : Bδ(z0) → C with

g(z0) ̸= 0, and substituting into (9.5.1) gives

res(f, z0) =
1

2πi

∫
∂Bε(z0)

g(z)

z − z0
dz = g(z0) (9.6.1)

by Cauchy’s integral formula (5.6.1).

Example 9.12. To compute the residue of f(z) = 1
z2−1

at z0 = 1, we rewrite f(z) = 1
(z−1)(z+1)

. We
are then in the situation above with g(z) = 1

1+z
, and so res(f, 1) = g(1) = 1

2
.

Ratios, with at worst a simple pole:

If f(z) = h(z)
k(z)

, where h, k : Bδ(z0) → C are holomorphic with k(z0) = 0 but k′(z0) ̸= 0, i.e. k has a
zero of order one at z0, then we can write

f(z) =
g(z)

z − z0
for g(z) =

h(z)(
k(z)

(z−z0)

) .
Then g has a removable singularity at z0, which we can remove by setting

g(z0) = lim
z→z0

g(z) =
h(z0)

k′(z0)
.

Thus we conclude that

res(f, z0) =
h(z0)

k′(z0)
.
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9.7 Computation of real integrals and series using the Residue theorem

Example 9.13. The residue of 1
sin z

at z0 = 0 is 1
cos 0

= 1.

Pole of general order:

If f has a pole of general order n, then Theorem 8.4 now tells us that f(z) = (z− z0)−ng(z) for some
holomorphic g : Bδ(z0) → C with g(z0) ̸= 0. Substituting into (9.5.1) gives

res(f, z0) =
1

2πi

∫
∂Bε(z0)

g(z)

(z − z0)n
dz =

g(n−1)(z0)

(n− 1)!
(9.6.2)

according to the formula from Corollary 6.5. We can rewrite this in terms of f , giving

res(f, z0) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1

(
(z − z0)

nf(z)
)
, (9.6.3)

where we take care not to evaluate f at z0 where it is not defined!

Example 9.14. The residue of cos z
z3

at z0 = 0 is cos′′(0)
2!

= −1
2
.

General case

For essential singularities, or when we can find the Laurent series of f explicitly, then we can appeal
to the formula (8.6.2) for the Laurent coefficients ak of f to find that

res(f, z0) = a−1.

Example 9.15. The function f(z) = zn exp
(
1
z

)
has an essential singularity at 0, but we can expand

it as

f(z) =
∞∑
k=0

1

k!
zn−k

and the coefficient of z−1 is the term in which k = n+ 1, so res(f, 0) = 1
(n+1)!

.

9.7 Computation of real integrals and series using the Residue theorem

One of the many delights of Complex Analysis is the ability it gives you to quickly and precisely
compute integrals and series that you might otherwise have great difficulty with. We already saw an
example in Q. 5.4, and you will see further examples in Q. 9.3 and Q. 9.4.

Here we will cover just one of the various available techniques, geared to computing the integral over
[0, 2π] of rational functions of sin θ and cos θ. Rather than trying to quote a general theorem, we
illustrate the idea with an example.

We would like to prove that

I :=

∫ 2π

0

4 sin2 θ

5 + 4 cos θ
dθ = π. (9.7.1)
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9.7 Computation of real integrals and series using the Residue theorem

We can reverse engineer this into a complex integral over the C1 curve we’ve been calling ∂D, i.e.
γ : [0, 2π] → C given by γ(θ) = eiθ, so γ′(θ) = ieiθ = iγ(θ). Note that∫

γ

f(z)

iz
dz =

∫ 2π

0

f(γ(θ))

iγ(θ)
γ′(θ)dθ =

∫ 2π

0

f(eiθ)dθ.

We would like to pick f so that this integral equals the integral in (9.7.1). But by definition we have

sin θ =
eiθ − e−iθ

2i
=
eiθ − 1

eiθ

2i
, and cos θ =

eiθ + e−iθ

2
=
eiθ + 1

eiθ

2

so we obtain f by replacing every instance of sin θ in (9.7.1) by 1
2i
(z − 1

z
) and every instance of cos θ

by 1
2
(z + 1

z
). In this case

f(z) =
4
(

z− 1
z

2i

)2
5 + 4

(
z+ 1

z

2

) =
−z
(
z − 1

z

)2
(2z + 1)(z + 2)

(we multiplied top and bottom by z) and thus

I =

∫
γ

F (z)dz, where F (z) =
i
(
z − 1

z

)2
(2z + 1)(z + 2)

.

We evaluate this integral using the Residue theorem. Within D, we have a double pole at 0, and a
simple pole at z = −1

2
.

To compute the residue at z = −1
2
, it may help to write

F (z) =

[
i
(
z − 1

z

)2
2(z + 2)

]
1

(z − (−1
2
))
.

Then

res(F (z),−1

2
) =

[
i
(
−1

2
+ 2
)2

2(−1
2
+ 2)

]
=

3i

4
.

To compute the residue at z = 0, first expand brackets in the numerator:
(
z − 1

z

)2
= z2 − 2 + z−2.

This splits the function F into three terms, but the first two are holomorphic near z = 0 so do not
contribute to the residue. Therefore

res(F (z), 0) = res

(
i

z2(2z + 1)(z + 2)
, 0

)
.

