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Abstract. We give two short proofs of the abelian Livsič theorem of
Gogolev and Rodriguez Hertz. We show that these proofs may be ex-
tended to give new abelian Livsic theorems for positive density sets of
null-homologous orbits and for amenable covers.

1. introduction

Let M be a compact smooth Riemannian manifold and let Xt : M →M
be a transitive Anosov flow, generated by the vector field X. Let P denote
the set of prime periodic orbits of the flow and let `(γ) denote the least
period of γ ∈ P. For f : M → R and γ ∈ P, write∫

γ
f =

∫ `(γ)

0
f(Xt(xγ)) dt

for any xγ on γ.
A classical result is the Livsič (or Livshits) periodic orbit theorem: if a

Hölder continuous function f : M → R satisfies

(1.1)

∫
γ
f = 0 ∀γ ∈ P

then f = LXu, where u : M → R is a Hölder continuous function (with
the same exponent as f) which is continuously differentiable along flow lines
and LX is the Lie derivative [10]. A more recent addition to this theory
is the beautiful abelian Livsič theorem of Andrey Gogolev and Federico
Rodriguez Hertz, which characterises Hölder functions f for which it is only
assumed that (1.1) holds for null-homologous periodic orbits. For γ ∈ P (or
more generally for any closed curve on M), let [γ] ∈ H1(M,Z) denote the
homology class of γ. Write P0 = {γ ∈ P : [γ] = 0}.

Theorem 1.1 (Gogolev and Rodriguez Hertz [8]). Let Xt : M → M be a
homologically full transitive Anosov flow. If f : M → R satisfies

(1.2)

∫
γ
f = 0 ∀γ ∈ P0

then

f = ω(X) + LXu,
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for some smooth closed 1-form ω and some Hölder continuous u : M → R
which is continuously differentiable along flow lines.

Remark 1.2. If the first Betti number of M is zero, so that H1(M,Z) is
finite, then M admits no non-zero closed 1-forma and it is easy to see that
Theorem 1.1 reduces to the classical Livsič theorem.

We give two new and short proofs of Theorem 1.1, one based on the
weighted equidistribution theorems for null-homologous periodic orbits in
[4] and the other on older asymptotic counting results of Lalley [9], Sharp
[17] and Babillot and Ledrappier [2]. Our second proof also gives an abelian
Livsič theorems for sets of null-homologous orbits with positive density
(analogous to the positive density version of the classical Livsič theorem
obtained recently by Dilsavor and Reber [5]).

Theorem 1.3. Let Xt : M → M be a homologically full transitive Anosov
flow. If f : M → R satisfies

(1.3) lim sup
T→∞

#
{
γ ∈ P0 : T < `(γ) ≤ T + ∆,

∫
γ f = 0

}
#{γ ∈ P0 : T < `(γ) ≤ T + ∆}

> 0

then

f = ω(X) + LXu,

for some smooth closed 1-form ω and some Hölder continuous u : M → R
which is continuously differentiable along flow lines.

We also have an abelian Livsič theorem for amenable covers. For the next
result, X̃t : M̃ → M̃ is the lifted flow on a regular cover of M . Let G be the
covering group, with identity element e. For each γ ∈ P, we can associated
its Frobenius class 〈γ〉, which is a conjugacy class in G. If γ̃ is any lift of
γ ∈ P then the initial and final endpoints of γ̃ are related by the action of
some g ∈ 〈γ〉, and γ̃ is itself a periodic orbit if and only if 〈γ〉 = {e}. Write

P̃0 = {γ ∈ P : 〈γ〉 = {e}}.

Theorem 1.4. Let Xt : M → M be a homologically full transitive Anosov

flow and let M̃ be a regular cover of M such that

• the lifted flow X̃t : M̃ → M̃ is topologically transitive, and
• the covering group G is amenable.

