Generalised Witt Vectors and the Hill-Hopkins-Ravenel Norm

Thomas Read
thomas.read@warwick.ac.uk
University of Warwick, United Kingdom

AMS Special Session on Topics in Equivariant Algebra, Joint Mathematics Meetings 2024

Classical Witt Vectors

Fix $n \in \mathbb{N}$ and p prime.
Definition (n-truncated p-typical Witt vectors)
There is a unique functor $W_{p, n}$: CRing \rightarrow CRing such that:

- The underlying set of $W_{p, n}(R)$ is $\prod_{0 \leq i<n} R$
- For all $0 \leq j<n$, the map

$$
\begin{aligned}
w_{j}: W_{p, n}(R) & \rightarrow R \\
\left(a_{i}\right) & \mapsto \sum_{0 \leq i \leq j} p^{i} a_{i}^{p^{j-i}}
\end{aligned}
$$

is a ring homomorphism

π_{0} of Topological Hochschild Homology

Theorem (Hesselholt and Madsen, 1997)
For E a connective commutative ring spectrum,

$$
\pi_{0}^{C_{\rho}{ }^{n}}(T H H(E)) \cong W_{p, n+1}\left(\pi_{0} E\right)
$$

π_{0} of TR with coefficients

Generalised by work of Dotto, Krause, Nikolaus and Patchkoria
Definition (n-truncated p-typical Witt vectors with coefficients)
Let Mod the category of all modules over commutative rings. Then there is a functor

$$
W_{p, n}: \operatorname{Mod} \rightarrow \mathrm{Ab}
$$

generalising the classical Witt vectors via $W_{p, n}(R ; R) \cong W_{p, n}(R)$.

π_{0} of TR with coefficients

Generalised by work of Dotto, Krause, Nikolaus and Patchkoria
Definition (n-truncated p-typical Witt vectors with coefficients)
Let Mod the category of all modules over commutative rings. Then there is a functor

$$
W_{p, n}: \operatorname{Mod} \rightarrow \mathrm{Ab}
$$

generalising the classical Witt vectors via $W_{p, n}(R ; R) \cong W_{p, n}(R)$.

Theorem (Dotto et al. 2023)
For E a connective commutative ring spectrum and X a connective E-module spectrum,

$$
\pi_{0}\left(T R^{n+1}(E ; X)\right) \cong W_{p, n+1}\left(\pi_{0} E ; \pi_{0} X\right)
$$

The Hill-Hopkins-Ravenel norm

Definition (Hill-Hopkins-Ravenel norm)

For G a finite group and H a subgroup, there is a "multiplicative induction" functor

$$
N_{H}^{G}: \mathrm{Sp}_{H} \rightarrow \mathrm{Sp}_{G}
$$

- When $H=\{e\}$ is trivial and $X \in \mathrm{Sp}$ is a (cofibrant orthogonal) spectrum, $N_{\{e\}}^{G} X$ is just $X^{\wedge|G|}$ with the obvious G-action

Connection to Witt vectors

- For $E=\mathbb{S}$ the sphere spectrum and X any connective spectrum,

$$
\operatorname{TR}^{n+1}(\mathbb{S} ; X) \simeq\left(N_{\{e\}}^{C_{p^{n}}}(X)\right)^{C_{p^{n}}}
$$

hence

$$
\left.\pi_{0}^{C_{p^{n}}}\left(N_{\{e\}}^{C_{\rho^{n}}}(X)\right) \cong W_{p, n+1}\left(\mathbb{Z} ; \pi_{0} X\right)\right)
$$

- So we may ask, what is

$$
\pi_{0}^{G}\left(N_{\{e\}}^{G}(X)\right)
$$

for an arbitrary finite group G ? Can we describe it as some version of Witt vectors?

A hint we are on the right track: G-typical Witt vectors

Definition (Dress and Siebeneicher, 1988)

For G a (pro)finite group, there is a functor

$$
W_{G}: \text { CRing } \rightarrow \text { CRing }
$$

generalising the classical Witt vectors via $W_{C_{p^{n}}}(R) \cong W_{p, n+1}(R)$. The construction defines $W_{G}(\mathbb{Z})$ to be (a completed version of) the Burnside ring of G, then extends to other rings.

G-typical Witt vectors with coefficients

Definition (G-typical Witt vectors with coefficients)

For G a (pro)finite group, there is a functor

$$
W_{G}: \operatorname{Mod} \rightarrow \mathrm{Ab}
$$

simultaneously generalising the p-typical Witt vectors with coefficients of Dotto et al. (via $W_{C_{p^{n}}}(R ; M) \cong W_{p, n+1}(R ; M)$) and the G-typical Witt vectors of Dress and Siebeneicher (via $W_{G}(R ; R) \cong W_{G}(R)$)

