p-adic modular forms
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Admin and recap

Administrative issues

Slides:
@ Lectures 1-6: available on webpage
@ Lecture 6: extra discussion about Tate uniformization

Problem sheets:
@ 3 sets for assessment

© 22nd February (Monday of Week 6): posted
@ 8th March (Monday of Week 8): posted
© 22nd March (Monday of Week 10): tentative

@ available at least two weeks before deadlines
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Admin and recap

Administrative issues

Office hours:

e Dates: 2nd, 9th, 16th March (Tuesdays)

@ Time: 12 pm to 1 pm

o Format: Q&A, possibly supplementary lectures
References for geometric modular forms:

o Calegari’'s AWS notes, 2013

@ Loeffler's TCC notes, 2014

e Katz, §1 and Appendix 1

@ | am happy to answer questions about these!
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Admin and recap

Today:
@ Recap of geometric modular forms
@ g-expansion principle and base change
@ Hasse invariant
@ p-adic modular forms
Next week: a subset of
@ Hecke operators
@ Canonical subgroups
@ Spectral theory

@ Further topics
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Admin and recap

Example: E; and Eg

Suppose % € Ry. Then any pair (E/R,w) can be written in terms
of Weierstrass equation

d
<y2 = 4x3 + agx + a, X) .
y
Then the rules

E4(E/R,w) = —12247
EG(E/R,LU) = 21636

define modular forms of weights 4 and 6 respectively, so
E, € M(R0;1,4-), Es € M(R0;1,6);

here Ry can be taken to be Z[#] (in fact Z, as we will see).
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Admin and recap

Example: E; and Eg

Evaluating at the Tate curve gives the g-expansions

E4(Tate(q )wcan)—1+240203 n)q" € Z[[q]],
n=1

Eo(Tate(q), wean) = 1 — 504205 n)q" € Z[[q]].
n=1

By the g-expansion principle (to be discussed next), E4 and Eg are
holomorphic modular forms defined over Z:

E,se€5(Z;1,4), EscS(Z;1,6).
See Problem Sheet 3.

In general, Ex € S(Q; 1, k) for even k > 4.
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g-expansion principle and base change

Recap: Modular curves

@ A level N structure on E/S is an isomorphism of group
schemes ay : E[N] = (Z/NZ)3.
@ For N > 3, the moduli problem

S scheme over Z[%] ~ {(E/S,an)}/ ~

is represented by a (fine) moduli scheme Y (N) over Z[4].

@ Y(N) has a “natural compactification” X(N).

o Refer to [Loeffler, §3] for the formalism of moduli spaces and
representable functors.

e For instance, Y(N)(C) is a disjoint union of ¢(N) copies of
F(N)\H.

@ The level N structures on Tate(q
of X(N).

N) correspond to the cusps
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g-expansion principle and base change

g-expansion principle
Recall that we have defined for any Z[]-module R
S(R; N, k) := H(X(N),w®* D011 R):
this agrees with the ruled-based definition when R is a ring.

Theorem (g-expansion principle)

Let N > 3. Suppose L C K are Z[+]-modules, and

f € S(K; N, k). Suppose that for each geometrically connected
component of X(N), there is at least one cusp at which the
g-expansion of f has coefficients in L ®Z[%] Z[%, Cn]. Then f is a

modular form with coefficients in L.

The proof requires non-trivial use of algebraic geometry.

With some care, this is also valid for level 1 and 2.
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g-expansion principle and base change

Base-change of modular forms

@ In the classical setting, the space of modular forms over C has
a rational or even integral structure.

@ Base-change theorems give similar results for geometric
modular forms.
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g-expansion principle and base change

Base-change: level N > 3

Suppose either:
e N>3, k>2; or
e 3<NLI1L, k=1.

Then for any Z[%]—module K, there is an isomorphism

5 (ZLgliN.K) Sy K 5 SR VLK)

Idea of proof.

o Identify S(K; N, k) = HO(X(N),w®k ®z11] K).

@ Use cohomology and base-change, and show
HY(X(N),w®*) = 0. Ol
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g-expansion principle and base change

Base-change: level 1 and 2

Suppose N =1 (resp. N =2), k > 1 and R is any ring with % €ER
(resp. % € R). Then there is an isomorphism

S(Z; N, k) ®z R =5 S(R; N, k).

Idea of proof.

Identify level 1 modular forms as the fiber product:

S(R;3,k) +—— S(R; 1, k) O

| e |

S(R; 12, k) +—— S(R; 4, k)
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g-expansion principle and base change

Base-change: level 1 and 2

The condition that 6 is invertible is crucial:

Example

Later we will study the Hasse invariant A € S(Fp; 1,p — 1).
Q@ p=2. Ac S5(F2;1,1) but 5(Z;1,1) =0.
@ p=3: Ac 5(F3;1,2) but 5(Z;1,2) =0.

Hence for p = 2,3, the map

S(Z;1,k) @z Fp — S(Fp; 1, k)

is in general not an isomorphism.

12/32



Hasse invariant

Hasse invariant

@ In Serre's theory, the modular form E,_; plays a fundamental

role:
Ep-1 =1 (mod p).