It is more annoying to compute residues at double poles. We could expand using partial fractions and
take the a−1 Laurent coefficient. Alternatively we could write

i

z2(2z + 1)(z + 2)
=

1

z2
g(z), for g(z) =

i

(2z + 1)(z + 2)
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and use (9.6.2) to find that the residue would be

1

(2− 1)!
g′(0) = g′(0) = i(−2−2 +−2.

1

2
) = −5i

4
.

By the Residue theorem 9.10 we then have

I = 2πi

(
3i

4
− 5i

4

)
= π.

9.8 The argument principle

VIDEO: The argument principle

The video uses the concept of simple closed path, as defined in Definition 9.16 without defining it
(because in an earlier version of the lectures notes we covered this in an earlier section).

In this section we will develop a way of counting the number of zeros, minus the number of poles,
of a meromorphic function f : Ω → C∞ within an appropriate subset A ⊂ Ω. The subset A will be
described as some sort of interior of a closed path, and for that to make sense we should ensure that
the path does not cross itself in the following sense.

Definition 9.16. We say that a closed continuous path γ : [a, b] → C is simple if its restriction to
[a, b) is injective.

Although we will neither prove it nor use it, the Jordan curve theorem tells us that for any simple
closed continuous path γ : [a, b] → C, for a < b, the set C \ γ([a, b]) necessarily has exactly two
connected components, one bounded and one unbounded. Moreover, if we call the bounded one A
then either I(γ, z) = 1 for every z ∈ A or I(γ, z) = −1 for every z ∈ A. We know that the sign of
I(γ, z) can be flipped by reversing the parametrisation of γ. This motivates the following definition,
which we will tend to consider for explicit paths γ, e.g. bounding a disc, thus avoiding the need for
the Jordan curve theorem.

Definition 9.17. A simple closed continuous path γ : [a, b] → C is said to bound an open setA ⊂ C in
a positive direction if C\γ([a, b]) has two connected components, one of which is A, and I(γ, z) = 1
for every z ∈ A.

The connected component other than A will necessarily be unbounded, and we know from Q. 4.3 that
I(γ, z) = 0 for every z in that component.

Suppose now f : Ω → C∞ is a meromorphic function on a domain Ω ⊂ C that is not identically zero.
Let P ⊂ Ω be the set of poles of f , and let Z ⊂ Ω be the set of zeros of f . We know that both P and
Z are discrete and closed in Ω. (See Section 8.2.)
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9.8 The argument principle

Given any A ⊂ Ω that is bounded in a positive direction by a simple closed curve γ in the sense of
Definition 9.17, define ZA(f) and PA(f) to be the number of zeros and poles of f in A, respectively,
counting multiplicity. That is,

ZA(f) =
∑

z∈Z∩A

ord(f, z), PA(f) =
∑

z∈P∩A

[− ord(f, z)],

where we recall that if f has a pole of order n at z then ord(f, z) = −n (see Section 8.7).

Our objective is to try to count the number of zeros minus the number of poles, i.e.

ZA(f)− PA(f) =
∑

z∈(Z∪P)∩A

ord(f, z),

in terms of f on the image of γ.

Theorem 9.18 (Argument principle). Let Ω ⊂ C be a domain and let f : Ω → C∞ be a meromorphic
function that is not identically zero. Let γ : [a, b] → Ω \ (P ∪ Z) be a piecewise C1 simple closed
curve that bounds an open set A ⊂ Ω in a positive direction in the sense of Definition 9.17. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = ZA(f)− PA(f). (9.8.1)

Proof. Consider the behaviour of the logarithmic derivative f ′(z)
f(z)

, as first considered in Section 7.3,
near a pole or a zero of f at z0. In either case we can write

f(z) = (z − z0)
ng(z), (9.8.2)

for z in a neighbourhood of z0, where g is a holomorphic function with g(z0) ̸= 0 and 0 ̸= n =
ord(f, z0) is positive in the case of a zero and negative in the case of a pole. For z sufficiently close
to z0 so that g(z) ̸= 0, the logarithmic derivative then yields

f ′(z)

f(z)
=

1

f(z)

(
n(z − z0)

n−1g(z) + (z − z0)
ng′(z)

)
=

n

z − z0
+
g′(z)

g(z)
. (9.8.3)

As g(z0) ̸= 0 we can conclude that f ′

f
has a simple pole with residue n at z0, and so

res
(

f ′(z)
f(z)

, z0

)
= ord(f, z0).

The Argument principle then follows immediately from the Residue theorem 9.10.

Note that we apply the Residue theorem with S = Z ∪ P . We also observe that γ is necessarily
homologous to zero: it only winds around points in A, and all of those are within Ω.

If we unwind the definition of the integral in the Argument principle, using the chain rule (1.2.4), we
find that ∫

γ

f ′(z)

f(z)
dz =

∫ b

a

f ′(γ(t))

f(γ(t))
γ′(t)dt =

∫ b

a

(f ◦ γ)′(t)
f ◦ γ(t)

dt =

∫
f◦γ

1

z
dz.

Dividing by 2πi, the argument principle then implies that ZA(f) − PA(f) is the winding number of
f ◦ γ about 0.
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Corollary 9.19. With Ω, f , A and γ as in the Argument principle, Theorem 9.18, we have

ZA(f)− PA(f) = I(f ◦ γ, 0).

