Generalised Witt Vectors and the Hill-Hopkins-Ravenel Norm

Thomas Read thomas.read@warwick.ac.uk

University of Warwick, United Kingdom

AMS Special Session on Topics in Equivariant Algebra, Joint Mathematics Meetings 2024

Classical Witt Vectors

Fix $n \in \mathbb{N}$ and p prime.

Definition (*n*-truncated *p*-typical Witt vectors)

There is a unique functor $W_{p,n}$: CRing \rightarrow CRing such that:

- The underlying set of $W_{p,n}(R)$ is $\prod_{0 \le i < n} R$
- For all $0 \le j < n$, the map

$$w_j: W_{p,n}(R) o R \ (a_i) \mapsto \sum_{0 \le i \le j} p^i a_i^{p^{j-i}}$$

is a ring homomorphism

 π_0 of Topological Hochschild Homology

Theorem (Hesselholt and Madsen, 1997)

For E a connective commutative ring spectrum,

$$\pi_0^{C_{p^n}}(THH(E)) \cong W_{p,n+1}(\pi_0 E)$$

π_0 of TR with coefficients

Generalised by work of Dotto, Krause, Nikolaus and Patchkoria

Definition (*n*-truncated *p*-typical Witt vectors with coefficients)

Let Mod the category of all modules over commutative rings. Then there is a functor

 $W_{p,n}: \mathsf{Mod} \to \mathsf{Ab}$

generalising the classical Witt vectors via $W_{p,n}(R; R) \cong W_{p,n}(R)$.

Theorem (Dotto et al. 2023)

For E a connective commutative ring spectrum and X a connective E-module spectrum,

 $\pi_0(TR^{n+1}(E;X)) \cong W_{p,n+1}(\pi_0E;\pi_0X)$

A (10) A (10)

π_0 of TR with coefficients

Generalised by work of Dotto, Krause, Nikolaus and Patchkoria

Definition (*n*-truncated *p*-typical Witt vectors with coefficients)

Let Mod the category of all modules over commutative rings. Then there is a functor

 $W_{p,n}$: Mod \rightarrow Ab

generalising the classical Witt vectors via $W_{p,n}(R; R) \cong W_{p,n}(R)$.

Theorem (Dotto et al. 2023)

For E a connective commutative ring spectrum and X a connective E-module spectrum,

$$\pi_0(TR^{n+1}(E;X)) \cong W_{p,n+1}(\pi_0E;\pi_0X)$$

く 伊 ト く ヨ ト く ヨ ト 一

The Hill-Hopkins-Ravenel norm

Definition (Hill-Hopkins-Ravenel norm)

For G a finite group and H a subgroup, there is a "multiplicative induction" functor

$$N_H^G$$
: $\operatorname{Sp}_H \to \operatorname{Sp}_G$

• When $H = \{e\}$ is trivial and $X \in Sp$ is a (cofibrant orthogonal) spectrum, $N_{\{e\}}^G X$ is just $X^{\wedge |G|}$ with the obvious G-action

Connection to Witt vectors

• For E = S the sphere spectrum and X any connective spectrum,

$$\mathsf{TR}^{n+1}(\mathbb{S};X)\simeq \left(N^{C_{p^n}}_{\{e\}}(X)\right)^{C_{p^n}}$$

hence

$$\pi_0^{C_{p^n}}(N_{\{e\}}^{C_{p^n}}(X)) \cong W_{p,n+1}(\mathbb{Z};\pi_0X))$$

So we may ask, what is

 $\pi_0^G(N^G_{\{e\}}(X))$

for an arbitrary finite group G? Can we describe it as some version of Witt vectors?

A hint we are on the right track: G-typical Witt vectors

Definition (Dress and Siebeneicher, 1988)

For G a (pro)finite group, there is a functor

 W_G : CRing \rightarrow CRing

generalising the classical Witt vectors via $W_{C_{p^n}}(R) \cong W_{p,n+1}(R)$. The construction defines $W_G(\mathbb{Z})$ to be (a completed version of) the Burnside ring of G, then extends to other rings.

G-typical Witt vectors with coefficients

Definition (G-typical Witt vectors with coefficients)

For G a (pro)finite group, there is a functor

 $W_G:\mathsf{Mod}\to\mathsf{Ab}$

simultaneously generalising the *p*-typical Witt vectors with coefficients of Dotto et al. (via $W_{C_{p^n}}(R; M) \cong W_{p,n+1}(R; M)$) and the *G*-typical Witt vectors of Dress and Siebeneicher (via $W_G(R; R) \cong W_G(R)$)

Theorem (R., 2023) The functor $W_G : Mod \to Ab$ is essentially unique such that: • There is a natural quotient map of underlying sets $q : \prod_{V \lesssim_o G} M^{\otimes_R G/V} \to W_G(R; M).$

- We define certain maps $w_U : \prod_{V \leq_o G} M^{\otimes_R G/V} \to M^{\otimes_R G/U}$ for each $U \leq_o G$. The product of these maps descends to an additive map $W_G(R; M) \to \prod_{U \leq_o G} M^{\otimes_R G/U}$.
- For (T; Q) free, this map out of W_G(T; Q) is an injection.
- The functor W_G preserves reflexive coequalisers.

