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Administrative issues

Slides:
Lectures 1-4: available on webpage
Lecture 4 includes a corrected discussion of the special values
ζ∗(1− k) on P.21-24.

Problem sheets:
3 sets for assessment

1 22nd February (Monday of Week 6): posted
2 8th March (Monday of Week 8): available this weekend
3 22nd March (Monday of Week 10): tentative

available at least two weeks before deadlines
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Administrative issues

Office hours:
Time: starting next week
Format: Q&A? Tutorial? Supplementary lectures?
Content: Problem sheets? Geometric modular forms?

Email:
Personal replies: I still owe many of you!
Survey: office hours, feedback, etc.
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Plans

Today (mostly):
Recap
Hecke operators on p-adic modular forms
Applications of Up-operator: constant terms; congruences
Note: I want to illustrate two important principles, while
omitting many details.

Today (briefly):
Weierstrass parametrization of elliptic curves over C
Crash course on geometric modular forms: next week
(possibly during office hours?)
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Recap: p-adic modular forms

f ∈ Qp[[q]] is a (Serre) p-adic modular form if it is the
limit of a sequence of classical modular forms fi ∈ Mki ,Q.
f has a well-defined notion of weight: ki converges to
k ∈ X = Zp × Z/(p − 1)Z (group of characters of Z×p ).
Slogan: The non-constant coefficients an (for n ≥ 1) govern
the constant term a0.

Example
p-adic Eisenstein series G∗k
p-adic zeta function ζ∗(s)
Today: formula for a0 in certain cases
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Hecke operators T` for ` 6= p
Recall Hecke operators on classical modular forms: If
f = ∑∞

n=0 anqn ∈ Mk , then for ` prime,

f |kT` =
∞∑

n=0
an`qn + `k−1

∞∑
n=0

anqn` ∈ Mk .

Recall: for each fixed d ∈ Z×p , the map X→ Q×p , k 7→ dk is
continuous.
Last week: T` behaves well under p-adic limits so long as
` 6= p. (More precisely, if fi ∈ Mki tends to f ∈ M†k , then
fi |ki T` ∈ Mki tends to f |kT` ∈ M†k given by the same formula.)
Hence for ` 6= p, T` acts on f = ∑∞

n=0 anqn ∈ M†k by

f |kT` :=
∞∑

n=0
an`qn + `k−1

∞∑
n=0

anqn` ∈ M†k .
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Hecke operator Up

For ` = p, the behavior of pki−1 is erratic even when ki → k ∈ X.
Idea

We have seen that every sequence ki ∈ Z tending to k ∈ X
can be replaced by one for which ki →∞ in R.
This can be done even for a sequence fi ∈ Mki tending to
f ∈ M†k , as follows.
Since Epm(p−1) ≡ 1 (mod pm+1), replacing fi by fi · Epmi (p−1)
(where mi � 0) has the effect of replacing ki by
ki + pmi (p − 1), and therefore:

fi → f in Qp[[q]].
ki → k in X.
ki →∞ in R.

This trick can always be applied to ensure ki →∞, whenever
we have fi ∈ Mki tending to f ∈ M†k .
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Hecke operator Up

The condition ki →∞ implies pki−1 → 0 ∈ Qp, so

fi |ki Tp =
∞∑

n=0
a(i)

np qn + pki−1
∞∑

n=0
a(i)

n qnp ∈ Mki

tends to
f |Up :=

∞∑
n=0

anpqn.

Hence this defines a p-adic modular form of weight k = lim ki .

Remark (Notation)
For classical modular forms of level N divisible by p, Tp is denoted
by Up and f |Up is given by the same formula.
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Hecke operator Vp

Question

What about the part f |Vp :=
∞∑

n=0
anqnp?

Remark (Notation)
Classically, the level-raising operator (f |Vp)(z) := f (pz) is given by
the same formula.

As formal power series in Qp[[q]], we have
fi |Vp = p1−ki (fi |ki Tp − fi |Up),

where:
fi |ki Tp ∈ Mki is a classical modular form;
fi |Up ∈ M†ki

is a p-adic modular form.
Thus fi |Vp ∈ M†ki
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Hecke operator Vp

Now
fi |Vp =

∞∑
n=0

a(i)
n qnp ∈ M†ki

tends to
f |Vp =

∞∑
n=0

anqnp.