Example 9.20. Let’s cross-check this corollary in the simple case that f(z) = zn and A is the unit
disc D. The function f has a zero of order n at 0, but no poles, and so ZD(f) − PD(f) = n. The
boundary of D is given by the curve γ(t) = e2πit for t ∈ [0, 1] and so f ◦ γ(t) = e2πint. This curve
winds exactly n times around 0 as required.

Already in the case of holomorphic f , this interpretation of the number of zeros as the winding number
of f ◦ γ leads to the so-called Rouché theorem.

9.9 Rouché’s theorem

VIDEO: Rouché’s theorem

We have seen that the number of zeros of a holomorphic function G : Ω → C over an open set A ⊂ Ω
bounded by a piecewise C1 simple closed curve γ : [a, b] → Ω \ Z in a positive direction, is equal
to the winding number of the curve G ◦ γ around 0. If we perturb G, then the curve G ◦ γ will be
perturbed, but if we don’t change G very much then the winding number should stay the same. Thus
the number of zeros should stay the same. This is the content of Rouché’s theorem:

Theorem 9.21 (Rouché’s theorem). Let g,G : Ω → C be two holomorphic functions on some domain
Ω ⊂ C, and let γ : [a, b] → Ω be a piecewise C1 simple closed curve that bounds an open set A ⊂ Ω
in a positive direction in the sense of Definition 9.17. Suppose that |g(z)| < |G(z)| for every z in the
image of γ. Then G and G+ g have the same number of zeros in A.

Note that the assumption |g(z)| < |G(z)| implies that neither G nor G+ g can have any zeros on the
image of the boundary curve γ.

Proof. Because of our hypothesis that |g(z)| < |G(z)| for every z in the image of γ, we can apply the
dog walking lemma 4.6 with γ there equal to G ◦ γ here, and γ̃ there equal to (G+ g) ◦ γ here. This
implies that

I(G ◦ γ, 0) = I ((G+ g) ◦ γ, 0) .

By the argument principle, in the form given by Corollary 9.19, the left-hand side is the number of
zeros of G in A, while the right-hand side is the number of zeros of G+ g in A.

Example 9.22. Let’s illustrate one use of Rouché’s theorem by showing that the equation z5 +15z+
1 = 0 has precisely four solutions in the annulus {z ∈ C : 1 < |z| < 2}.

First we apply Rouché with Ω = C, A = B2(0), γ : [0, 2π] → C defined by γ(θ) = 2eiθ, G(z) = z5

and g(z) = 15z+1. Then on the image of γ, i.e. on ∂B2(0), we have |G(z)| = 25 = 32, but |g(z)| =
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9.9 Rouché’s theorem

|15z + 1| ≤ 15|z|+ 1 = 31. Thus |g(z)| < |G(z)|, and so by Rouché’s theorem P (z) = G(z) + g(z)
has the same number of roots in B2(0) as G(z) does, i.e. five.

Next we can apply Rouché with Ω = C, A = B1(0), γ : [0, 2π] → C defined by γ(θ) = eiθ,
G(z) = 15z and g(z) = z5 + 1. Then on the image of γ, i.e. on ∂B1(0), we have |G(z)| = 15,
but |g(z)| = |z5 + 1| ≤ |z|5 + 1 = 2. Thus |g(z)| < |G(z)|, and so by Rouché’s theorem P (z) =
G(z) + g(z) has the same number of roots in B1(0) as G(z) does, i.e. one.

That leaves four roots in the given annulus.

We can improve the inner radius 1 of this annulus a lot. The same argument works for any inner
radius r so that 15r > r5 + 1. For example, we could take r = 1.95, so the four roots are quite close
to the circle ∂B2(0). On the other hand, we could also take r = 0.07, so the fifth root is actually very
close to the origin!
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Figure 7: Another useful cake contour

9.10 Exercises

9.1. A consequence of Theorem 4.10 is that if Ω ⊂ C is open then any piecewise C1 closed curve
γ : [a, b] → Ω that is homotopically trivial (within Ω) is necessarily homologous to zero. In this
exercise you see that the converse is not true.

Let Ω ⊂ C be a domain constructed by taking the unit disc D and deleting two distinct points.
Find a closed curve within Ω that is homologous to zero, but not homotopic to a constant curve.

9.2. Suppose f : D \ {0} → C is a holomorphic function with zero residue at 0, i.e. res(f, 0) = 0.
Is the singularity at 0 necessarily removable?

9.3. Use the Residue theorem 9.10, integrating over the boundary of a large half disc {z ∈ BR(0) :
ℑ(z) > 0}, to explicitly verify that ∫ ∞

−∞

dx

1 + x2
= π.

Of course, you already knew how to do this one at school because d
dx

tan−1 x = 1
1+x2 .

9.4. Let’s generalise the previous question and verify that for any m ∈ N we have∫ ∞

−∞

ds

1 + s2m
=

π

m sin( π
2m

)
.

To do this, integrate around a piece of cake as in Figure 7. That way you should just have one
residue to compute, and it corresponds to a simple pole at the point I’ve marked on the figure.
If you prefer, you could specialise to the case that m = 2 or m = 3.

You could integrate around the boundary of a large half disc as in Q. 9.3 to get the same answer.
However this creates extra work because you end up with m residues to compute rather than
one.