Theorem (R., 2023)

The functor W_G : Mod \rightarrow Ab is essentially unique such that:

There is a natural quotient map of underlying sets

$$q:\prod_{V\leq_o G}M^{\otimes_R G/V}\twoheadrightarrow W_G(R;M).$$

- We define certain maps $w_U : \prod_{V \leq_o G} M^{\otimes_R G/V} \to M^{\otimes_R G/U}$ for each $U \leq_o G$. The product of these maps descends to an additive map $W_G(R; M) \to \prod_{U \leq_o G} M^{\otimes_R G/U}$.
- For (T; Q) free, this map out of W_G(T; Q) is an injection.

The functor W_G preserves reflexive coequalisers.

Theorem (R., 2023)

The functor W_G : Mod \rightarrow Ab is essentially unique such that:

There is a natural quotient map of underlying sets

$$q:\prod_{V\leq_o G}M^{\otimes_R G/V}\twoheadrightarrow W_G(R;M).$$

- We define certain maps $w_U : \prod_{V \leq_o G} M^{\otimes_R G/V} \to M^{\otimes_R G/U}$ for each $U \leq_o G$. The product of these maps descends to an additive map $W_G(R; M) \to \prod_{U \leq_o G} M^{\otimes_R G/U}$.
- For (T; Q) free, this map out of $W_G(T; Q)$ is an injection.

The functor W_G preserves reflexive coequalisers.

Theorem (R., 2023)

The functor W_G : Mod \rightarrow Ab is essentially unique such that:

There is a natural quotient map of underlying sets

$$q:\prod_{V\lesssim_o G}M^{\otimes_R G/V}\twoheadrightarrow W_G(R;M).$$

- We define certain maps $w_U : \prod_{V \leq_o G} M^{\otimes_R G/V} \to M^{\otimes_R G/U}$ for each $U \leq_o G$. The product of these maps descends to an additive map $W_G(R; M) \to \prod_{U \leq_o G} M^{\otimes_R G/U}$.
- For (T; Q) free, this map out of $W_G(T; Q)$ is an injection.
- The functor W_G preserves reflexive coequalisers.

G-typical Witt vectors with coefficients

Theorem (R., 2023)

For X a connective spectrum and G a finite group,

$$\pi_0^G(N^G_{\{e\}}(X)) \cong W_G(\mathbb{Z}; \pi_0 X)$$

A 1

Mackey functors

Definition (G-typical Witt vectors with coefficients)

For G finite, there is a (strong monoidal) functor

 $\underline{W}_{G}:\mathsf{Mod}\to\mathsf{Mack}_{G}(\mathsf{Ab})$

Theorem (R., 2023)

For X a connective spectrum and G a finite group,

 $\underline{\pi}_0(N_{\{e\}}^G(X)) \cong \underline{W}_G(\mathbb{Z}; \pi_0 X)$

Thomas Read (University of Warwick) Generalised Witt Vectors and the Norm JMM 2024 12 / 14

Thomas Read (University of Warwick) Generalised Witt Vectors and the Norm JMM 2024 12/14

Thomas Read (University of Warwick) Generalised Witt Vectors and the Norm JMM 2024

	X = E	$E = \mathbb{S}$	(<i>E</i> ; <i>X</i>)
$G = C_{p^n}$			
<i>G</i> finite			
G profinite			
		• • •	< ≥ > < ≥ > < ≥ > < ≥

Thomas Read (University of Warwick) Generalised Witt Vectors and the Norm JMM 2024

Thomas Read (University of Warwick) Generalised Witt Vectors and the Norm JMM 2024

Future directions

- Can we define $N_{\{e\}}^G X$ for profinite G, such that $\pi_0^G(N_{\{e\}}^G X) \cong W_G(\mathbb{Z}; \pi_0 X)$? Think this should work in the setting of quasifinitely genuine G-spectra (Kaledin, Krause et al.)
- Is there a topological interpretation of $W_G(R; M)$ for $R \neq \mathbb{Z}$ and $G \neq C_{p^n}$?

Any questions?

イロト イヨト イヨト イヨト

2

Computations

$W_{D_6}(\mathbb{Z};\mathbb{Z}/3)\cong (\mathbb{Z}/3)^2\oplus \mathbb{Z}/9$

(3) ≥ 3

Image: A math a math