p-adic modular forms
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Admin and recap

Administrative issues

Slides:
o Lectures 1-4: available on webpage
@ Lecture 4 includes a corrected discussion of the special values
C*(1 — k) on P.21-24.
Problem sheets:

@ 3 sets for assessment

@ 22nd February (Monday of Week 6): posted
@ 8th March (Monday of Week 8): available this weekend
© 22nd March (Monday of Week 10): tentative

@ available at least two weeks before deadlines
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Admin and recap

Administrative issues

Office hours:

@ Time: starting next week

e Format: Q&A? Tutorial? Supplementary lectures?

@ Content: Problem sheets? Geometric modular forms?
Email:

@ Personal replies: | still owe many of you!

@ Survey: office hours, feedback, etc.
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Admin and recap

Today (mostly):
@ Recap
@ Hecke operators on p-adic modular forms
@ Applications of Up-operator: constant terms; congruences
°

Note: | want to illustrate two important principles, while
omitting many details.

Today (briefly):
@ Weierstrass parametrization of elliptic curves over C

@ Crash course on geometric modular forms: next week
(possibly during office hours?)
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Admin and recap

Recap: p-adic modular forms

f € Qp[lq]] is a (Serre) p-adic modular form if it is the
limit of a sequence of classical modular forms f; € My, q.

f has a well-defined notion of weight: k; converges to
keX=12Z,xZ/(p—1)Z (group of characters of Z).

Slogan: The non-constant coefficients a, (for n > 1) govern
the constant term ag.

p-adic Eisenstein series G

p-adic zeta function (*(s)

Today: formula for ag in certain cases
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Hecke operators

Hecke operators T, for ¢ = p

@ Recall Hecke operators on classical modular forms: If
f=>30""0anq" € M, then for £ prime,

o0 (o]
f|kTg = Z angq” + fk_l Z a,,q”e € M.
n=0 n=0
@ Recall: for each fixed d € Z], the map X — Q, k — d* is
continuous.
@ Last week: T, behaves well under p-adic limits so long as
¢ # p. (More precisely, if f; € M, tends to f € MZ, then
filk, Te € My, tends to f|, Ty € I\/I;E given by the same formula.)

@ Hence for £ # p, Ty actson f =3 72, anq" € I\/I;E by

00 0o
f|k T, = Z angqn + ék_l Z a,,q"ﬁ € Mi
n=0 n=0
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Hecke operators

Hecke operator U,

For ¢ = p, the behavior of p%~1 is erratic even when k; — k € X.

@ We have seen that every sequence k; € Z tending to k € X
can be replaced by one for which k; — oo in R.

@ This can be done even for a sequence f; € My, tending to
fe I\/I;E, as follows.
e Since Epm(p—1) =1 (mod p™t1), replacing f; by f; - Epmi(p-1)
(where m; > 0) has the effect of replacing k; by
ki + p™(p — 1), and therefore:
o fi = fin Qp[lq]].
e ki — kin X.
e ki — oo in R.
This trick can always be applied to ensure k; — oo, whenever
we have f; € M, tending to f € M;E.
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Hecke operators

Hecke operator U,

The condition k; — oo implies phi—1 — 0 € Qp. so

) ) ) )
ﬁ"k,— T — aglgqn + pk,'*l Z ag)qnp c Mk,-
n=0 n=0

tends to

flU, = Z anpq".
n=0

Hence this defines a p-adic modular form of weight k = lim k;.

Remark (Notation)

For classical modular forms of level N divisible by p, T, is denoted
by Uy, and f|U, is given by the same formula.
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Hecke operators

Hecke operator V,

(0.0
What about the part |V, := Z anq"P?
n=0

Remark (Notation)

Classically, the level-raising operator (f|V,)(z) := f(pz) is given by
the same formula.

V.

As formal power series in Q,[[q]], we have
f,|V = pl_ki(fi|/<i TP - ﬂ’UP)a

where:
o filx, Tp € My, is a classical modular form;
o fi|Up, € M| is a p-adic modular form.

Thus £|V, € M} . o/



Hecke operators

Hecke operator V,

Now -
Ve =3 g e M)
n=0
tends to

flV, = Z anq"P.
n=0

Hence this defines a p-adic modular form of weight k = lim k;.

This is slightly tricky: |V, is more readily seen as a limit of p-adic
modular forms (rather than classical modular forms).
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Hecke operators

Hecke operators on p-adic modular forms

Definition (Hecke operators)
Let f =320 anq" € Qp[[q]]. Define

flU, == Z anpq",
n=0
flVp = Zanq"”.
n=0
If £ # pis a prime and k € X, define

o (0.0)
fFleTe: =Y anq" + £ ang™.
n=0 n=0
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Hecke operators

Hecke operators on p-adic modular forms

We have shown:

Theorem (théoreme 4, P.209)

If f is a p-adic modular form of weight k € X, then so are f|U,,
f|V, and | T, for any prime ¢ # p.
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Hecke operators

Example: p-adic Eisenstein series

Recall the p-adic Eisenstein series
G; 2 1—k)—|—20k 1(n)g" e M.