9.5. Here is another type of integral you can do using complex integration.

Verify that ∫ 2π

0

dθ

3− 2 cos θ + sin θ
= π



9.10 Exercises

by turning it into an integral of a holomorphic function over the curve γ : [0, 2π] → C defined
by γ(θ) = eiθ. It may help to recall that writing z = eiθ we have

sin θ =
eiθ − e−iθ

2i
=
z − 1

z

2i
, and cos θ =

eiθ + e−iθ

2
=
z + 1

z

2
,

and that γ′(θ) = ieiθ = iz. We can then write∫ 2π

0

dθ

3− 2 cos θ + sin θ
=

∫
γ

[
1

3− (z + 1
z
) + 1

2i
(z − 1

z
)

]
dz

iz

and we are heading towards a situation in which we can apply the residue theorem.

9.6. In this question we use Rouché’s theorem to find the rough location of the six roots of the
polynomial P (z) = z6 + 10z + 1. In each part, we take G(z) to be one of the terms in the
polynomial, and g(z) to be the remaining two terms.

(a) Suppose R > 0 is sufficiently large so that R6 > 10R + 1. (For example, R = 1.605.)
Show that P (z) has all six roots in BR(0).

(b) Suppose r > 0 is sufficiently small so that r6 + 10r < 1. (For example, r = 0.0999.)
Show that P (z) has no roots in Br(0).

(c) Suppose s > 0 satisfies 10s > s6 + 1. (For example, s = 0.10001, or s = 1.564.) Show
that P (z) has one root in Bs(0).

By conjugating the equation P (z) = 0, we see that if z is a root then z̄ is also a root. In
particular, since there is only one root within Bs(0), it must be real! Clearly it can’t be positive
(because P (x) > 0 for x > 0) so the root must be around −0.1. The other five roots are in
an annulus with inner radius 1.564 and outer radius 1.605. Around this zone, the dominant
terms of the polynomial P (z) are z6 and 10z, so these five roots should be near the roots of
z5 + 10 = 0.

This Mathematica code will find and plot the roots:

f[z_] := zˆ6 + 10z + 1;
ComplexListPlot[z /. Solve[f[z]==0,z], PlotStyle->PointSize[Large]]
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10 Sequences of holomorphic functions

10.1 Weierstrass convergence theorem

VIDEO: Weierstrass convergence theorem

At 17:10 I missed a bar over the Bδ(z).

If a sequence fn : [a, b] → R of continuous functions converges uniformly to a function f : [a, b] →
R, then we know that the limit function f is continuous.

However, if we additionally assume that the functions fn are smooth (i.e. infinitely differentiable)
then the limit need not be even once differentiable. In fact, any continuous function f : [a, b] → R is
the uniform limit of a sequence of smooth functions fn. According to the Weierstrass approximation
theorem, we can even ask for these approximating functions fn to be polynomials!

As usual, the case of holomorphic functions is very different.

Theorem 10.1 (Weierstrass convergence theorem). Let Ω ⊂ C be open, and let fn : Ω → C be a
sequence of holomorphic functions on Ω. If fn converges locally uniformly to a function f : Ω → C,
then

(i) f is holomorphic, and

(ii) also the higher derivatives converge: For every k ∈ N we have

f (k)
n → f (k)

locally uniformly as n→ ∞.

Recall that the sequence fn is said to converge locally uniformly to f if for every compact set K ⊂ Ω
the sequence of restricted functions fn|K converges uniformly to f |K . For example, the sequence
fn : D → C defined by fn(z) = zn converges locally uniformly to f ≡ 0, but the convergence is not
uniform.

Implicit in Part (ii) of the theorem is that the limit function f is infinitely differentiable, as follows
from f being known to be holomorphic, by Corollary 6.4. The convergence of Part (ii) would gener-
ally be referred to as smooth local convergence of fn to f .

Proof. Because f is the local uniform limit of a sequence of continuous functions, we know that it is
continuous. By Morera’s theorem 6.9 in order to establish Part (i) it suffices to prove that for every
closed triangle T ⊂ Ω we have ∫

∂T

f(z)dz = 0. (10.1.1)
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10.2 Hurwitz’s Theorem

This is true because by Goursat’s theorem 5.3 and the uniform convergence fn → f on ∂T , we know
that

0 =

∫
∂T

fn(z)dz →
∫
∂T

f(z)dz.

To prove Part (ii), supposeK ⊂ Ω is the compact set on which we would like the uniform convergence
f
(k)
n → f (k). For this K, we choose δ > 0 sufficiently small so that for every z ∈ K we have
B2δ(z) ⊂ Ω. Here we are using the compactness of K. If we then define Kδ to be the set of points
whose distance from K is no more than δ, i.e.

Kδ := ∪z∈KBδ(z),

then we have another compact subset of Ω.

See the lectures/video for some pictures!

We will turn the uniform convergence fn → f on Kδ into uniform convergence f (k)
n → f (k) on the

smaller set K. By the formula for higher derivatives, akin to Cauchy’s integral formula, given in
Corollary 6.5, for every z ∈ K and k ∈ N we have

f (k)
n (z)− f (k)(z) =

k!

2πi

∫
∂Bδ(z)

fn(w)− f(w)

(w − z)k+1
dw,

and so by (3.4.3) we have∣∣f (k)
n (z)− f (k)(z)

∣∣ ≤ k!

2π
(2πδ) sup

w∈∂Bδ(z)

|fn(w)− f(w)|
δk+1

≤ k!