If f : M → R satisfies

(1.4)

∫
γ
f = 0 ∀γ ∈ P̃0

then

f = ω(X) + LXu,

for some smooth closed 1-form ω and some Hölder continuous u : M → R
which is continuously differentiable along flow lines.
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In the next section we give some background on Anosov flows and give
two proofs of Theorem 1.1 (the second of which also implies Theorem 1.3).
In sction 3, we discuss how to extend the abelian Livsič theorem to amenable
covers and prove Theorem 1.4.

I am grateful to Stephen Cantrell, Andrey Gogolev and Federico Ro-
driguez Hertz for helpful comments on an early version of this note.

2. Anosov flows and cohomology

Let M be a compact Riemannian manifold and Xt : M → M be a C1

transitive Anosov flow [1] (for a comprehensive modern treatment, see [7]).
We have H1(M,Z) ∼= Zb⊕F, where b = b1(M) ≥ 0 is the first Betti number
of M and F is a finite abelian group.

We say that Xt is homologically full if the map P → H1(M,Z) : γ 7→ [γ]
is a surjection. This automatically implies that the flow is weak-mixing
(since an Anosov flow fails to be weak-mixing only when it is a constant
suspension of an Anosov diffeomorphism [12], it which case it can have no
null-homologous periodic orbits). From now on, we assume that b ≥ 1
and ignore any torsion in H1(M,Z) (so we interpret [γ] as an element of
H1(M,Z)/F).

We interpret the real cohomology group H1(M,R) as the de Rham coho-
mology group. i.e. the quotient of the space of smooth closed 1-forms on M
by the space of smooth exact 1-forms. We write [ω] for the cohomology class
determined by the closed 1-form ω, i.e. if [ω] = [ω′] then ω − ω′ is an exact
form, and we say that ω has integral periods if

∫
c ω ∈ Z for every smooth

closed curve in M . We can choose forms ω1, . . . , ωb with integral periods so
that [ω1], . . . , [ωb] is a basis for H1(M,R). Then, for γ ∈ P the map

γ 7→
(∫

γ
ω1, . . . ,

∫
γ
ωb

)
=

(∫
γ
ω1(X), . . . ,

∫
γ
ωb(X)

)
induces an isomorphism between H1(M,Z)/F and Zb.

Let M(X) denote the set of Xt-invariant Borel probability measures on
M . Given ν ∈M(X), we define the associated winding cycle (or asymptotic
cycle) Φν ∈ H1(M,R) by

〈Φν , [ω]〉 =

∫
ω(X) dν,

where 〈·, ·〉 is the duality pairing (Schwartzman [16], Verjovsky and Vila
Freyer [18]).

In addition to the cohomology of the manifold M , we will also consider the
dynamical cohomology associated to the flow Xt : M →M . For 0 < θ < 1,
let Cθ(M,R) denote the space of Hölder continuous functions from M to R
with exponent θ. A function f : M → R is called a (dynamical) coboundary
if f = LXu, for some function u : M → R which is differentialble along flow
lines, and two functions are cohomologous if their difference is a coboundary.
We write Bθ(M,R) for the intersection of the set of flow coboundaries with
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Cθ(M,R). Finally we define the dynamical cohomology group H1(X,R) by
H1(X,R) := Cθ(M,R)/Bθ(M,R) and this is independent of the choice of
θ. Given a Hölder continuous function f : M → R, we write [f ] for its flow
cohomology class.

Let ϕ : M → R be Hölder continuous. We define its pressure P (ϕ) by

P (ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈M(X)

}
and there is a unique µϕ ∈ M(X), called the equilibrium state for ϕ, at
which the supremum is attained. The following result is fundamental.

Lemma 2.1. If ϕ,ψ : M → R are Hölder continuous then µϕ = µψ if and
only if ϕ− ψ is a cohomologous to a constant.