Problem Sheet 2:
Q Gi|Ty=(1+ NG}
Q Gi|U, = G;.
@ G; = G|(1— p*~1V,) for k € Z>, even.
(3) can be used to show:
o (*(1—k)=(1—pk=1)¢(1 — k) for k € Z>; even.

@ E; is a p-adic modular form of weight 2.
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Hecke operators

Theta operators on p-adic modular forms

Recall the theta operator:
@ © almost acts on classical modular forms, up to a factor of P.
@ © acts on mod p modular forms M.

Theorem (théoréme 5, P.211)
If f =5 a,q" is a p-adic modular form of weight k € X, then:
o

of = q Z nanq"”

is a p-adic modular form of weight k + 2.
@ ForheX,
fIRp = Z n"a,q"
(n,p)=1

is a p-adic modular form of weight k + 2h.
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Up-operator and applications

Motivation

Slogan: The Up-operator has a good spectral theory.

@ For Serre p-adic modular forms, this follows from a
contraction property of U, on mod p modular forms, which
controls the filtration degree w/(f).

@ In the geometric theory, we will see that U, is a compact (or
“completely continuous”) operator.
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Up-operator and applications

U,-operator on mod p modular forms

On classical modular forms of weight k (and level 1),
oo [e.e]
flaTp= Z anpq" + Pk_l Z anq" € M.
n=0 n=0
Reduction mod p gives
[ee]
flxTp = Z anpq" = flUp (mod p).
n=0

This shows U, defines an operator on Mk, and hence on

M* = U Me, a€Z/(p—1)Z.
k=a (mod p—1)
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Up-operator and applications

Contraction property of U,

The Up-operator satisfies the following contraction property.

Theorem (théoréme 6, P.212)
Q Ifk> p+1, then Up(My) C My for some k' < k.

Q@ U,: My_1 — M,_1 is an isomorphism.

V.

Note that in (1), we necessarily have k' = k (mod p — 1) by the
structure theorem
O

a€Z/(p-1)Z

M
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Up-operator and applications

Contraction property of U,

Picture:

o Recall the filtration on M

M, C /MaJr(p,l) C /MaJrz(p,l) (G

@ Start with any f € M.
@ Applying Up brings it down the filtration.
@ Repeating this, UI’,"? lands in My for some k' < p + 1.

@ The space Mk/ is finite-dimensional!
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Up-operator and applications

Proof of contraction property

The proof uses the filtration degree w(f). As usual, let p > 5.

Lemma (lemme 2, P.213)

Let f € My z,,, with f #0. Then

w(f)—1
o,
Q Ifw(f)=p—1, then w(f|Up,) =p—1.

o W(F|Up) <p+

See Serre for the proofs of:
@ lemme 2;

@ lemme 2 = théoréme 6.
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Up-operator and applications

Some linear algebra

Lemma

Let V be a finite-dimensional vector space and T be an operator
on V. Then there is a unique decomposition

V=Se&eN

such that T is bijective on S and nilpotent on N.

Let d = dim V. Then define

5 = ﬂ im(T") = im(T9Y),
i=1

N = Ej ker(T") = ker( T4}
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Up-operator and applications

Spectral decomposition of mod p modular forms

In general this cannot be done for infinite-dimensional spaces, but
the contraction property of U, allows for an analogous
decomposition of M<.

Theorem (corollaire, P.214)

Let p>5and a € Z/(p —1)Z be even.

@ There is a unique decomposition

Mazga@ma

such that U, is bijective on S and locally nilpotent on N,

° S5 CMJ, where j € v is such that 4 < j < p-+1. In
particular, S% is finite-dimensional.

@ For o =0, we have SO — Mp_l.
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Up-operator and applications

Spectral decomposition of mod p modular forms

o S% s called the ordinary part of M, and is the image of the
ordinary projector e = lim,_,o, U} on M.

@ “Locally nilpotent on N°" means for every v € N, there
exists m € Z such that U7'v = 0 (note that m depends on v

because N is infinite-dimensional).

@ There is a similar statement for p = 2 or 3, which we omit.

22/34



Up-operator and applications

Spectral decomposition of mod p modular forms

This has the following implication for p-adic modular forms.
@ For mod p modular forms, U, is locally nilpotent on Ne.

@ For p-adic modular forms, U, is topologically nilpotent on
the preimage of N¢.

Lemma (generalizing lemme 3, P.216)

If g € M} with g € N*, then

lim g|U;" = 0.

m—00

See Problem Sheet 2.
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Up-operator and applications

Application: Constant terms

Recurring theme: The non-constant coefficients of a p-adic
modular form control its constant term.