δk
sup
w∈Kδ

|fn(w)− f(w)|.

The final term is independent of z ∈ K, and converges to zero by the uniform convergence fn → f
on Kδ.

10.2 Hurwitz’s Theorem

VIDEO: Hurwitz’s Theorem

Adolf Hurwitz (1859 - 1919).

In the Weierstrass convergence theorem 10.1, the limit function f does not just inherit the property of
being holomorphic from the approximating functions fn. It also inherits upper bounds on the number
of zeros.

Theorem 10.2 (Hurwitz’s theorem). Let Ω ⊂ C be open and connected and suppose that fn : Ω →
C is a sequence of holomorphic functions that converges locally uniformly to a limit f , which is
necessarily holomorphic by the Weierstrass convergence theorem 10.1. Suppose that, for some k ∈
N0 = {0, 1, 2, . . .}, each function fn has no more than k zeros (counting multiplicity). Then either
f ≡ 0 or f also has at most k zeros (counting multiplicity).
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In particular, if the fn have no zeros, then either f does not have any zeros either, or f ≡ 0.

Remark 10.3. The number of zeros can decrease in the limit because they can wander out of the
domain. For example, if fn : D → C is defined by fn(z) := (z − 1 + 1

n
), then for any n ∈ N the

function fn has a zero at 1− 1
n
∈ D. But fn converges locally uniformly to f(z) = z− 1, which does

not have a zero in D.

Proof. Suppose that the theorem is not true. Then we can find a situation satisfying the hypotheses
of the theorem where the function f has strictly more than k zeros without being identically zero. All
the zeros of f must be of finite order, since otherwise Theorem 7.4 would tell us that f would vanish
throughout the connected open set Ω. Therefore each zero is isolated, and if we pick enough of them,
say at distinct points z1, z2, . . . , zK , with orders m1,m2, . . . ,mK respectively, we can arrange that∑
mi > k.

Because there are finitely many points zi, and each is isolated in the set of zeros, we can pick a small
radius δ > 0 so that the K closed balls Bδ(zi) are pairwise disjoint sets lying within Ω, and so that
there are no zeros of any type in any of the sets Bδ(zi) \ {zi}. Consider now the union of circles

Σ := ∪K
i=1∂Bδ(zi).

By compactness of Σ and continuity of |f |, we can define

ε := min
z∈Σ

|f(z)| > 0.

By the assumed uniform convergence of fn to f on Σ, after deleting finitely many terms in the
sequence fn, we may assume that

|fn(z)− f(z)| < ε

for all z ∈ Σ. Rouché’s theorem 9.21, applied with G(z) = f(z) and g(z) = fn(z) − f(z), then
implies that each fn also has exactly mi zeros in the ball Bδ(zi) for each i. The total number of zeros
of each fn is then strictly larger than k, giving a contradiction.

Corollary 10.4. Any function f arising as a local uniform limit of injective holomorphic functions
fn, defined on an open connected set Ω ⊂ C, is either constant or injective.

Proof. Suppose that f is neither constant nor injective. Because it is not injective, there exist z1 ̸= z2
with f(z1) = f(z2) =: w.

We would like to apply the Hurwitz theorem to the functions fn(z) − w, which have f(z) − w as a
local uniform limit. For each n, the function fn(z) − w has at most one zero because fn is injective.
Because f is not constant, the function f(z)−w is not identically zero. Hurwitz’s theorem 10.2 then
implies that f(z) − w has at most one zero. However, we already found zeros at two distinct points
z1 and z2, giving a contradiction.
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10.3 Compactness: Montel’s theorem

I have dropped the video link because changes to the lecture notes take them too far from the original
recording.

Paul Antoine Aristide Montel (1876 - 1975).

Recall that a sequence of functions fn : Σ → C from a set Σ ⊂ C is said to be uniformly bounded if
there exists M <∞ such that |fn(z)| ≤M for all z ∈ Σ and for all n ∈ N.

A weaker condition that is often easier to work with is the following.

Definition 10.5. Let Ω ⊂ C be open. A sequence of functions fn : Ω → C is said to be locally
uniformly bounded if for all compact K ⊂ Ω, the restricted functions fn|K : K → C are uniformly
bounded.

Suppose we have such a sequence fn. Given that for each fixed z ∈ Ω the sequence fn(z) is a
bounded sequence in C, and we can pass to a subsequence to obtain a limit, one might think that
one can take one subsequence and obtain local uniform convergence of fn to some limit function.
However, in general this fails. Even when considering functions fn : R → R, one could take the uni-
formly bounded sequence fn(x) = sinnx. These functions have no chance of converging uniformly,
whichever subsequence we take!

According to the Ascoli-Arzelà theorem, this problem is fixed if we assume that the functions fn are
uniformly equicontinuous.

Definition 10.6. LetK ⊂ C be compact. A sequence of functions fn : K → C is said to be uniformly
equicontinuous if for all ε > 0, there exists δ > 0 such that for all n ∈ N and for all z, w ∈ K with
|z − w| < δ, we have |fn(z)− fn(w)| < ε.

Thus each fn is uniformly continuous, and the constant δ > 0 does not depend on n.

Theorem 10.7 (Ascoli-Arzelà). If K ⊂ C is compact and fn : K → C is a uniformly bounded
and uniformly equicontinuous sequence of functions, then a subsequence converges uniformly to a
continuous function f : K → C.