Hence this defines a p-adic modular form of weight k = lim ki .

Remark
This is slightly tricky: f |Vp is more readily seen as a limit of p-adic
modular forms (rather than classical modular forms).

10 / 34



Admin and recap
Hecke operators

Up -operator and applications
Weierstrass parametrization

Hecke operators on p-adic modular forms

Definition (Hecke operators)
Let f = ∑∞

n=0 anqn ∈ Qp[[q]]. Define

f |Up :=
∞∑

n=0
anpqn,

f |Vp :=
∞∑

n=0
anqnp.

If ` 6= p is a prime and k ∈ X, define

f |kT` :=
∞∑

n=0
an`qn + `k−1

∞∑
n=0

anqn`.

11 / 34



Admin and recap
Hecke operators

Up -operator and applications
Weierstrass parametrization

Hecke operators on p-adic modular forms

We have shown:
Theorem (théorème 4, P.209)
If f is a p-adic modular form of weight k ∈ X, then so are f |Up,
f |Vp and f |kT` for any prime ` 6= p.
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Example: p-adic Eisenstein series

Recall the p-adic Eisenstein series

G∗k = 1
2ζ
∗(1− k) +

∞∑
n=1

σ∗k−1(n)qn ∈ M†k .

Problem Sheet 2:
1 G∗k |T` = (1 + `k−1)G∗k .
2 G∗k |Up = G∗k .
3 G∗k = Gk |(1− pk−1Vp) for k ∈ Z≥2 even.

(3) can be used to show:
ζ∗(1− k) = (1− pk−1)ζ(1− k) for k ∈ Z≥2 even.
E2 is a p-adic modular form of weight 2.
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Theta operators on p-adic modular forms
Recall the theta operator:

Θ almost acts on classical modular forms, up to a factor of P.
Θ acts on mod p modular forms M̃.

Theorem (théorème 5, P.211)
If f = ∑

anqn is a p-adic modular form of weight k ∈ X, then:
1

Θf := q df
dq =

∞∑
n=0

nanqn

is a p-adic modular form of weight k + 2.
2 For h ∈ X,

f |Rh :=
∑

(n,p)=1
nhanqn

is a p-adic modular form of weight k + 2h.
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Motivation

Idea
Slogan: The Up-operator has a good spectral theory.

For Serre p-adic modular forms, this follows from a
contraction property of Up on mod p modular forms, which
controls the filtration degree w(f̃ ).
In the geometric theory, we will see that Up is a compact (or
“completely continuous”) operator.
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Up-operator on mod p modular forms

On classical modular forms of weight k (and level 1),

f |kTp =
∞∑

n=0
anpqn + pk−1

∞∑
n=0

anqnp ∈ Mk .

Reduction mod p gives

f |kTp ≡
∞∑

n=0
anpqn = f |Up (mod p).

This shows Up defines an operator on M̃k , and hence on

M̃α =
⋃

k≡α (mod p−1)
M̃k , α ∈ Z/(p − 1)Z.
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Contraction property of Up

The Up-operator satisfies the following contraction property.

Theorem (théorème 6, P.212)
1 If k > p + 1, then Up(M̃k) ⊂ M̃k′ for some k ′ < k.
2 Up : M̃p−1 → M̃p−1 is an isomorphism.

Remark
Note that in (1), we necessarily have k ′ ≡ k (mod p − 1) by the
structure theorem

M̃ =
⊕

α∈Z/(p−1)Z
M̃α.
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Contraction property of Up

Picture:
Recall the filtration on M̃α

M̃α ⊂ M̃α+(p−1) ⊂ M̃α+2(p−1) ⊂ · · · .

Start with any f̃ ∈ M̃k .
Applying Up brings it down the filtration.
Repeating this, Um

p f̃ lands in M̃k′ for some k ′ ≤ p + 1.
The space M̃k′ is finite-dimensional!
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Proof of contraction property

The proof uses the filtration degree w(f̃ ). As usual, let p ≥ 5.