Theorem (théoréme 7, P.215; remarque, P.216)

Let f =20 an(f)q" € M] with k #0 € X and k = 4,6,8,10, 14
(mod p —1). Then

20(f) = %g*a )

n—00

@ p < 7: stated and proved in théoréme 7; condition on k
(mod p — 1) is automatic

@ p > 11: stated in remarque; follows a similar argument
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Up-operator and applications

Application: Constant terms

Proof sketch:

@ The condition on k (mod p — 1) guarantees that the ordinary
part 5% is one-dimensional and spanned by Eko where
ko € {4,6,8,10,14}.

o Write
ao(f)

(k)
where g is a cusp form (i.e. ap(g) = 0).
@ Under the decomposition M = 5% @ N, we see that

Gy +g

g e N
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Up-operator and applications

Application: Constant terms

Proof sketch (continued):
@ Show the formula for G; and g respectively.
e For Gf, this is clear from its explicit formula:

(G) = 5¢(1— k),

an(G7) = 07 _4(p") = L.

@ For g with g € N, this follows from the topological
nilpotence of U,:
lim g|U;" =0;

m—>00

taking the Fourier coefficient at n = 1 gives

a1(g|Up") = apm(g)-
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Up-operator and applications

Application: Constant terms

e For general f € MI with k # 0, there exists a (complicated!)
universal formula for calculating ag(f) in terms of a,(f) — see
Serre's discussion on P.217-222.

@ The complication is caused by the fact that the ordinary part
5% is not necessarily one-dimensional.

@ This would make a good project for those of you interested in
the computational aspects of p-adic modular forms.
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Up-operator and applications

Application: Congruences for j-invariant

Take as black box the main result of §3:

Theorem (théoréme 10, P.226; remarque, P.228)

Let f =3 a,q" be a (meromorphic) modular form of weight k on
Fo(p) with a, € Q, which is holomorphic at oo and meromorphic
at 0. Then f is a p-adic modular form of weight k.

lo(p) has two cusps at oo and 0.

Slogan: p-adic modular forms of level N see all classical forms of
level Np™.
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Up-operator and applications

Application: Congruences for j-invariant

The j-invariant

j(z2)=q 1 4+ 744 + i c(n)q", c(n)ez

n=1

is a meromorphic modular function on SLy(Z), with a simple pole
at co. Now

U1Un)(2) = 744+ 3 c(pn)q”

n=1

is a meromorphic modular function on Ig(p), with a pole of order
p at 0. Thus the theorem implies

Uy € M.
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Up-operator and applications

Application: Congruences for j-invariant

Recall that Lehner (1949) and Atkin (1966) imply:

For p <11 and n € Z>1, c(p™n) — 0 in Qp, as m — oo.

Proof.
We have seen that j|U, € I\/Ig. Fora=0€Z/(p—1)Z,

M=oY M@ N =N E, @ P,
so that j|U, — 744 € NO. By the previous lemma,

(|Up — 744)|US — 0 as m — oo,

i.e. (j —744)|UJ — 0. Its n-th Fourier coefficient is c(p™n). [
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Weierstrass parametrization

Geometric modular forms

Interpret modular forms using algebraic geometry.

Complex analysis: Modular forms are initially defined as
holomorphic functions on H satisfying a transformation
property.

Lattices: Interpret as functions on lattices A C C.

Weierstrass parametrization: Interpret as functions on elliptic
curves over C (with additional data).

Algebraic geometry: Generalize this for elliptic curves over any
ring (or scheme).
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Weierstrass parametrization

Elliptic curves over C

Weierstrass parametrization: For a lattice A C C, the complex
torus C/A has the structure of an elliptic curve with equation

y? = 4x3 — 60G4(N)x — 140Gs(N)

where
1

G2k(/\) = Z W

Aen—{0}

The isomorphism is given by
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Weierstrass parametrization

Elliptic curves over C

@ Homothety: Two lattice A and A’ are homothetic, denoted
N~ N if A= puN for some u € C*.

@ Two homothetic lattices give rise to isomorphic elliptic curves,
and vice versa:

A~N < C/A=C/N.
o Weierstrass parametrization: There is a bijection

{Lattices in C}/ ~ <— {Elliptic curves over C}/ =
A — C/A.
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Weierstrass parametrization

Modular forms as functions on lattices

@ Every lattice is homothetic to one of the form
Zr+2Z, T€cH.

@ We have

b
Zr+2~27+7 — T,:ji:::d, <a 2) € SLy(2Z).

@ Modular forms of weight k can be interpreted as functions on
lattices satisfying

F(uN) = p=*F(N).
This correspondence is given by f(7) = F(Z1 + Z).

Gok(uN) = =2k Gok(N).
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