The key point of this section is that when we take a locally uniformly bounded sequence of holo-
morphic functions, we will be able to show that they are uniformly equicontinuous on any compact
subset, and by appealing to the Ascoli-Arzelà theorem we will obtain:

Theorem 10.8 (Montel’s theorem). Every locally uniformly bounded sequence of holomorphic func-
tions fn : Ω → C on an open set Ω ⊂ C has a locally uniformly convergent subsequence.

Proof. The main content of Montel’s theorem will be contained in the following apparently weaker
claim.

Claim: For every ball B2r(a) ⊂ Ω, we can pass to a subsequence so that fn is uniformly convergent
on the smaller ball Br(a).
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Proof of claim. By rescaling and dilating we may assume thatB2(0) ⊂ Ω and ask that fn is uniformly
convergent on D.

By the local uniform boundedness, we can pick M <∞ so that |fn| ≤M for all n, throughout B2(0)
and in particular on ∂B2(0).

Suppose z1, z2 ∈ D. Cauchy’s integral formula (5.6.1) tells us that for any n we have

fn(z1)− fn(z2) =
1

2πi

∫
∂B2(0)

fn(w)

w − z1
dw − 1

2πi

∫
∂B2(0)

fn(w)

w − z2
dw

=
z1 − z2
2πi

∫
∂B2(0)

fn(w)

(w − z1)(w − z2)
dw.

For w ∈ ∂B2(0), where we are integrating, we have |w − z1| ≥ 1 and |w − z2| ≥ 1, and so∣∣∣∣ 1

(w − z1)(w − z2)

∣∣∣∣ ≤ 1.

Therefore by (3.4.3) we have

|fn(z1)− fn(z2)| ≤
|z1 − z2|

2π
(2π2)M = 2M |z1 − z2|.

We have shown that when restricted to D, the functions fn are uniformly equicontinuous. (We have
even shown that the restricted functions have a uniform bound on their Lipschitz constants, which is
much stronger still.)

Indeed, given any ε > 0 we can take δ = ε
2M

.

We can then apply the Ascoli-Arzelà theorem 10.7 to obtain the desired uniform convergence on D.
This completes the proof of the claim.

To see how Montel’s theorem follows from the claim, we pick a countable sequence of centres ai ∈ Ω
and radii ri > 0 such that B2ri(ai) ⊂ Ω for every i ∈ N and so that the sets

Km =
m⋃
i=1

Bri(ai)

exhaust the whole of Ω, that is, for every compact K ⊂ Ω we have K ⊂ Km for large enough m.8

For each i in turn we use the claim to pass to a subsequence so that fn is uniformly convergent on
Bri(ai). It remains to pass to a diagonal subsequence.

8There are several ways we could find these centres ai and radii ri. For example, we could start by taking any sequence
K̃k of compact sets in Ω that exhaust Ω (e.g. we could define K̃k to be all the points z ∈ Bk(0) such that B 1

k
(z) ⊂ Ω).

By compactness, we can cover each K̃k by a finite number of balls Bai
(ri), for ai ∈ K̃k and ri > 0, with the property

that B2ri(ai) ⊂ Ω. We can then list all these balls for k = 1, 2, 3, . . . in turn.
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11 The Riemann mapping theorem

11.1 Riemann mapping theorem - statement and final ingredients

VIDEO: Riemann mapping theorem - statement + final ingredient

The video does not cover the final part of this subsection, which was added later.

Georg Friedrich Bernhard Riemann (1826 - 1866).

Back in Section 2.9, we introduced the notion of biholomorphic maps/functions and the notion of
conformal equivalence of domains. With the developments of Theorem 7.14, we improved this a
little to say that two domains9 Ω1,Ω2 ⊂ C are conformally equivalent if there exists a bijective
holomorphic function φ : Ω1 → Ω2.

Also in Section 2.9 we discussed a handful of examples of domains that were conformally equivalent
to the unit discD. The only simply connected domain that we saw that was not conformally equivalent
to D was the whole plane C. Our objective is to prove that every other simply connected domain is
conformally equivalent toD. This is an amazing and very powerful result. We are not just considering
some very special domains as in Section 2.9. Our domains could be arbitrarily complicated. Imagine
the interior of a Koch snowflake (if you know what that is).

Theorem 11.1 (Riemann mapping theorem). Let Ω ⊂ C be any simply connected domain other than
the whole of C. Then Ω is conformally equivalent to the unit disc D.

Remark 11.2. The true power of this theorem is in the existence of a biholomorphic function from
Ω to D. However, the vastly weaker consequence that we can find a homeomorphism from Ω to D is
already significant. When coupled with the observation that C (which is prohibited in the Riemann
mapping theorem) is homeomorphic to D, one deduces the topological implication that every simply
connected Ω ⊂ C is homeomorphic to the unit disc.

Remark 11.3. The map φ giving the conformal equivalence in the Riemann mapping theorem will
never be unique because we can always compose it with a Möbius transformation that maps the disc
D bijectively to itself, as in Remark 2.22. However, this then describes all the possible maps φ.
Indeed, if we have two such maps φ1, φ2 : Ω → D, then φ1 ◦ φ−1

2 is a biholomorphic map from the
disc D to itself, and Corollary 7.16 classifies these.