Proof. This is a standard result but it is hard to find a clear reference.
First, we note that the “if” direction is trivial. For the other direction, we
can proceed using symbolic dynamics. Suppose µϕ = µψ. Without loss of
generality, we can add constants to ϕ and ψ so that P (ϕ) = P (ψ) = 0. By
the classical results of Bowen [3] and Ratner [13], we can find a suspension
flow σt : Σr → Σr over a mixing subshift of finite type σ : Σ → Σ, where
r : Σ → R>0 is Hölder continuous, and a Hölder continuous surjection
π : Σr →M that is one-to-one on a residual set and satisfies Xt ◦π = π ◦σt.
Furthermore, π∗(µϕ) = µϕ◦π and π∗(µψ) = µψ◦π, where the measures on
the right are equilibrium states with respect to the suspension flow, and
P (ϕ ◦ π) = P (ψ ◦ π) = 0. Thus, if µϕ = µψ then µϕ◦π = µψ◦π. If we define
Φ,Ψ : Σ→ R by

Φ(x) =

∫ r(x)

0
ϕ ◦ π(σt(x, 0)) dt and Ψ(x) =

∫ r(x)

0
ψ ◦ π(σt(x, 0)) dt

then (by Proposition 6.1 of [11]) P (Φ) = P (Ψ) = 0 and

µϕ◦π =
mΦ × Leb∫
r dmΦ

and µψ◦π =
mΨ × Leb∫
r dmΨ

,

where mΦ and mΨ are the equilibrium states of Φ and Ψ, respectively,
with respect to σ : Σ → Σ. We can then deduce that mΦ = mΨ. By
Proposition 3.6 of [11], Φ and Ψ are cohomologous. (Here, we have use that
P (Φ) = P (Ψ) = 0 to ensure the additive constant is zero.) We can then
deduce that Φ and Ψ have the same sums around each σ-periodic orbit and
hence that

∫
γ ϕ −

∫
γ ψ for all γ ∈ P. Applying, Livsič’s theorem, ϕ and ψ

are cohomologous. �

We will now prove Theorem 1.1.

First proof of Theorem 1.1. Following section 5 of [4], given a Hölder con-
tinuous function ϕ : M → R, we can fund a unique ξ(ϕ) ∈ Rb such that the
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equilibrium state of ϕ +
∑b

i=1 ξi(ϕ)ωi(X), which we shall denote by µ(ϕ),
satisfies Φµ(ϕ) = 0 and

h(µ(ϕ)) =

∫
ϕdµ(ϕ) = sup

{
h(ν) +

∫
ϕdν : ν ∈MX and Φν = 0

}
.

Furthermore, from Theorem 6.7 of [4], we see that µ is a weak∗ limit of aver-
ages of null-homologous orbital measures. More precisely, for all continuous
functions ψ : M → R, we have

(2.1) lim
T→∞

 ∑
γ∈P0

T<`(γ)≤T+1

e
∫
γ ϕ


−1 ∑

γ∈P0

T<`(γ)≤T+1

e
∫
γ ϕ

∫
γ ψ

`(γ)
=

∫
ψ dµ(ϕ).

Now let f : M → R be a Hölder continuous function satisfying
∫
γ f = 0 for

all γ ∈ P0. If we compare the cases ϕ = 0 and ϕ = f then the corresponding
terms on the left hand side of (2.1) are equal and so we obtain that µ(0) =
µ(f). Applying Lemma 2.1, we see that

f = LXu+
b∑
i=1

(ξi(0)− ξi(f))ωi(X) + c,

where u : M → R is a Hölder function which continuously differentiable
along flow lines and c ∈ R. We can see from (2.1) (with ψ = f) that∫
f dµ(0) = 0 and, combined with Φµ(0) = 0, this gives c = 0, completing

the proof. �

Second proof of Theorem 1.1. An alternative, slightly longer, argument is
to show that the failure of Theorem 1.1 is inconsistent with the periodic
orbit counting results of [2], [9], [17]. Given a Hölder continuous function
f : M → R satisfying (1.4), we have

#{γ ∈ P0 : T < `(γ) ≤ T+1} = #

{
γ ∈ P0 : T < `(γ) ≤ T + 1,

∫
γ
f = 0

}
.