Uniqueness result for G-typical Witt vectors with coefficients

Theorem (R., 2023)
The functor $W_{G}: \operatorname{Mod} \rightarrow A b$ is essentially unique such that:

```
There is a natural quotient map of underlying sets
q: \prod
- We define certain maps wU : П
U}\mp@subsup{\leq}{0}{}G\mathrm{ . The product of these maps descends to an additive map
WG}(R;M)->\mp@subsup{\Pi}{U<,G}{M}\mp@subsup{M}{}{*}G/
For (T;Q) free, this map out of WG}(T;Q)\mathrm{ is an injection.
The functor WG preserves reflexive coequalisers.
```


Uniqueness result for G-typical Witt vectors with coefficients

Theorem (R., 2023)
The functor W_{G} : Mod $\rightarrow A b$ is essentially unique such that:

- There is a natural quotient map of underlying sets

$$
q: \prod_{V \lesssim 0 G} M^{\otimes_{R} G / V} \rightarrow W_{G}(R ; M) .
$$

- We define certain maps $w_{U}: \prod_{V \leqslant_{0} G} M^{\otimes_{R} G / V} \rightarrow M^{\otimes_{R} G / U}$ for each $U \leq_{0} G$. The product of these maps descends to an additive map $W_{G}(R, M) \rightarrow \Pi u$ For $(T ; Q)$ free, this map out of $W_{G}(T ; Q)$ is an injection.

Uniqueness result for G-typical Witt vectors with coefficients

Theorem (R., 2023)
The functor W_{G} : Mod $\rightarrow A b$ is essentially unique such that:

- There is a natural quotient map of underlying sets

$$
q: \prod_{V \lesssim 0 G} M^{\otimes_{R} G / V} \rightarrow W_{G}(R ; M) .
$$

- We define certain maps $w_{U}: \prod_{V \leq_{0} G} M^{\otimes_{R} G / V} \rightarrow M^{\otimes_{R} G / U}$ for each $U \leq_{0} G$. The product of these maps descends to an additive map $W_{G}(R ; M) \rightarrow \prod_{U \leq_{0} G} M^{\otimes R G / U}$.

Uniqueness result for G-typical Witt vectors with coefficients

Theorem (R., 2023)
The functor $W_{G}:$ Mod $\rightarrow A b$ is essentially unique such that:

- There is a natural quotient map of underlying sets

$$
q: \prod_{V \lesssim o G} M^{\otimes_{R} G / V} \rightarrow W_{G}(R ; M) .
$$

- We define certain maps $w_{U}: \prod_{V \lesssim_{0} G} M^{\otimes_{R} G / V} \rightarrow M^{\otimes_{R} G / U}$ for each $U \leq_{0} G$. The product of these maps descends to an additive map $W_{G}(R ; M) \rightarrow \prod_{U \leq_{o} G} M^{\otimes R G / U}$.
- For $(T ; Q)$ free, this map out of $W_{G}(T ; Q)$ is an injection.
- The functor W_{G} preserves reflexive coequalisers.

G-typical Witt vectors with coefficients

Theorem (R., 2023)
For X a connective spectrum and G a finite group,

$$
\pi_{0}^{G}\left(N_{\{e\}}^{G}(X)\right) \cong W_{G}\left(\mathbb{Z} ; \pi_{0} X\right)
$$

Mackey functors

Definition (G-typical Witt vectors with coefficients)
For G finite, there is a (strong monoidal) functor

$$
\underline{W}_{G}: \operatorname{Mod} \rightarrow \operatorname{Mack}_{G}(\mathrm{Ab})
$$

Theorem (R., 2023)
For X a connective spectrum and G a finite group,

$$
\underline{\pi}_{0}\left(N_{\{e\}}^{G}(X)\right) \cong \underline{W}_{G}\left(\mathbb{Z} ; \pi_{0} X\right)
$$

Recap: generalisations of Witt vectors

Recap: generalisations of Witt vectors

Recap: generalisations of Witt vectors

Recap: generalisations of Witt vectors

Recap: generalisations of Witt vectors

Recap: topology

	$X=E$	$E=\mathbb{S}$	$(E ; X)$
$G=C_{p^{n}}$			
G finite			
$-\ldots$ profinite			

Recap: topology

	$X=E$	$E=\mathbb{S}$	$(E ; X)$
$G=C_{\rho^{n}}$	THH $(E)^{C_{\rho^{n}}}$		
G finite			
$-\ldots$ profinite			

Recap: topology

Recap: topology

Recap: topology

Future directions

- Can we define $N_{\{e\}}^{G} X$ for profinite G, such that $\pi_{0}^{G}\left(N_{\{e\}}^{G} X\right) \cong W_{G}\left(\mathbb{Z} ; \pi_{0} X\right)$? Think this should work in the setting of quasifinitely genuine G-spectra (Kaledin, Krause et al.)
- Is there a topological interpretation of $W_{G}(R ; M)$ for $R \neq \mathbb{Z}$ and $G \neq C_{p^{n}}$?

Any questions?

Computations

$$
W_{D_{6}}(\mathbb{Z} ; \mathbb{Z} / 3) \cong(\mathbb{Z} / 3)^{2} \oplus \mathbb{Z} / 9
$$