The following lemma, generalising Corollary 7.10, allows us to take the square root of certain func-
tions.

Lemma 11.4. Let Ω ⊂ C be a simply connected domain and let g : Ω → C \ {0} be holomorphic.
Then there exists a holomorphic function ℓ : Ω → C such that

g(z) = eℓ(z) for all z ∈ Ω. (11.1.1)
9recall that a domain is a nonempty connected open subset of C
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11.1 Riemann mapping theorem - statement and final ingredients

In particular, for k ∈ N, the function ψ(z) := e
1
k
ℓ(z) is a holomorphic function on Ω whose kth power

is g(z). Furthermore, if g is injective then ψ is injective.

Remark 11.5. If Ω ⊂ C \ {0} is a simply connected domain then we can apply the lemma to the
holomorphic function g(z) = z to give a well-defined logarithm function on Ω that is automatically
holomorphic. Note that this would fail for Ω = C \ {0} because it is not simply connected. When
working on a simply connected domain such as the slit plane on which we have already defined a
logarithm, the new logarithm must agree with the old, modulo the usual additive constant 2πin for
n ∈ Z. This is because by (3.3.2) and (11.1.1) with g(z) = z, we have

eℓ(z) = z = elog z

for all z ∈ Ω.

Proof. By Lemma 7.9, all we need to do to find ℓ is to find an anti-derivative F (z) of the function
f(z) := g′(z)

g(z)
.

Fix an arbitrary z0 ∈ Ω. For any other point z ∈ Ω, let γ be a piecewise C1 curve in Ω that connects
z0 to z. The existence of a continuous path connecting z0 to z is ensured by the connectedness of
Ω. That continuous path can be modified into a nearby piecewise C1 curve (even a piecewise linear
curve) γ by dividing it up into tiny portions and replacing each by a line segment.

I’ll draw some pictures in the video!

Define

F (z) =

∫
g◦γ

dw

w
=

∫
γ

g′(w)

g(w)
dw. (11.1.2)

By the Deformation theorem 9.5, because Ω is simply connected, the integral defining F will be
independent of the choice of γ, and so F is well-defined.

Moreover, F will be holomorphic with F ′(z) = g′(z)
g(z)

. To see this, for given z ∈ Ω, fix a curve from
z0 to z and then append a line segment [z, z + h] to reach an arbitrary point z + h in a neighbourhood
Bδ(z) ⊂ Ω of z. Then

F (z + h) = F (z) +

∫
[z,z+h]

g′(w)

g(w)
dw,

and differentiating with respect to h and evaluating at h = 0, using Corollary 5.6, we deduce that
F ′(z) = g′(z)

g(z)
as required.

Finally, suppose g is injective. Then whenever we have ψ(z1) = ψ(z2) for z1, z2 ∈ Ω, taking the
kth power of both sides we obtain g(z1) = g(z2) and thus z1 = z2 by the injectivity of g. Thus ψ is
injective.

Recall that the Schwarz lemma tells us that a holomorphic function H : D → D with H(0) = 0
satisfies |H ′(0)| ≤ 1, i.e. H cannot stretch too much at 0. The following lemma says that if we shrink
the domain a bit in the right way then there is space for some stretching.
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11.1 Riemann mapping theorem - statement and final ingredients

Lemma 11.6 (Stretching lemma). Suppose that U ⊂ D is a simply connected domain with 0 ∈ U
and U ̸= D. Then there exists an injective holomorphic function H : U → D with H(0) = 0 such
that |H ′(0)| > 1.

Note that although it is useful intuition thatH stretches the domain near 0 more than would be possible
if U were the whole of D, we are not claiming that H(U) contains the original domain U so the idea
that H stretches the domain U has to be treated with caution.

Proof. Recall from Example 2.21 that for each w ∈ D, the Möbius transformation

φw(z) =
z − w

w̄z − 1

gives a biholomorphic function from D to itself, interchanging 0 and w, and with the property that
φw is its own inverse. Pick any w0 ∈ D \ U , and choose either possible w1 ∈ D with w2

1 = w0. We
can then define a holomorphic function h : D → D, with h(0) = 0, as the composition of φw1 , then
z 7→ z2, then φw0 , i.e.

h(z) = φw0([φw1(z)]
2).

Clearly h is not injective because z 7→ z2 is not injective. Indeed, every point in D other than w0 is hit
twice. Therefore the Schwarz lemma, i.e. Theorem 7.15, implies that |h′(0)| < 1 (otherwise h would
have to be a rotation, which would be injective).

Because 0 /∈ φw0(U), we can invoke Lemma 11.4, with g there equal to φw0 here, to give an injective
holomorphic ‘square root’ function ψ : U → C such that ψ(z)2 = φw0(z) for all z ∈ U . In fact,
ψ : U → D, i.e. it takes values in D ⊂ C. Because

ψ(0)2 = φw0(0) = w0 = w2
1,

by flipping the sign of ψ throughout if necessary we may assume that ψ(0) = w1.

We can now define our injective holomorphic function H : U → D with H(0) = 0 by

H = φw1 ◦ ψ.

Observe that
h ◦H(z) = φw0([φw1 ◦ φw1 ◦ ψ(z)]2)

= φw0([ψ(z)]
2)

= φw0 ◦ φw0(z)

= z.