@ In Katz's theory, this will be replaced by the Hasse invariant,
which is a modular form in characteristic p.
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Hasse invariant

Notation

@ Let R be a ring in which p =0, i.e. R is an Fj-algebra.

e Consider (E/R,w) where E is an elliptic curve over R and w
is a basis of wg /g = H(E, Qf /r).

e By Serre duality, w € HO(E, Q}E/R) determines a dual basis
n € HY(E, Og).
o Consider the absolute Frobenius

Fabs : OE — OE
f— fP.

This induces F

Ss P HY(E,Og) — HY(E, Of), which is
F,-linear.
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Hasse invariant

Hasse invariant

Definition (Hasse invariant)
Define A(E/R,w) € R by setting

abs(1) = A(E/R,w)n

in H(E, OF).

Remark

Passing to the dual H*(E, Og) allows us to see more structure;
indeed, the absolute Frobenius kills HO(E,Q}:-/R):

abs (dx) = d(x?) = 0.

Equivalently, we can study the Verschiebung operator V on
HO(E, Qg /g)-
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Hasse invariant

Hasse invariant and supersingular elliptic curves

@ Suppose R is a field with char(R) = p. Then E is
supersingular if and only if A(E,w) = 0 for any choice of w.

@ Over F,, the key relation is
#E(Fp) = 1+ p —tr Fibs : HY(E, OF) — H(E, OF)).

Note that Fi. is multiplication by A(E,w), so its trace equals
A(E,w) in Fp and

#E(F,) =1 (mod p) <= A(E,w) =0.
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Hasse invariant

Hasse invariant as a modular form

A(E/R,w) € M(Fp;1,p — 1) is a (meromorphic) modular form of
weight p — 1.

Proof.
If w is scaled by A, then 7 is scaled by A~%. Then

A(E, M)A 1) = Flbs(A )
= A"PFjis(n)
= A\ PA(E,w)y

and hence A(E, \w) = A 7PA(E, w). O
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Hasse invariant

Hasse invariant: g-expansion

What is its g-expansion?

Katz gives two approaches:
© dualizing sheaf;
@ derivations.
Sketch of second approach:
o HY(E,Og/g) = Licg(E) can be identified as the R-module of
invariant derivations of E.
@ In general, iterating a derivation does not yield a derivation,
but in characteristic p we have
p

DP(xy) =) (l,)) (D'x)(DP~'y) = (DPx)y + x(DPy)

i=0

so DP is a derivation.
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Hasse invariant

Hasse invariant: g-expansion

F*

abs -

: HY(E, Og) — HY(E, Ok) is given by D+ DP.
To compute the g-expansion of A, consider (Tate(q), wean)
and the derivation D dual to wean, so that

A(Tate(q), wean)D = DP.

Interpret (Tate(q),wWean) as ( m/q%, d“).
For the formal parameter t of Tate(q) at identity, wean = 1dT-tt-
The dual derivation is given by D(t) =1+ ¢, so that

D(1+t)=1+t = D"(1+t)=1+tforalln>1.
@ Hence DP = D and A(Tate(q), wean) = 1.
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Hasse invariant

Hasse invariant: g-expansion

Therefore we have shown

A€ S(Fp;1,p—1) is a holomorphic modular form of weight p — 1,
with q-expansion 1.

Remark

@ This works for all p, including p =2 and p = 3! In particular,
S(Z;1,p—1)®zF, = S(Fp;1,p—1)

fails to be an isomorphism for p = 2, 3: the source is 0 but
the target contains A.

o Note that 1 ¢ S(Fp;1,p — 1), so this theorem doesn't violate
the g-expansion principle.
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Hasse invariant

Lifting the Hasse invariant

@ Recall the weight k Eisenstein series for even k > 4.

Ekzl—izdk 1

By the g-expansion principle, Ex € S(Q; 1, k).
@ Fork=p—1landp>5, v, (23(2’(3p 113) =1, so reduction mod
p gives
E,1€S(Fy1l,p—1)
with g-expansion 1.
@ By the g-expansion principle again,

A=E,1 (mod p).

@ In other words, E,_1 is a lift of Ato Z if p > 5.
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Hasse invariant

Lifting the Hasse invariant

o If p=2 (resp. p=3), A does not lift to a holomorphic
modular form of level 1, but E4 is a lift of A% (resp. of A?).

@ To define p-adic modular forms, we need to fix a lift of A
itself (of possibly higher level). A careful study of base-change
shows:

Proposition

A lifts to a holomorphic modular form in S (Z[%] N,p— 1) when:

e p=2: N=3,57,9,11 (hence any multiples of these);
e p=3: N>2with3{N;
e p>5:N>1with51N.

From now on, we restrict to these settings and fix a choice of lift
Ep—1€S (Z[%] N,p— 1) (by an abuse of notation).
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p-adic modular forms

Motivations

@ To develop a p-adic theory of modular forms, taking
S(R; N, k) for a p-adic coefficient ring R is too simplistic: it is
essentially the base-change of S(Z[4]; N, k) and does not
incorporate the p-adic topology.