Lemma (lemme 2, P.213)
Let f ∈ Mk,Z(p) with f̃ 6= 0. Then

1 w(f̃ |Up) ≤ p + w(f̃ )− 1
p .

2 If w(f̃ ) = p − 1, then w(f̃ |Up) = p − 1.

See Serre for the proofs of:
lemme 2;
lemme 2 =⇒ théorème 6.
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Some linear algebra

Lemma
Let V be a finite-dimensional vector space and T be an operator
on V . Then there is a unique decomposition

V = S ⊕ N

such that T is bijective on S and nilpotent on N.

Proof.
Let d = dim V . Then define

S :=
∞⋂

i=1
im(T i ) = im(T d ),

N :=
∞⋃

i=1
ker(T i ) = ker(T d ).
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Spectral decomposition of mod p modular forms
In general this cannot be done for infinite-dimensional spaces, but
the contraction property of Up allows for an analogous
decomposition of M̃α.

Theorem (corollaire, P.214)
Let p ≥ 5 and α ∈ Z/(p − 1)Z be even.

There is a unique decomposition

M̃α = S̃α ⊕ Ñα

such that Up is bijective on S̃α and locally nilpotent on Ñα.
S̃α ⊂ M̃j , where j ∈ α is such that 4 ≤ j ≤ p + 1. In
particular, S̃α is finite-dimensional.
For α = 0, we have S̃0 = M̃p−1.
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Spectral decomposition of mod p modular forms

Remark
S̃α is called the ordinary part of M̃α, and is the image of the
ordinary projector e = limn→∞ Un!

p on M̃α.
“Locally nilpotent on Ñα” means for every v ∈ Ñα, there
exists m ∈ Z such that Um

p v = 0 (note that m depends on v
because Ñα is infinite-dimensional).
There is a similar statement for p = 2 or 3, which we omit.
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Spectral decomposition of mod p modular forms

This has the following implication for p-adic modular forms.
For mod p modular forms, Up is locally nilpotent on Ñα.
For p-adic modular forms, Up is topologically nilpotent on
the preimage of Ñα.

Lemma (generalizing lemme 3, P.216)

If g ∈ M†k with g̃ ∈ Ñα, then

lim
m→∞

g |Um
p = 0.

See Problem Sheet 2.
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Application: Constant terms

Recurring theme: The non-constant coefficients of a p-adic
modular form control its constant term.
Theorem (théorème 7, P.215; remarque, P.216)

Let f = ∑∞
n=0 an(f )qn ∈ M†k with k 6= 0 ∈ X and k ≡ 4, 6, 8, 10, 14

(mod p − 1). Then

a0(f ) = 1
2ζ
∗(1− k) lim

n→∞
apn (f ).

p ≤ 7: stated and proved in théorème 7; condition on k
(mod p − 1) is automatic
p ≥ 11: stated in remarque; follows a similar argument
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Application: Constant terms

Proof sketch:
The condition on k (mod p − 1) guarantees that the ordinary
part S̃α is one-dimensional and spanned by Ẽk0 where
k0 ∈ {4, 6, 8, 10, 14}.
Write

f = a0(f )
1
2ζ
∗(1− k)

G∗k + g

where g is a cusp form (i.e. a0(g) = 0).
Under the decomposition M̃α = S̃α ⊕ Ñα, we see that

g̃ ∈ Ñα.

25 / 34



Admin and recap
Hecke operators

Up -operator and applications
Weierstrass parametrization

Application: Constant terms
Proof sketch (continued):

Show the formula for G∗k and g respectively.
For G∗k , this is clear from its explicit formula:

a0(G∗k ) = 1
2ζ
∗(1− k),

apn (G∗k ) = σ∗k−1(pn) = 1.