Now, we have from [17] that

#{γ ∈ P0 : T < `(γ) ≤ T + 1} ∼ C eαT

T 1+b/2
, as T →∞,

for some C > 0 and α > 0. On the other hand, if [f ] is not in the span of
[ω1(X)], . . . , [ωb(X)] then the results of [2], [9] give that

#

{
γ ∈ P0 : T < `(γ) ≤ T + 1,

∫
γ
f = 0

}
∼ C ′ eαT

T 1+(b+1)/2
, as T →∞,

for some C ′ > 0, a contradiction. �

One sees that the second proof immediately gives a proof of Theorem 1.3.
(I am grateful to Andrey Gogolev for this observation.)
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Remark 2.2. Let M be any regular abelian cover of M , with covering
group A (of rank at least one). The homology class [c] of a closed curve on
M projects to an element [c]A ∈ A. We say that Xt : M → M is A-full if
the map P → A : γ 7→ [γ]A is a surjection. The above analysis also works in
this setting and an abelian Livsič theorem holds. (Note that this statement
is not trivially true as the flow might be A-full but not homologically full.)

3. Amenable covers

Let M̃ be a regular cover of M such that G = π1(M)/π1(M̃) is amenable.

Let X̃t : M̃ → M̃ be the lift of Xt : M →M to the cover.

Theorem 3.1. Suppose that X̃t : M̃ → M̃ is topologically transitive. Then
for sufficiently large ∆ > 0 and any Hölder continuous function ϕ : M → R,
we have

lim
T→∞

 ∑
γ∈P̃0

T<`(γ)≤T+∆

e
∫
γ ϕ


−1 ∑

γ∈P̃0

T<`(γ)≤T+∆

e
∫
γ ϕ

∫
γ ψ

`(γ)
=

∫
ψ dµ(ϕ),

for all continuous functions ψ : M → R.

Following the large deviations approach of section 9 of [6], Theorem 3.1
follows once one has shown the following.

Proposition 3.2. For sufficiently large ∆ > 0,

lim
T→∞

1

T
log

∑
γ∈P̃0

T<`(γ)≤T+∆

e
∫
γ ϕ = P

(
ϕ+

b∑
i=1

ξi(ϕ)ωi(X)

)
.

Before we prove this, we need to introduce some more ideas from ther-
modynamic formalism, particularly that of Gurevič pressure. Recall the

notation introduced in the proof of Lemma 2.1. The flow X̃t : M̃ → M̃
may be modelled by a suspension flow σ̃t over a skew-product system Tα :
Σ × G → Σ × G defined by Tα(x, g) = (σx, gα(x)), where α : Σ → G is
some continuous function depending on two co-ordinates, with a roof func-
tion r̃ : Σ × G → R>0 satisfying r̃(x, g) = r(x); to simplify notation, we

will write r instead of r̃. The function
∑b

i=1 ξi(ϕ)ωi(X) : M → R induces a
function Ξ : Σ→ R, defined by

Ξ(x) :=

∫ r(x)

0

(
ϕ+

b∑
i=1

ξi(ϕ)ωi(X)

)
◦ π(σt(x, 0)) dt.

It is a standard result (Proposition 6.1 of [11]) that

P

(
−P

(
ϕ+

b∑
i=1

ξi(ϕ)ωi(X)

)
r + Φ + Ξ

)
= 0.
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Now let G be the torsion free part of the abelianization of G and let
a : G → G be the natural projection homomorphism. This gives a regular

abelian cover of M and transitivity of X̃t : M̃ → M̃ gives that Xt : M →M
is G-full. As indicated in Remark 2.2, we could work in this geberal setting
but, for simplicity, suppose that

G = H1(M,Z)/torsion ∼= Zb.
There is also a skew-product Tᾱ : Σ × Zb → Σ × Zb defined by Tᾱ(x,m) =
(σx,m+ ᾱ(x)), where ᾱ = a ◦ α. Both skew-products Tα and Tᾱ are topo-
logically transitive countable state Markov shifts (where transitivity is given
by Lemma 7.3 of [6]), so we can define the Gurevič pressure of locally Hölder
continuous potentials, see Sarig’s original paper [14] or his survey [15].