@ For example, E,_1 =1 (mod p) implies E,’;jl — 1 p-adically,
so

m

_ : 1

E-L = lim E°
p—1 m—oo P~1

should exist.

@ On the other hand, if E is a supersingular elliptic curve, then
Ep—1(E/R,w) =0.

Remove the elliptic curves which are supersingular (or have
supersingular reduction) in the modular definition of p-adic
modular forms.
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p-adic modular forms

Notation

@ (p,N): such that A€ S(Fp,;1,p — 1) has a lift

Ep—1 € S(Z[%]; N, p — 1) (simplest case: p > 5)
@ Ry: a p-adically complete ring, i.e. Ry = I@ Ro/p™Ro
e r: afixed element of Ry (“growth condition™)

Remove the test objects which are not “too supersingular”, i.e.
whose Hasse invariant lies in a disk of radius |r|, around 0:

@ |r| = 1: ordinary locus

@ |r| < 1: a “thickening" of the ordinary locus
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p-adic modular forms

r-test objects

An r-test object is (E/R,w,ay, Y) where:

@ E is an elliptic curve over an Ry-algebra R in which p is
nilpotent (i.e. p” = 0 for some m);

® w is basis of we g;
@ «y is a level N structure;
o Y e Rwith E,_1(E/R,w,an)- Y =r.

Remark
The base ring Ry is p-adically complete, but p is nilpotent in the
test ring R.

N
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p-adic modular forms

p-adic modular forms with growth conditions

A p-adic modular form over R; of growth r, level N and
weight k is a rule f that assigns

r-test object (E/R,w,apn, Y)— f(E/R,w,apn,Y) € R
which:
@ depends only on the R-isomorphism class of the r-test object;
@ commutes with base change;

@ satisfies

f(E/R, Mw,an, \P71Y) = A5 F(E/R,w, an, Y)

for A € R*.
The R-module of such is denoted M(Ro; r, N, k). b /5




p-adic modular forms

p-adic modular forms with growth conditions

o Reality check: (E/R, \w,an, AP~1Y) remains an r-test
object:

r=E, 1(E/R,w,an) Y = E,_1(E/R, \w,ay) - \P1Y.
@ As usual, it is equivalent to consider rules
(E/S.an, Y) = F(E/S,an, Y) € H(S,wZ¥)

where:
e S is any Ry-scheme with p nilpotent;
e Y is a section of wE§1 ?) with Y - Ep—1(E/S,an) =r;

satisfying the expected conditions.
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p-adic modular forms

Growth conditions

Growth condition r:

The growth condition only depends on r - R{, i.e. on |r|p.
Choosing |r| =1 (i.e. r € R§ is a unit) gives a “convergent”
p-adic modular form, in the sense of being convergent on the
ordinary locus.

Choosing |r| < 1 (i.e. p* | r for some a > 0) gives an
overconvergent p-adic modular form, in the sense of being
convergent beyond the ordinary locus. Indeed, some of the
test objects might have supersingular reduction.

Why? The space of (convergent) p-adic modular forms is too
large, but the overconvergent modular forms enjoy better
properties; we will see instances of this next time.
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p-adic modular forms

p-adic modular forms

e We say that ¥ € M(Ro; r, N, k) is holomorphic at oo if for
every integer m > 1 and every level N structure ap,

f (Tate(qN),wcan, apn,r- Ep,l(Tate(qN), wcan)_1>
€ Z((q)) ® (Ro/P™ Ro)[¢Cn]

belongs to Z[[q]] ® (Ro/p™ Ro)[Cn]-
@ The space of holomorphic forms is denoted S(Ry; r, N, k).
e Formally

3

M(RO;r7N7k) M(RO/meO;rvak))

S(Ro;r, N,k): S(Ro/meo;r, N,k).

315 3
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p-adic modular forms

Moduli interpretation: p € Ry nilpotent

Suppose p is nilpotent in Ry, and N is such that E,_; exists. Set

Proposition

The moduli problem
Ro-scheme S ~ {(E/S,an, Y)}/ ~

(with notation as in the previous remark) is representable by the
affine scheme

YO(N) := Specy (), (Sym(LY)/(Ep-1— 1)) -

The affine curve Y(N)g, represents {(E/S,an)}.
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p-adic modular forms

Moduli interpretation: p € Ry nilpotent

As before, this implies we can work geometrically:

Proposition

M(Ro; r, N, k) = HO(Y()(N), w®5).

As a corollary, we obtain an anologue of Swinnerton-Dyer's result
on mod p modular forms:

M(Rq; r, N, k) (@M(Ro roN, k+j(p —1))) /(Ep—1 — r).

j>0
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p-adic modular forms

Moduli interpretation

@ For general Ry, recall that

M(Ro;h va) = mM(RO/meU;ra Nv k)

@ When r =1,
YO(N) = Y(N) — {E,_1 = 0} =: Y(N)od

is the ordinary locus and the space of p-adic modular forms is
given by
M(Zp; 1, N, k) = lim HO(Y(N)" @ Z/p™Z, w®*).

<__
m

@ Next time we will see that this agrees with Serre p-adic
modular forms of integral weights k.
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