For g with g̃ ∈ Ñα, this follows from the topological
nilpotence of Up:

lim
m→∞

g |Um
p = 0;

taking the Fourier coefficient at n = 1 gives

a1(g |Um
p ) = apm (g).
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Application: Constant terms

Remark
For general f ∈ M†k with k 6= 0, there exists a (complicated!)
universal formula for calculating a0(f ) in terms of an(f ) – see
Serre’s discussion on P.217-222.
The complication is caused by the fact that the ordinary part
S̃α is not necessarily one-dimensional.
This would make a good project for those of you interested in
the computational aspects of p-adic modular forms.
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Application: Congruences for j-invariant

Take as black box the main result of §3:

Theorem (théorème 10, P.226; remarque, P.228)
Let f = ∑

anqn be a (meromorphic) modular form of weight k on
Γ0(p) with an ∈ Q, which is holomorphic at ∞ and meromorphic
at 0. Then f is a p-adic modular form of weight k.

Remark
Γ0(p) has two cusps at ∞ and 0.

Idea
Slogan: p-adic modular forms of level N see all classical forms of
level Npm.
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Application: Congruences for j-invariant

Example
The j-invariant

j(z) = q−1 + 744 +
∞∑

n=1
c(n)qn, c(n) ∈ Z

is a meromorphic modular function on SL2(Z), with a simple pole
at ∞. Now

(j |Up)(z) = 744 +
∞∑

n=1
c(pn)qn

is a meromorphic modular function on Γ0(p), with a pole of order
p at 0. Thus the theorem implies

j |Up ∈ M†0.
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Application: Congruences for j-invariant
Recall that Lehner (1949) and Atkin (1966) imply:
Theorem
For p ≤ 11 and n ∈ Z≥1, c(pmn)→ 0 in Qp as m→∞.

Proof.
We have seen that j |Up ∈ M†0. For α = 0 ∈ Z/(p − 1)Z,

M̃0 = S̃0 ⊕ Ñ0 by α=0= M̃p−1 ⊕ Ñ0 by p≤11= Fp ⊕ Ñ0,

so that j |Up − 744 ∈ Ñ0. By the previous lemma,

(j |Up − 744)|Um
p → 0 as m→∞,

i.e. (j − 744)|Um
p → 0. Its n-th Fourier coefficient is c(pmn).
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Geometric modular forms

Goal
Interpret modular forms using algebraic geometry.

Complex analysis: Modular forms are initially defined as
holomorphic functions on H satisfying a transformation
property.
Lattices: Interpret as functions on lattices Λ ⊂ C.
Weierstrass parametrization: Interpret as functions on elliptic
curves over C (with additional data).
Algebraic geometry: Generalize this for elliptic curves over any
ring (or scheme).
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Elliptic curves over C
Weierstrass parametrization: For a lattice Λ ⊂ C, the complex
torus C/Λ has the structure of an elliptic curve with equation

y2 = 4x3 − 60G4(Λ)x − 140G6(Λ)

where
G2k(Λ) :=

∑
λ∈Λ−{0}

1
λ2k .

The isomorphism is given by

x = ℘(z ; Λ) := 1
z2 +

∑
λ∈Λ−{0}

( 1
(z − λ)2 −

1
λ2

)
,

y = ℘′(z ; Λ) = −
∑
λ∈Λ

2
(z − λ)3 .
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Elliptic curves over C

Homothety: Two lattice Λ and Λ′ are homothetic, denoted
Λ ∼ Λ′ if Λ = µΛ′ for some µ ∈ C×.
Two homothetic lattices give rise to isomorphic elliptic curves,
and vice versa:

Λ ∼ Λ′ ⇐⇒ C/Λ ∼= C/Λ′.

Weierstrass parametrization: There is a bijection

{Lattices in C}/ ∼ ←→ {Elliptic curves over C}/ ∼=
Λ 7−→ C/Λ.
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Modular forms as functions on lattices
Every lattice is homothetic to one of the form

Zτ + Z, τ ∈ H.

We have

Zτ + Z ∼ Zτ ′ + Z ⇐⇒ τ ′ = aτ + b
cτ + d ,

(
a b
c d

)
∈ SL2(Z).

Modular forms of weight k can be interpreted as functions on
lattices satisfying

F (µΛ) = µ−kF (Λ).
This correspondence is given by f (τ) = F (Zτ + Z).

Example
G2k(µΛ) = µ−2kG2k(Λ).
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