A Hölder continuous function F : Σ→ R induces functions F̃ : Σ×G→ R
and F̄ : Σ × Zb → R by F̃ (x, g) = F̄ (x,m) = F (x). It will not cause any
confusion to denote all three functions by F . For such functions, the Gurevič
pressure of F with respect to Tα and Tᾱ, is defined by

PG(F, Tα) = lim sup
n→∞

1

n
log

∑
σnx=x
αn(x)=e

eF
n(x)

and

PG(F, Tᾱ) = lim sup
n→∞

1

n
log

∑
σnx=x
ᾱn(x)=0

eF
n(x),

respectively. (Here we have used that Tnα (x, g) = (σnx, gαn(x)), where
αn(x) := α(x)α(σx) · · ·α(σn−1(x).)

The following result of [6] is key to our analysis.

Proposition 3.3 (Theorem 5.1 of [6]). If Tα is topologically transitive and
G is amenable then

PG(F, Tα) = PG(F, Tᾱ).

Fix ∆ > 0 and define

P(ϕ) := lim
T→∞

1

T
log

∑
γ∈P0

T<`(γ)≤T+∆

e
∫
γ ϕ.

We know from Corollary 6.2 of [4] that

P(ϕ) = P

(
ϕ+

b∑
i=1

ξi(ϕ)ωi(X)

)
,

so that
P
(
−P(ϕ)r + Φ + Ξ

)
= 0.

Now let

P(ϕ) := lim sup
T→∞

1

T
log

∑
γ∈P̃0

T<`(γ)≤T+∆

e
∫
γ ϕ.
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Clearly, P(ϕ) ≤ P(ϕ) and we claim that we have equality.

Lemma 3.4. We have
P(ϕ) = P(ϕ).

Proof. Consider the series

S1(s) :=
∑
γ∈P̃0

e−s`(γ)+
∫
γ ϕ.

The series S1(s) has abscissa of convergence P(ϕ), and so P(ϕ) = P(ϕ) if
P(ϕ) is the abscissa of convergence of S1(s).

Now consider the corresponding series for Tα,

S2(s) :=
∞∑
n=1

1

n

∑
σnx=x
αn(x)=e

e−sr
n(x)+Φn(x).

This may involve some overcounting compared to S1(s) but it is standard
that S1(s) − S2(s) converges for Re(s) > P(ϕ) − ε, for some ε > 0. Thus
the abscissa of convergence of S1(s) is P(ϕ) if and only if the abscissa of
convergence of S2(s) is P(ϕ).

The abscissa of convergence of S2(s) is given by the value c for which
PG(−cr + Φ, Tα) = 0. By Proposition 3.3,

PG(−cr + Φ, Tα) = PG(−cr + Φ, Tᾱ)

and so c = P(ϕ), as required. �

To complete the proof of Proposition 3.2 we observe that the arguments
in section 2 of the correction to [6] show that, provided ∆ > 0 is sufficiently
large, the limsup defining P(ϕ) is a limit.

The proof of Theorem 1.4 now follows from Theorem 3.1 exactly as in the
first proof of Theorem 1.1.

Remark 3.5. An interesting example of an amenable cover is that associ-
ated to the second commutator of π1(M). Let M be a quotient M = U/Γ,
where U is the universal cover of M and Γ ∼= π1(M) is a group of isometries
acting freely on U . The universal abelian cover of M is the regular cover
with covering group Γ/Γ′ ∼= H1(M,Z), where Γ′ = [Γ,Γ] is the commutator
subgroup (derived subgroup) of Γ, generated by the set of all commuta-
tors in Γ. The second commutator subgroup (second derived subgroup) Γ′′

is the subgroup generated by all commutators of commutators, i.e. by all
elements of the form [[a, b], [c, d]] for a, b, c, d ∈ Γ. The quotient Γ/Γ′′ is
metabelian and hence amenable. In terms of a flow on M , a periodic orbit
has trivial Frobenius class for this cover if and only if it is null-homologous
and lifts to a null-homologous periodic orbit on the universal abelian cover.
If Xt : M → M is a geodesic flow over a compact manifold with negative
sectional curvatures then the lifted flow on the Γ/Γ′′ cover is topologically
transitive and so Theorem 1.4 applies.
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