(11.1.3)

Differentiating using the chain rule gives

h′(H(z))H ′(z) = 1,

and evaluating at z = 0 allows us to conclude that

|H ′(0)| = 1

|h′(0)|
> 1.
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11.2 Proof of the Riemann mapping theorem

11.2 Proof of the Riemann mapping theorem

We give the proof due to Koebe, which uses a large number of the results that we have proved in the
course. We divide the proof into three separate claims. The first is a much weaker version of the full
claim.

Claim 11.7. The domain Ω is conformally equivalent to some open subset of D.

Proof of Claim 11.7. To get a feel for what is being claimed, observe that the claim is trivial if Ω is
bounded, i.e. fully contained in BR(0) for some R. In that situation the function φ(z) = z

R
gives the

conformal equivalence. More generally, if Ω omits some small ball, i.e. we can find some w0 ∈ C and
δ > 0 such that Bδ(w0) ∩ Ω = ∅, then we can simply set φ(z) = δ

z−w0
. Consequently, it is sufficient

to show that there exists an injective holomorphic function ψ : Ω → C \ Bδ(w0) for some δ > 0,
w0 ∈ C.

An example of a domain we still have to worry about would be the plane minus a slit, e.g. C\(−∞, 0].
Such a domain does not omit any open ball. However, we can make some space for an open ball by
mapping it to a half space using the square root function reiθ 7→

√
re

iθ
2 for θ ∈ (−π, π). The

following argument essentially does this in general.

Because Ω ̸= C, after possibly translating Ω we may assume that 0 /∈ Ω. Applying Lemma 11.4 in
the case that g(z) = z gives an injective holomorphic branch of the square root ψ : Ω → C defined
by ψ(z) = e

1
2
ℓ(z) so ψ(z)2 = z for all z ∈ Ω. We now show essentially that the image of Ω under

the square root function ψ consists of less than half of C. Indeed, if w ∈ ψ(Ω) then we cannot have
−w ∈ ψ(Ω) because the only point that can map to either is z := w2 = (−w)2. If we pick any
w1 ∈ ψ(Ω) then the open mapping theorem 7.11 tells us that the image ψ(Ω) must contain some ball
Bδ(w1). Therefore the ball Bδ(−w1) is disjoint from the image ψ(Ω). By setting w0 = −w1 we have
completed the proof of Claim 11.7.

By Claim 11.7, we may assume from now on that Ω ⊂ D. We may as well assume also that 0 ∈ Ω
because if 0 ̸∈ Ω then we can always shrink Ω by a factor two and then translate it. Consider the set
of functions

F = {f : Ω → D : f is holomorphic and injective, and f(0) = 0}. (11.2.1)

The function f(z) = z lies in F , so F is nonempty. Our goal, the Riemann mapping theorem, will be
realised if we can show that F contains at least one surjective function.

Claim 11.8. If f ∈ F is not surjective, then there exists a different function F ∈ F with |f ′(0)| <
|F ′(0)|.

Proof of Claim 11.8. If f ∈ F is not surjective then we can apply the stretching lemma 11.6 with
U = f(Ω) to give an injective holomorphic function H : U → D with H(0) = 0 and |H ′(0)| > 1.
We can then define an injective holomorphic function F : Ω → D with F (0) = 0 by

F = H ◦ f.
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11.2 Proof of the Riemann mapping theorem

The chain rule gives
F ′(z) = H ′(f(z))f ′(z)

so
|F ′(0)| = |H ′(0)|.|f ′(0)| > |f ′(0)|,

as required.

The Riemann mapping theorem will then follow if we can find f ∈ F with maximal |f ′(0)|. That is
precisely what we claim now.

Claim 11.9. There exists f ∈ F such that

|f ′(0)| = S := sup{|g′(0)| : g ∈ F}. (11.2.2)

Proof of Claim 11.9. The supremum S is strictly positive, indeed at least 1, because g(z) = z lies in
F . Moreover we have that S <∞ because if we pick δ small enough so that Bδ(0) ⊂ Ω, then by the
Schwarz lemma, or rather its consequence Q. 7.7 applied with r = δ and s = 1, we find that

|g′(0)| ≤ 1

δ

for all g ∈ F .

Let fn be a sequence in F with |f ′
n(0)| ↑ S. By Montel’s theorem, Theorem 10.8, after passing to a

subsequence we have local uniform convergence to a limit function f : Ω → C.

We claim that f ∈ F with |f ′(0)| = S, as required.

By Part (i) of the Weierstrass convergence theorem 10.1, the limit f is a holomorphic function. By
the local uniform convergence we have f(0) = limn→∞ fn(0) = 0.

By Part (ii) of the Weierstrass convergence theorem 10.1 the derivatives f ′
n converge locally uniformly

to f ′, and in particular pointwise at z = 0, and so |f ′(0)| = S. Since S is positive, one consequence of
this is that f cannot be constant and hence, by Hurwitz’s theorem, Theorem 10.2, or rather Corollary
10.4, f is injective. Finally, as f is the locally uniform limit of the fn we have |f(z)| ≤ 1 for all
z ∈ Ω, i.e. f(Ω) ⊂ D. But by the Maximum modulus principle of Corollary 7.12, we must have
|f(z)| < 1 for all z ∈ Ω, i.e. f(Ω) ⊂ D. Hence, f ∈ F with |f ′(0)| = S, as claimed.

This finishes the proof of the Riemann mapping theorem.
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